Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file defines the MCInstrAnalysis class which the MCTargetDescs can
  10. // derive from to give additional information to MC.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_MC_MCINSTRANALYSIS_H
  15. #define LLVM_MC_MCINSTRANALYSIS_H
  16.  
  17. #include "llvm/ADT/ArrayRef.h"
  18. #include "llvm/MC/MCInst.h"
  19. #include "llvm/MC/MCInstrDesc.h"
  20. #include "llvm/MC/MCInstrInfo.h"
  21. #include <cstdint>
  22. #include <vector>
  23.  
  24. namespace llvm {
  25.  
  26. class MCRegisterInfo;
  27. class Triple;
  28.  
  29. class MCInstrAnalysis {
  30. protected:
  31.   friend class Target;
  32.  
  33.   const MCInstrInfo *Info;
  34.  
  35. public:
  36.   MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {}
  37.   virtual ~MCInstrAnalysis() = default;
  38.  
  39.   virtual bool isBranch(const MCInst &Inst) const {
  40.     return Info->get(Inst.getOpcode()).isBranch();
  41.   }
  42.  
  43.   virtual bool isConditionalBranch(const MCInst &Inst) const {
  44.     return Info->get(Inst.getOpcode()).isConditionalBranch();
  45.   }
  46.  
  47.   virtual bool isUnconditionalBranch(const MCInst &Inst) const {
  48.     return Info->get(Inst.getOpcode()).isUnconditionalBranch();
  49.   }
  50.  
  51.   virtual bool isIndirectBranch(const MCInst &Inst) const {
  52.     return Info->get(Inst.getOpcode()).isIndirectBranch();
  53.   }
  54.  
  55.   virtual bool isCall(const MCInst &Inst) const {
  56.     return Info->get(Inst.getOpcode()).isCall();
  57.   }
  58.  
  59.   virtual bool isReturn(const MCInst &Inst) const {
  60.     return Info->get(Inst.getOpcode()).isReturn();
  61.   }
  62.  
  63.   virtual bool isTerminator(const MCInst &Inst) const {
  64.     return Info->get(Inst.getOpcode()).isTerminator();
  65.   }
  66.  
  67.   /// Returns true if at least one of the register writes performed by
  68.   /// \param Inst implicitly clears the upper portion of all super-registers.
  69.   ///
  70.   /// Example: on X86-64, a write to EAX implicitly clears the upper half of
  71.   /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit
  72.   /// instruction implicitly clears the upper portion of the correspondent
  73.   /// YMM register.
  74.   ///
  75.   /// This method also updates an APInt which is used as mask of register
  76.   /// writes. There is one bit for every explicit/implicit write performed by
  77.   /// the instruction. If a write implicitly clears its super-registers, then
  78.   /// the corresponding bit is set (vic. the corresponding bit is cleared).
  79.   ///
  80.   /// The first bits in the APint are related to explicit writes. The remaining
  81.   /// bits are related to implicit writes. The sequence of writes follows the
  82.   /// machine operand sequence. For implicit writes, the sequence is defined by
  83.   /// the MCInstrDesc.
  84.   ///
  85.   /// The assumption is that the bit-width of the APInt is correctly set by
  86.   /// the caller. The default implementation conservatively assumes that none of
  87.   /// the writes clears the upper portion of a super-register.
  88.   virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI,
  89.                                     const MCInst &Inst,
  90.                                     APInt &Writes) const;
  91.  
  92.   /// Returns true if MI is a dependency breaking zero-idiom for the given
  93.   /// subtarget.
  94.   ///
  95.   /// Mask is used to identify input operands that have their dependency
  96.   /// broken. Each bit of the mask is associated with a specific input operand.
  97.   /// Bits associated with explicit input operands are laid out first in the
  98.   /// mask; implicit operands come after explicit operands.
  99.   ///
  100.   /// Dependencies are broken only for operands that have their corresponding bit
  101.   /// set. Operands that have their bit cleared, or that don't have a
  102.   /// corresponding bit in the mask don't have their dependency broken.  Note
  103.   /// that Mask may not be big enough to describe all operands.  The assumption
  104.   /// for operands that don't have a correspondent bit in the mask is that those
  105.   /// are still data dependent.
  106.   ///
  107.   /// The only exception to the rule is for when Mask has all zeroes.
  108.   /// A zero mask means: dependencies are broken for all explicit register
  109.   /// operands.
  110.   virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask,
  111.                            unsigned CPUID) const {
  112.     return false;
  113.   }
  114.  
  115.   /// Returns true if MI is a dependency breaking instruction for the
  116.   /// subtarget associated with CPUID .
  117.   ///
  118.   /// The value computed by a dependency breaking instruction is not dependent
  119.   /// on the inputs. An example of dependency breaking instruction on X86 is
  120.   /// `XOR %eax, %eax`.
  121.   ///
  122.   /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask
  123.   /// can be inspected to identify independent operands.
  124.   ///
  125.   /// Essentially, each bit of the mask corresponds to an input operand.
  126.   /// Explicit operands are laid out first in the mask; implicit operands follow
  127.   /// explicit operands. Bits are set for operands that are independent.
  128.   ///
  129.   /// Note that the number of bits in Mask may not be equivalent to the sum of
  130.   /// explicit and implicit operands in MI. Operands that don't have a
  131.   /// corresponding bit in Mask are assumed "not independente".
  132.   ///
  133.   /// The only exception is for when Mask is all zeroes. That means: explicit
  134.   /// input operands of MI are independent.
  135.   virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask,
  136.                                     unsigned CPUID) const {
  137.     return isZeroIdiom(MI, Mask, CPUID);
  138.   }
  139.  
  140.   /// Returns true if MI is a candidate for move elimination.
  141.   ///
  142.   /// Different subtargets may apply different constraints to optimizable
  143.   /// register moves. For example, on most X86 subtargets, a candidate for move
  144.   /// elimination cannot specify the same register for both source and
  145.   /// destination.
  146.   virtual bool isOptimizableRegisterMove(const MCInst &MI,
  147.                                          unsigned CPUID) const {
  148.     return false;
  149.   }
  150.  
  151.   /// Given a branch instruction try to get the address the branch
  152.   /// targets. Return true on success, and the address in Target.
  153.   virtual bool
  154.   evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
  155.                  uint64_t &Target) const;
  156.  
  157.   /// Given an instruction tries to get the address of a memory operand. Returns
  158.   /// the address on success.
  159.   virtual std::optional<uint64_t>
  160.   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
  161.                                uint64_t Addr, uint64_t Size) const;
  162.  
  163.   /// Given an instruction with a memory operand that could require relocation,
  164.   /// returns the offset within the instruction of that relocation.
  165.   virtual std::optional<uint64_t>
  166.   getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const;
  167.  
  168.   /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries.
  169.   virtual std::vector<std::pair<uint64_t, uint64_t>>
  170.   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
  171.                  uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
  172.     return {};
  173.   }
  174. };
  175.  
  176. } // end namespace llvm
  177.  
  178. #endif // LLVM_MC_MCINSTRANALYSIS_H
  179.