//===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file declares functions and classes used to support LTO. It is intended
 
// to be used both by LTO classes as well as by clients (gold-plugin) that
 
// don't utilize the LTO code generator interfaces.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_LTO_LTO_H
 
#define LLVM_LTO_LTO_H
 
 
 
#include "llvm/ADT/MapVector.h"
 
#include "llvm/ADT/StringMap.h"
 
#include "llvm/Bitcode/BitcodeReader.h"
 
#include "llvm/IR/ModuleSummaryIndex.h"
 
#include "llvm/LTO/Config.h"
 
#include "llvm/Object/IRSymtab.h"
 
#include "llvm/Support/Caching.h"
 
#include "llvm/Support/Error.h"
 
#include "llvm/Support/thread.h"
 
#include "llvm/Transforms/IPO/FunctionAttrs.h"
 
#include "llvm/Transforms/IPO/FunctionImport.h"
 
 
 
namespace llvm {
 
 
 
class Error;
 
class IRMover;
 
class LLVMContext;
 
class MemoryBufferRef;
 
class Module;
 
class raw_pwrite_stream;
 
class ToolOutputFile;
 
 
 
/// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
 
/// recorded in the index and the ThinLTO backends must apply the changes to
 
/// the module via thinLTOFinalizeInModule.
 
///
 
/// This is done for correctness (if value exported, ensure we always
 
/// emit a copy), and compile-time optimization (allow drop of duplicates).
 
void thinLTOResolvePrevailingInIndex(
 
    const lto::Config &C, ModuleSummaryIndex &Index,
 
    function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
 
        isPrevailing,
 
    function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
 
        recordNewLinkage,
 
    const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
 
 
 
/// Update the linkages in the given \p Index to mark exported values
 
/// as external and non-exported values as internal. The ThinLTO backends
 
/// must apply the changes to the Module via thinLTOInternalizeModule.
 
void thinLTOInternalizeAndPromoteInIndex(
 
    ModuleSummaryIndex &Index,
 
    function_ref<bool(StringRef, ValueInfo)> isExported,
 
    function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
 
        isPrevailing);
 
 
 
/// Computes a unique hash for the Module considering the current list of
 
/// export/import and other global analysis results.
 
/// The hash is produced in \p Key.
 
void computeLTOCacheKey(
 
    SmallString<40> &Key, const lto::Config &Conf,
 
    const ModuleSummaryIndex &Index, StringRef ModuleID,
 
    const FunctionImporter::ImportMapTy &ImportList,
 
    const FunctionImporter::ExportSetTy &ExportList,
 
    const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
 
    const GVSummaryMapTy &DefinedGlobals,
 
    const std::set<GlobalValue::GUID> &CfiFunctionDefs = {},
 
    const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});
 
 
 
namespace lto {
 
 
 
/// Given the original \p Path to an output file, replace any path
 
/// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
 
/// resulting directory if it does not yet exist.
 
std::string getThinLTOOutputFile(const std::string &Path,
 
                                 const std::string &OldPrefix,
 
                                 const std::string &NewPrefix);
 
 
 
/// Setup optimization remarks.
 
Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks(
 
    LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
 
    StringRef RemarksFormat, bool RemarksWithHotness,
 
    std::optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1);
 
 
 
/// Setups the output file for saving statistics.
 
Expected<std::unique_ptr<ToolOutputFile>>
 
setupStatsFile(StringRef StatsFilename);
 
 
 
/// Produces a container ordering for optimal multi-threaded processing. Returns
 
/// ordered indices to elements in the input array.
 
std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R);
 
 
 
class LTO;
 
struct SymbolResolution;
 
class ThinBackendProc;
 
 
 
/// An input file. This is a symbol table wrapper that only exposes the
 
/// information that an LTO client should need in order to do symbol resolution.
 
class InputFile {
 
public:
 
  class Symbol;
 
 
 
private:
 
  // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
 
  friend LTO;
 
  InputFile() = default;
 
 
 
  std::vector<BitcodeModule> Mods;
 
  SmallVector<char, 0> Strtab;
 
  std::vector<Symbol> Symbols;
 
 
 
  // [begin, end) for each module
 
  std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
 
 
 
  StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
 
  std::vector<StringRef> DependentLibraries;
 
  std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable;
 
 
 
public:
 
  ~InputFile();
 
 
 
  /// Create an InputFile.
 
  static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
 
 
 
  /// The purpose of this class is to only expose the symbol information that an
 
  /// LTO client should need in order to do symbol resolution.
 
  class Symbol : irsymtab::Symbol {
 
    friend LTO;
 
 
 
  public:
 
    Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
 
 
 
    using irsymtab::Symbol::isUndefined;
 
    using irsymtab::Symbol::isCommon;
 
    using irsymtab::Symbol::isWeak;
 
    using irsymtab::Symbol::isIndirect;
 
    using irsymtab::Symbol::getName;
 
    using irsymtab::Symbol::getIRName;
 
    using irsymtab::Symbol::getVisibility;
 
    using irsymtab::Symbol::canBeOmittedFromSymbolTable;
 
    using irsymtab::Symbol::isTLS;
 
    using irsymtab::Symbol::getComdatIndex;
 
    using irsymtab::Symbol::getCommonSize;
 
    using irsymtab::Symbol::getCommonAlignment;
 
    using irsymtab::Symbol::getCOFFWeakExternalFallback;
 
    using irsymtab::Symbol::getSectionName;
 
    using irsymtab::Symbol::isExecutable;
 
    using irsymtab::Symbol::isUsed;
 
  };
 
 
 
  /// A range over the symbols in this InputFile.
 
  ArrayRef<Symbol> symbols() const { return Symbols; }
 
 
 
  /// Returns linker options specified in the input file.
 
  StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
 
 
 
  /// Returns dependent library specifiers from the input file.
 
  ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; }
 
 
 
  /// Returns the path to the InputFile.
 
  StringRef getName() const;
 
 
 
  /// Returns the input file's target triple.
 
  StringRef getTargetTriple() const { return TargetTriple; }
 
 
 
  /// Returns the source file path specified at compile time.
 
  StringRef getSourceFileName() const { return SourceFileName; }
 
 
 
  // Returns a table with all the comdats used by this file.
 
  ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const {
 
    return ComdatTable;
 
  }
 
 
 
  // Returns the only BitcodeModule from InputFile.
 
  BitcodeModule &getSingleBitcodeModule();
 
 
 
private:
 
  ArrayRef<Symbol> module_symbols(unsigned I) const {
 
    const auto &Indices = ModuleSymIndices[I];
 
    return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
 
  }
 
};
 
 
 
/// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
 
/// The details of this type definition aren't important; clients can only
 
/// create a ThinBackend using one of the create*ThinBackend() functions below.
 
using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>(
 
    const Config &C, ModuleSummaryIndex &CombinedIndex,
 
    StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
 
    AddStreamFn AddStream, FileCache Cache)>;
 
 
 
/// This ThinBackend runs the individual backend jobs in-process.
 
/// The default value means to use one job per hardware core (not hyper-thread).
 
/// OnWrite is callback which receives module identifier and notifies LTO user
 
/// that index file for the module (and optionally imports file) was created.
 
/// ShouldEmitIndexFiles being true will write sharded ThinLTO index files
 
/// to the same path as the input module, with suffix ".thinlto.bc"
 
/// ShouldEmitImportsFiles is true it also writes a list of imported files to a
 
/// similar path with ".imports" appended instead.
 
using IndexWriteCallback = std::function<void(const std::string &)>;
 
ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism,
 
                                       IndexWriteCallback OnWrite = nullptr,
 
                                       bool ShouldEmitIndexFiles = false,
 
                                       bool ShouldEmitImportsFiles = false);
 
 
 
/// This ThinBackend writes individual module indexes to files, instead of
 
/// running the individual backend jobs. This backend is for distributed builds
 
/// where separate processes will invoke the real backends.
 
///
 
/// To find the path to write the index to, the backend checks if the path has a
 
/// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
 
/// appends ".thinlto.bc" and writes the index to that path. If
 
/// ShouldEmitImportsFiles is true it also writes a list of imported files to a
 
/// similar path with ".imports" appended instead.
 
/// LinkedObjectsFile is an output stream to write the list of object files for
 
/// the final ThinLTO linking. Can be nullptr.
 
/// OnWrite is callback which receives module identifier and notifies LTO user
 
/// that index file for the module (and optionally imports file) was created.
 
ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
 
                                          std::string NewPrefix,
 
                                          bool ShouldEmitImportsFiles,
 
                                          raw_fd_ostream *LinkedObjectsFile,
 
                                          IndexWriteCallback OnWrite);
 
 
 
/// This class implements a resolution-based interface to LLVM's LTO
 
/// functionality. It supports regular LTO, parallel LTO code generation and
 
/// ThinLTO. You can use it from a linker in the following way:
 
/// - Set hooks and code generation options (see lto::Config struct defined in
 
///   Config.h), and use the lto::Config object to create an lto::LTO object.
 
/// - Create lto::InputFile objects using lto::InputFile::create(), then use
 
///   the symbols() function to enumerate its symbols and compute a resolution
 
///   for each symbol (see SymbolResolution below).
 
