//===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the ValueMap class.  ValueMap maps Value* or any subclass
 
// to an arbitrary other type.  It provides the DenseMap interface but updates
 
// itself to remain safe when keys are RAUWed or deleted.  By default, when a
 
// key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
 
// mapping V2->target is added.  If V2 already existed, its old target is
 
// overwritten.  When a key is deleted, its mapping is removed.
 
//
 
// You can override a ValueMap's Config parameter to control exactly what
 
// happens on RAUW and destruction and to get called back on each event.  It's
 
// legal to call back into the ValueMap from a Config's callbacks.  Config
 
// parameters should inherit from ValueMapConfig<KeyT> to get default
 
// implementations of all the methods ValueMap uses.  See ValueMapConfig for
 
// documentation of the functions you can override.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_VALUEMAP_H
 
#define LLVM_IR_VALUEMAP_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseMapInfo.h"
 
#include "llvm/IR/TrackingMDRef.h"
 
#include "llvm/IR/ValueHandle.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/Mutex.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
#include <mutex>
 
#include <optional>
 
#include <type_traits>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
template<typename KeyT, typename ValueT, typename Config>
 
class ValueMapCallbackVH;
 
template<typename DenseMapT, typename KeyT>
 
class ValueMapIterator;
 
template<typename DenseMapT, typename KeyT>
 
class ValueMapConstIterator;
 
 
 
/// This class defines the default behavior for configurable aspects of
 
/// ValueMap<>.  User Configs should inherit from this class to be as compatible
 
/// as possible with future versions of ValueMap.
 
template<typename KeyT, typename MutexT = sys::Mutex>
 
struct ValueMapConfig {
 
  using mutex_type = MutexT;
 
 
 
  /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
 
  /// false, the ValueMap will leave the original mapping in place.
 
  enum { FollowRAUW = true };
 
 
 
  // All methods will be called with a first argument of type ExtraData.  The
 
  // default implementations in this class take a templated first argument so
 
  // that users' subclasses can use any type they want without having to
 
  // override all the defaults.
 
  struct ExtraData {};
 
 
 
  template<typename ExtraDataT>
 
  static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
 
  template<typename ExtraDataT>
 
  static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
 
 
 
  /// Returns a mutex that should be acquired around any changes to the map.
 
  /// This is only acquired from the CallbackVH (and held around calls to onRAUW
 
  /// and onDelete) and not inside other ValueMap methods.  NULL means that no
 
  /// mutex is necessary.
 
  template<typename ExtraDataT>
 
  static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
 
};
 
 
 
/// See the file comment.
 
template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>>
 
class ValueMap {
 
  friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
 
 
 
  using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>;
 
  using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>;
 
  using MDMapT = DenseMap<const Metadata *, TrackingMDRef>;
 
  using ExtraData = typename Config::ExtraData;
 
 
 
  MapT Map;
 
  std::optional<MDMapT> MDMap;
 
  ExtraData Data;
 
 
 
public:
 
  using key_type = KeyT;
 
  using mapped_type = ValueT;
 
  using value_type = std::pair<KeyT, ValueT>;
 
  using size_type = unsigned;
 
 
 
  explicit ValueMap(unsigned NumInitBuckets = 64)
 
      : Map(NumInitBuckets), Data() {}
 
  explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
 
      : Map(NumInitBuckets), Data(Data) {}
 
  // ValueMap can't be copied nor moved, because the callbacks store pointer to
 
  // it.
 
  ValueMap(const ValueMap &) = delete;
 
  ValueMap(ValueMap &&) = delete;
 
  ValueMap &operator=(const ValueMap &) = delete;
 
  ValueMap &operator=(ValueMap &&) = delete;
 
 
 
  bool hasMD() const { return bool(MDMap); }
 
  MDMapT &MD() {
 
    if (!MDMap)
 
      MDMap.emplace();
 
    return *MDMap;
 
  }
 
  std::optional<MDMapT> &getMDMap() { return MDMap; }
 
 
 
  /// Get the mapped metadata, if it's in the map.
 
  std::optional<Metadata *> getMappedMD(const Metadata *MD) const {
 
    if (!MDMap)
 
      return std::nullopt;
 
    auto Where = MDMap->find(MD);
 
    if (Where == MDMap->end())
 
      return std::nullopt;
 
    return Where->second.get();
 
  }
 
 
 
  using iterator = ValueMapIterator<MapT, KeyT>;
 
  using const_iterator = ValueMapConstIterator<MapT, KeyT>;
 
 
 
  inline iterator begin() { return iterator(Map.begin()); }
 
  inline iterator end() { return iterator(Map.end()); }
 
  inline const_iterator begin() const { return const_iterator(Map.begin()); }
 
  inline const_iterator end() const { return const_iterator(Map.end()); }
 
 
 
  bool empty() const { return Map.empty(); }
 
  size_type size() const { return Map.size(); }
 
 
 
  /// Grow the map so that it has at least Size buckets. Does not shrink
 
  void reserve(size_t Size) { Map.reserve(Size); }
 
 
 
  void clear() {
 
    Map.clear();
 
    MDMap.reset();
 
  }
 
 
 
  /// Return 1 if the specified key is in the map, 0 otherwise.
 
  size_type count(const KeyT &Val) const {
 
    return Map.find_as(Val) == Map.end() ? 0 : 1;
 
  }
 
 
 
  iterator find(const KeyT &Val) {
 
    return iterator(Map.find_as(Val));
 
  }
 
  const_iterator find(const KeyT &Val) const {
 
    return const_iterator(Map.find_as(Val));
 
  }
 
 
 
  /// lookup - Return the entry for the specified key, or a default
 
  /// constructed value if no such entry exists.
 
