//===- llvm/MC/MCInstrItineraries.h - Scheduling ----------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file describes the structures used for instruction
 
// itineraries, stages, and operand reads/writes.  This is used by
 
// schedulers to determine instruction stages and latencies.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_MC_MCINSTRITINERARIES_H
 
#define LLVM_MC_MCINSTRITINERARIES_H
 
 
 
#include "llvm/MC/MCSchedule.h"
 
#include <algorithm>
 
 
 
namespace llvm {
 
 
 
//===----------------------------------------------------------------------===//
 
/// These values represent a non-pipelined step in
 
/// the execution of an instruction.  Cycles represents the number of
 
/// discrete time slots needed to complete the stage.  Units represent
 
/// the choice of functional units that can be used to complete the
 
/// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
 
/// cycles should elapse from the start of this stage to the start of
 
/// the next stage in the itinerary. A value of -1 indicates that the
 
/// next stage should start immediately after the current one.
 
/// For example:
 
///
 
///   { 1, x, -1 }
 
///      indicates that the stage occupies FU x for 1 cycle and that
 
///      the next stage starts immediately after this one.
 
///
 
///   { 2, x|y, 1 }
 
///      indicates that the stage occupies either FU x or FU y for 2
 
///      consecutive cycles and that the next stage starts one cycle
 
///      after this stage starts. That is, the stage requirements
 
///      overlap in time.
 
///
 
///   { 1, x, 0 }
 
///      indicates that the stage occupies FU x for 1 cycle and that
 
///      the next stage starts in this same cycle. This can be used to
 
///      indicate that the instruction requires multiple stages at the
 
///      same time.
 
///
 
/// FU reservation can be of two different kinds:
 
///  - FUs which instruction actually requires
 
///  - FUs which instruction just reserves. Reserved unit is not available for
 
///    execution of other instruction. However, several instructions can reserve
 
///    the same unit several times.
 
/// Such two types of units reservation is used to model instruction domain
 
/// change stalls, FUs using the same resource (e.g. same register file), etc.
 
 
 
struct InstrStage {
 
  enum ReservationKinds {
 
    Required = 0,
 
    Reserved = 1
 
  };
 
 
 
  /// Bitmask representing a set of functional units.
 
  typedef uint64_t FuncUnits;
 
 
 
  unsigned Cycles_;  ///< Length of stage in machine cycles
 
  FuncUnits Units_;  ///< Choice of functional units
 
  int NextCycles_;   ///< Number of machine cycles to next stage
 
  ReservationKinds Kind_; ///< Kind of the FU reservation
 
 
 
  /// Returns the number of cycles the stage is occupied.
 
  unsigned getCycles() const {
 
    return Cycles_;
 
  }
 
 
 
  /// Returns the choice of FUs.
 
  FuncUnits getUnits() const {
 
    return Units_;
 
  }
 
 
 
  ReservationKinds getReservationKind() const {
 
    return Kind_;
 
  }
 
 
 
  /// Returns the number of cycles from the start of this stage to the
 
  /// start of the next stage in the itinerary
 
  unsigned getNextCycles() const {
 
    return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// An itinerary represents the scheduling information for an instruction.
 
/// This includes a set of stages occupied by the instruction and the pipeline
 
/// cycle in which operands are read and written.
 
///
 
struct InstrItinerary {
 
  int16_t  NumMicroOps;        ///< # of micro-ops, -1 means it's variable
 
  uint16_t FirstStage;         ///< Index of first stage in itinerary
 
  uint16_t LastStage;          ///< Index of last + 1 stage in itinerary
 
  uint16_t FirstOperandCycle;  ///< Index of first operand rd/wr
 
  uint16_t LastOperandCycle;   ///< Index of last + 1 operand rd/wr
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// Itinerary data supplied by a subtarget to be used by a target.
 
///
 
class InstrItineraryData {
 
public:
 
  MCSchedModel SchedModel =
 
      MCSchedModel::GetDefaultSchedModel(); ///< Basic machine properties.
 
  const InstrStage *Stages = nullptr;       ///< Array of stages selected
 
  const unsigned *OperandCycles = nullptr; ///< Array of operand cycles selected
 
  const unsigned *Forwardings = nullptr; ///< Array of pipeline forwarding paths
 
  const InstrItinerary *Itineraries =
 
      nullptr; ///< Array of itineraries selected
 
 
 
  InstrItineraryData() = default;
 
  InstrItineraryData(const MCSchedModel &SM, const InstrStage *S,
 
                     const unsigned *OS, const unsigned *F)
 
    : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
 
      Itineraries(SchedModel.InstrItineraries) {}
 
 
 
  /// Returns true if there are no itineraries.
 
  bool isEmpty() const { return Itineraries == nullptr; }
 
 
 
  /// Returns true if the index is for the end marker itinerary.
 
  bool isEndMarker(unsigned ItinClassIndx) const {
 
    return ((Itineraries[ItinClassIndx].FirstStage == UINT16_MAX) &&
 
            (Itineraries[ItinClassIndx].LastStage == UINT16_MAX));
 
  }
 
 
 
  /// Return the first stage of the itinerary.
 
  const InstrStage *beginStage(unsigned ItinClassIndx) const {
 
    unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
 
    return Stages + StageIdx;
 
  }
 
 
 
  /// Return the last+1 stage of the itinerary.
 
  const InstrStage *endStage(unsigned ItinClassIndx) const {
 
    unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
 
    return Stages + StageIdx;
 
  }
 
 
 
  /// Return the total stage latency of the given class.  The latency is
 
  /// the maximum completion time for any stage in the itinerary.  If no stages
 
  /// exist, it defaults to one cycle.
 
  unsigned getStageLatency(unsigned ItinClassIndx) const {
 
    // If the target doesn't provide itinerary information, use a simple
 
    // non-zero default value for all instructions.
 
    if (isEmpty())
 
      return 1;
 
 
 
    // Calculate the maximum completion time for any stage.
 
    unsigned Latency = 0, StartCycle = 0;
 
    for (const InstrStage *IS = beginStage(ItinClassIndx),
 
           *E = endStage(ItinClassIndx); IS != E; ++IS) {
 
      Latency = std::max(Latency, StartCycle + IS->getCycles());
 
      StartCycle += IS->getNextCycles();
 
    }
 
    return Latency;
 
  }
 
 
 
  /// Return the cycle for the given class and operand.  Return -1 if no
 
  /// cycle is specified for the operand.
 
  int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
 
    if (isEmpty())
 
      return -1;
 
 
 
    unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
 
    unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
 
    if ((FirstIdx + OperandIdx) >= LastIdx)
 
      return -1;
 
 
 
    return (int)OperandCycles[FirstIdx + OperandIdx];
 
  }
 
 
 
  /// Return true if there is a pipeline forwarding between instructions
 
  /// of itinerary classes DefClass and UseClasses so that value produced by an
 
  /// instruction of itinerary class DefClass, operand index DefIdx can be
 
  /// bypassed when it's read by an instruction of itinerary class UseClass,
 
  /// operand index UseIdx.
 
  bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
 
                             unsigned UseClass, unsigned UseIdx) const {
 
    unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
 
    unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
 
    if ((FirstDefIdx + DefIdx) >= LastDefIdx)
 
      return false;
 
    if (Forwardings[FirstDefIdx + DefIdx] == 0)
 
      return false;
 
 
 
    unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
 
    unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
 
    if ((FirstUseIdx + UseIdx) >= LastUseIdx)
 
      return false;
 
 
 
    return Forwardings[FirstDefIdx + DefIdx] ==
 
      Forwardings[FirstUseIdx + UseIdx];
 
  }
 
 
 
  /// Compute and return the use operand latency of a given itinerary
 
  /// class and operand index if the value is produced by an instruction of the
 
  /// specified itinerary class and def operand index.
 
  int getOperandLatency(unsigned DefClass, unsigned DefIdx,
 
                        unsigned UseClass, unsigned UseIdx) const {
 
    if (isEmpty())
 
      return -1;
 
 
 
    int DefCycle = getOperandCycle(DefClass, DefIdx);
 
    if (DefCycle == -1)
 
      return -1;
 
 
 
    int UseCycle = getOperandCycle(UseClass, UseIdx);
 
    if (UseCycle == -1)
 
      return -1;
 
 
 
    UseCycle = DefCycle - UseCycle + 1;
 
    if (UseCycle > 0 &&
 
        hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
 
      // FIXME: This assumes one cycle benefit for every pipeline forwarding.
 
      --UseCycle;
 
    return UseCycle;
 
  }
 
 
 
  /// Return the number of micro-ops that the given class decodes to.
 
  /// Return -1 for classes that require dynamic lookup via TargetInstrInfo.
 
  int getNumMicroOps(unsigned ItinClassIndx) const {
 
    if (isEmpty())
 
      return 1;
 
    return Itineraries[ItinClassIndx].NumMicroOps;
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_MC_MCINSTRITINERARIES_H