/// - After the linker has visited each input file (and each regular object
 
///   file) and computed a resolution for each symbol, take each lto::InputFile
 
///   and pass it and an array of symbol resolutions to the add() function.
 
/// - Call the getMaxTasks() function to get an upper bound on the number of
 
///   native object files that LTO may add to the link.
 
/// - Call the run() function. This function will use the supplied AddStream
 
///   and Cache functions to add up to getMaxTasks() native object files to
 
///   the link.
 
class LTO {
 
  friend InputFile;
 
 
 
public:
 
  /// Create an LTO object. A default constructed LTO object has a reasonable
 
  /// production configuration, but you can customize it by passing arguments to
 
  /// this constructor.
 
  /// FIXME: We do currently require the DiagHandler field to be set in Conf.
 
  /// Until that is fixed, a Config argument is required.
 
  LTO(Config Conf, ThinBackend Backend = nullptr,
 
      unsigned ParallelCodeGenParallelismLevel = 1);
 
  ~LTO();
 
 
 
  /// Add an input file to the LTO link, using the provided symbol resolutions.
 
  /// The symbol resolutions must appear in the enumeration order given by
 
  /// InputFile::symbols().
 
  Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
 
 
 
  /// Returns an upper bound on the number of tasks that the client may expect.
 
  /// This may only be called after all IR object files have been added. For a
 
  /// full description of tasks see LTOBackend.h.
 
  unsigned getMaxTasks() const;
 
 
 
  /// Runs the LTO pipeline. This function calls the supplied AddStream
 
  /// function to add native object files to the link.
 
  ///
 
  /// The Cache parameter is optional. If supplied, it will be used to cache
 
  /// native object files and add them to the link.
 
  ///
 
  /// The client will receive at most one callback (via either AddStream or
 
  /// Cache) for each task identifier.
 
  Error run(AddStreamFn AddStream, FileCache Cache = nullptr);
 
 
 
  /// Static method that returns a list of libcall symbols that can be generated
 
  /// by LTO but might not be visible from bitcode symbol table.
 
  static ArrayRef<const char*> getRuntimeLibcallSymbols();
 
 
 
private:
 
  Config Conf;
 
 
 
  struct RegularLTOState {
 
    RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
 
                    const Config &Conf);
 
    struct CommonResolution {
 
      uint64_t Size = 0;
 
      MaybeAlign Align;
 
      /// Record if at least one instance of the common was marked as prevailing
 
      bool Prevailing = false;
 
    };
 
    std::map<std::string, CommonResolution> Commons;
 
 
 
    unsigned ParallelCodeGenParallelismLevel;
 
    LTOLLVMContext Ctx;
 
    std::unique_ptr<Module> CombinedModule;
 
    std::unique_ptr<IRMover> Mover;
 
 
 
    // This stores the information about a regular LTO module that we have added
 
    // to the link. It will either be linked immediately (for modules without
 
    // summaries) or after summary-based dead stripping (for modules with
 
    // summaries).
 
    struct AddedModule {
 
      std::unique_ptr<Module> M;
 
      std::vector<GlobalValue *> Keep;
 
    };
 
    std::vector<AddedModule> ModsWithSummaries;
 
    bool EmptyCombinedModule = true;
 
  } RegularLTO;
 
 
 
  using ModuleMapType = MapVector<StringRef, BitcodeModule>;
 
 
 
  struct ThinLTOState {
 
    ThinLTOState(ThinBackend Backend);
 
 
 
    ThinBackend Backend;
 
    ModuleSummaryIndex CombinedIndex;
 
    // The full set of bitcode modules in input order.
 
    ModuleMapType ModuleMap;
 
    // The bitcode modules to compile, if specified by the LTO Config.
 
    std::optional<ModuleMapType> ModulesToCompile;
 
    DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
 
  } ThinLTO;
 
 
 
  // The global resolution for a particular (mangled) symbol name. This is in
 
  // particular necessary to track whether each symbol can be internalized.
 