  ValueT lookup(const KeyT &Val) const {
 
    typename MapT::const_iterator I = Map.find_as(Val);
 
    return I != Map.end() ? I->second : ValueT();
 
  }
 
 
 
  // Inserts key,value pair into the map if the key isn't already in the map.
 
  // If the key is already in the map, it returns false and doesn't update the
 
  // value.
 
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
 
    auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
 
    return std::make_pair(iterator(MapResult.first), MapResult.second);
 
  }
 
 
 
  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
 
    auto MapResult =
 
        Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
 
    return std::make_pair(iterator(MapResult.first), MapResult.second);
 
  }
 
 
 
  /// insert - Range insertion of pairs.
 
  template<typename InputIt>
 
  void insert(InputIt I, InputIt E) {
 
    for (; I != E; ++I)
 
      insert(*I);
 
  }
 
 
 
  bool erase(const KeyT &Val) {
 
    typename MapT::iterator I = Map.find_as(Val);
 
    if (I == Map.end())
 
      return false;
 
 
 
    Map.erase(I);
 
    return true;
 
  }
 
  void erase(iterator I) {
 
    return Map.erase(I.base());
 
  }
 
 
 
  value_type& FindAndConstruct(const KeyT &Key) {
 
    return Map.FindAndConstruct(Wrap(Key));
 
  }
 
 
 
  ValueT &operator[](const KeyT &Key) {
 
    return Map[Wrap(Key)];
 
  }
 
 
 
  /// isPointerIntoBucketsArray - Return true if the specified pointer points
 
  /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
 
  /// value in the ValueMap).
 
  bool isPointerIntoBucketsArray(const void *Ptr) const {
 
    return Map.isPointerIntoBucketsArray(Ptr);
 
  }
 
 
 
  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
 
  /// array.  In conjunction with the previous method, this can be used to
 
  /// determine whether an insertion caused the ValueMap to reallocate.
 
  const void *getPointerIntoBucketsArray() const {
 
    return Map.getPointerIntoBucketsArray();
 
  }
 
 
 
private:
 
  // Takes a key being looked up in the map and wraps it into a
 
  // ValueMapCallbackVH, the actual key type of the map.  We use a helper
 
  // function because ValueMapCVH is constructed with a second parameter.
 
  ValueMapCVH Wrap(KeyT key) const {
 
    // The only way the resulting CallbackVH could try to modify *this (making
 
    // the const_cast incorrect) is if it gets inserted into the map.  But then
 
    // this function must have been called from a non-const method, making the
 
    // const_cast ok.
 
    return ValueMapCVH(key, const_cast<ValueMap*>(this));
 
  }
 
};
 
 
 
// This CallbackVH updates its ValueMap when the contained Value changes,
 
// according to the user's preferences expressed through the Config object.
 
template <typename KeyT, typename ValueT, typename Config>
 
class ValueMapCallbackVH final : public CallbackVH {
 
  friend class ValueMap<KeyT, ValueT, Config>;
 
  friend struct DenseMapInfo<ValueMapCallbackVH>;
 
 
 
  using ValueMapT = ValueMap<KeyT, ValueT, Config>;
 
  using KeySansPointerT = std::remove_pointer_t<KeyT>;
 
 
 
  ValueMapT *Map;
 
 
 
  ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
 
      : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
 
        Map(Map) {}
 
 
 
  // Private constructor used to create empty/tombstone DenseMap keys.
 
  ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
 
 
 
public:
 
  KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
 
 
 
  void deleted() override {
 
    // Make a copy that won't get changed even when *this is destroyed.
 
    ValueMapCallbackVH Copy(*this);
 
    typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
 
    std::unique_lock<typename Config::mutex_type> Guard;
 
    if (M)
 
      Guard = std::unique_lock<typename Config::mutex_type>(*M);
 
    Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
 
    Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
 
  }
 
 
 
  void allUsesReplacedWith(Value *new_key) override {
 
    assert(isa<KeySansPointerT>(new_key) &&
 
           "Invalid RAUW on key of ValueMap<>");
 
    // Make a copy that won't get changed even when *this is destroyed.
 