  // Because any input file may introduce a new cross-partition reference, we
 
  // cannot make any final internalization decisions until all input files have
 
  // been added and the client has called run(). During run() we apply
 
  // internalization decisions either directly to the module (for regular LTO)
 
  // or to the combined index (for ThinLTO).
 
  struct GlobalResolution {
 
    /// The unmangled name of the global.
 
    std::string IRName;
 
 
 
    /// Keep track if the symbol is visible outside of a module with a summary
 
    /// (i.e. in either a regular object or a regular LTO module without a
 
    /// summary).
 
    bool VisibleOutsideSummary = false;
 
 
 
    /// The symbol was exported dynamically, and therefore could be referenced
 
    /// by a shared library not visible to the linker.
 
    bool ExportDynamic = false;
 
 
 
    bool UnnamedAddr = true;
 
 
 
    /// True if module contains the prevailing definition.
 
    bool Prevailing = false;
 
 
 
    /// Returns true if module contains the prevailing definition and symbol is
 
    /// an IR symbol. For example when module-level inline asm block is used,
 
    /// symbol can be prevailing in module but have no IR name.
 
    bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
 
 
 
    /// This field keeps track of the partition number of this global. The
 
    /// regular LTO object is partition 0, while each ThinLTO object has its own
 
    /// partition number from 1 onwards.
 
    ///
 
    /// Any global that is defined or used by more than one partition, or that
 
    /// is referenced externally, may not be internalized.
 
    ///
 
    /// Partitions generally have a one-to-one correspondence with tasks, except
 
    /// that we use partition 0 for all parallel LTO code generation partitions.
 
    /// Any partitioning of the combined LTO object is done internally by the
 
    /// LTO backend.
 
    unsigned Partition = Unknown;
 
 
 
    /// Special partition numbers.
 
    enum : unsigned {
 
      /// A partition number has not yet been assigned to this global.
 
      Unknown = -1u,
 
 
 
      /// This global is either used by more than one partition or has an
 
      /// external reference, and therefore cannot be internalized.
 
      External = -2u,
 
 
 
      /// The RegularLTO partition
 
      RegularLTO = 0,
 
    };
 
  };
 
 
 
  // Global mapping from mangled symbol names to resolutions.
 
  StringMap<GlobalResolution> GlobalResolutions;
 
 
 
  void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
 
                            ArrayRef<SymbolResolution> Res, unsigned Partition,
 
                            bool InSummary);
 
 
 
  // These functions take a range of symbol resolutions [ResI, ResE) and consume
 
  // the resolutions used by a single input module by incrementing ResI. After
 
  // these functions return, [ResI, ResE) will refer to the resolution range for
 
  // the remaining modules in the InputFile.
 
  Error addModule(InputFile &Input, unsigned ModI,
 
                  const SymbolResolution *&ResI, const SymbolResolution *ResE);
 
 
 
  Expected<RegularLTOState::AddedModule>
 
  addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
 
                const SymbolResolution *&ResI, const SymbolResolution *ResE);
 
  Error linkRegularLTO(RegularLTOState::AddedModule Mod,
 
                       bool LivenessFromIndex);
 
 
 
  Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
 
                   const SymbolResolution *&ResI, const SymbolResolution *ResE);
 
 
 
  Error runRegularLTO(AddStreamFn AddStream);
 
  Error runThinLTO(AddStreamFn AddStream, FileCache Cache,
 
                   const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
 
 
 
  Error checkPartiallySplit();
 
 
 
  mutable bool CalledGetMaxTasks = false;
 
 
 
  // Use Optional to distinguish false from not yet initialized.
 
  std::optional<bool> EnableSplitLTOUnit;
 
 
 
  // Identify symbols exported dynamically, and that therefore could be
 
  // referenced by a shared library not visible to the linker.
 
  DenseSet<GlobalValue::GUID> DynamicExportSymbols;
 
 
 
  // Diagnostic optimization remarks file
 
  std::unique_ptr<ToolOutputFile> DiagnosticOutputFile;
 
};
 
 
 
/// The resolution for a symbol. The linker must provide a SymbolResolution for
 
/// each global symbol based on its internal resolution of that symbol.
 
struct SymbolResolution {
 
  SymbolResolution()
 
      : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
 
        ExportDynamic(0), LinkerRedefined(0) {}
 
 
 
  /// The linker has chosen this definition of the symbol.
 
  unsigned Prevailing : 1;
 
 
 
  /// The definition of this symbol is unpreemptable at runtime and is known to
 
  /// be in this linkage unit.
 
  unsigned FinalDefinitionInLinkageUnit : 1;
 
 
 
  /// The definition of this symbol is visible outside of the LTO unit.
 
  unsigned VisibleToRegularObj : 1;
 
 
 
  /// The symbol was exported dynamically, and therefore could be referenced
 
  /// by a shared library not visible to the linker.
 
  unsigned ExportDynamic : 1;
 
 
 
  /// Linker redefined version of the symbol which appeared in -wrap or -defsym
 
  /// linker option.
 
  unsigned LinkerRedefined : 1;
 
};
 
 
 
} // namespace lto
 
} // namespace llvm
 
 
 
#endif