    ValueMapCallbackVH Copy(*this);
 
    typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
 
    std::unique_lock<typename Config::mutex_type> Guard;
 
    if (M)
 
      Guard = std::unique_lock<typename Config::mutex_type>(*M);
 
 
 
    KeyT typed_new_key = cast<KeySansPointerT>(new_key);
 
    // Can destroy *this:
 
    Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
 
    if (Config::FollowRAUW) {
 
      typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
 
      // I could == Copy.Map->Map.end() if the onRAUW callback already
 
      // removed the old mapping.
 
      if (I != Copy.Map->Map.end()) {
 
        ValueT Target(std::move(I->second));
 
        Copy.Map->Map.erase(I);  // Definitely destroys *this.
 
        Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
 
      }
 
    }
 
  }
 
};
 
 
 
template<typename KeyT, typename ValueT, typename Config>
 
struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> {
 
  using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
 
 
 
  static inline VH getEmptyKey() {
 
    return VH(DenseMapInfo<Value *>::getEmptyKey());
 
  }
 
 
 
  static inline VH getTombstoneKey() {
 
    return VH(DenseMapInfo<Value *>::getTombstoneKey());
 
  }
 
 
 
  static unsigned getHashValue(const VH &Val) {
 
    return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
 
  }
 
 
 
  static unsigned getHashValue(const KeyT &Val) {
 
    return DenseMapInfo<KeyT>::getHashValue(Val);
 
  }
 
 
 
  static bool isEqual(const VH &LHS, const VH &RHS) {
 
    return LHS == RHS;
 
  }
 
 
 
  static bool isEqual(const KeyT &LHS, const VH &RHS) {
 
    return LHS == RHS.getValPtr();
 
  }
 
};
 
 
 
template <typename DenseMapT, typename KeyT> class ValueMapIterator {
 
  using BaseT = typename DenseMapT::iterator;
 
  using ValueT = typename DenseMapT::mapped_type;
 
 
 
  BaseT I;
 
 
 
public:
 
  using iterator_category = std::forward_iterator_tag;
 
  using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = value_type *;
 
  using reference = value_type &;
 
 
 
  ValueMapIterator() : I() {}
 
  ValueMapIterator(BaseT I) : I(I) {}
 
 
 
  BaseT base() const { return I; }
 
 
 
  struct ValueTypeProxy {
 
    const KeyT first;
 
    ValueT& second;
 
 
 
    ValueTypeProxy *operator->() { return this; }
 
 
 
    operator std::pair<KeyT, ValueT>() const {
 
      return std::make_pair(first, second);
 
    }
 
  };
 
 
 
  ValueTypeProxy operator*() const {
 
    ValueTypeProxy Result = {I->first.Unwrap(), I->second};
 
    return Result;
 
  }
 
 
 
  ValueTypeProxy operator->() const {
 
    return operator*();
 
  }
 
 
 
  bool operator==(const ValueMapIterator &RHS) const {
 
    return I == RHS.I;
 
  }
 
  bool operator!=(const ValueMapIterator &RHS) const {
 
    return I != RHS.I;
 
  }
 
 
 
  inline ValueMapIterator& operator++() {  // Preincrement
 
    ++I;
 
    return *this;
 
  }
 
  ValueMapIterator operator++(int) {  // Postincrement
 
    ValueMapIterator tmp = *this; ++*this; return tmp;
 
  }
 
};
 
 
 
template <typename DenseMapT, typename KeyT> class ValueMapConstIterator {
 
  using BaseT = typename DenseMapT::const_iterator;
 
  using ValueT = typename DenseMapT::mapped_type;
 
 
 
  BaseT I;
 
 
 
public:
 
  using iterator_category = std::forward_iterator_tag;
 
  using value_type = std::pair<KeyT, typename DenseMapT::mapped_type>;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = value_type *;
 
  using reference = value_type &;
 
 
 
  ValueMapConstIterator() : I() {}
 
  ValueMapConstIterator(BaseT I) : I(I) {}
 
  ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
 
    : I(Other.base()) {}
 
 
 
  BaseT base() const { return I; }
 
 
 
  struct ValueTypeProxy {
 
    const KeyT first;
 
    const ValueT& second;
 
    ValueTypeProxy *operator->() { return this; }
 
    operator std::pair<KeyT, ValueT>() const {
 
      return std::make_pair(first, second);
 
    }
 
  };
 
 
 
  ValueTypeProxy operator*() const {
 
    ValueTypeProxy Result = {I->first.Unwrap(), I->second};
 
    return Result;
 
  }
 
 
 
  ValueTypeProxy operator->() const {
 
    return operator*();
 
  }
 
 
 
  bool operator==(const ValueMapConstIterator &RHS) const {
 
    return I == RHS.I;
 
  }
 
  bool operator!=(const ValueMapConstIterator &RHS) const {
 
    return I != RHS.I;
 
  }
 
 
 
  inline ValueMapConstIterator& operator++() {  // Preincrement
 
    ++I;
 
    return *this;
 
  }
 
  ValueMapConstIterator operator++(int) {  // Postincrement
 
    ValueMapConstIterator tmp = *this; ++*this; return tmp;
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_VALUEMAP_H