//===- ValueHandle.h - Value Smart Pointer classes --------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file declares the ValueHandle class and its sub-classes.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_VALUEHANDLE_H
 
#define LLVM_IR_VALUEHANDLE_H
 
 
 
#include "llvm/ADT/DenseMapInfo.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/IR/Value.h"
 
#include "llvm/Support/Casting.h"
 
#include <cassert>
 
 
 
namespace llvm {
 
 
 
/// This is the common base class of value handles.
 
///
 
/// ValueHandle's are smart pointers to Value's that have special behavior when
 
/// the value is deleted or ReplaceAllUsesWith'd.  See the specific handles
 
/// below for details.
 
class ValueHandleBase {
 
  friend class Value;
 
 
 
protected:
 
  /// This indicates what sub class the handle actually is.
 
  ///
 
  /// This is to avoid having a vtable for the light-weight handle pointers. The
 
  /// fully general Callback version does have a vtable.
 
  enum HandleBaseKind { Assert, Callback, Weak, WeakTracking };
 
 
 
  ValueHandleBase(const ValueHandleBase &RHS)
 
      : ValueHandleBase(RHS.PrevPair.getInt(), RHS) {}
 
 
 
  ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS)
 
      : PrevPair(nullptr, Kind), Val(RHS.getValPtr()) {
 
    if (isValid(getValPtr()))
 
      AddToExistingUseList(RHS.getPrevPtr());
 
  }
 
 
 
private:
 
  PointerIntPair<ValueHandleBase**, 2, HandleBaseKind> PrevPair;
 
  ValueHandleBase *Next = nullptr;
 
  Value *Val = nullptr;
 
 
 
  void setValPtr(Value *V) { Val = V; }
 
 
 
public:
 
  explicit ValueHandleBase(HandleBaseKind Kind)
 
      : PrevPair(nullptr, Kind) {}
 
  ValueHandleBase(HandleBaseKind Kind, Value *V)
 
      : PrevPair(nullptr, Kind), Val(V) {
 
    if (isValid(getValPtr()))
 
      AddToUseList();
 
  }
 
 
 
  ~ValueHandleBase() {
 
    if (isValid(getValPtr()))
 
      RemoveFromUseList();
 
  }
 
 
 
  Value *operator=(Value *RHS) {
 
    if (getValPtr() == RHS)
 
      return RHS;
 
    if (isValid(getValPtr()))
 
      RemoveFromUseList();
 
    setValPtr(RHS);
 
    if (isValid(getValPtr()))
 
      AddToUseList();
 
    return RHS;
 
  }
 
 
 
  Value *operator=(const ValueHandleBase &RHS) {
 
    if (getValPtr() == RHS.getValPtr())
 
      return RHS.getValPtr();
 
    if (isValid(getValPtr()))
 
      RemoveFromUseList();
 
    setValPtr(RHS.getValPtr());
 
    if (isValid(getValPtr()))
 
      AddToExistingUseList(RHS.getPrevPtr());
 
    return getValPtr();
 
  }
 
 
 
  Value *operator->() const { return getValPtr(); }
 
  Value &operator*() const {
 
    Value *V = getValPtr();
 
    assert(V && "Dereferencing deleted ValueHandle");
 
    return *V;
 
  }
 
 
 
protected:
 
  Value *getValPtr() const { return Val; }
 
 
 
  static bool isValid(Value *V) {
 
    return V &&
 
           V != DenseMapInfo<Value *>::getEmptyKey() &&
 
           V != DenseMapInfo<Value *>::getTombstoneKey();
 
  }
 
 
 
  /// Remove this ValueHandle from its current use list.
 
  void RemoveFromUseList();
 
 
 
  /// Clear the underlying pointer without clearing the use list.
 
  ///
 
  /// This should only be used if a derived class has manually removed the
 
  /// handle from the use list.
 
  void clearValPtr() { setValPtr(nullptr); }
 
 
 
public:
 
  // Callbacks made from Value.
 
  static void ValueIsDeleted(Value *V);
 
  static void ValueIsRAUWd(Value *Old, Value *New);
 
 
 
private:
 
  // Internal implementation details.
 
  ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); }
 
  HandleBaseKind getKind() const { return PrevPair.getInt(); }
 
  void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); }
 
 
 
  /// Add this ValueHandle to the use list for V.
 
  ///
 
  /// List is the address of either the head of the list or a Next node within
 
  /// the existing use list.
 
  void AddToExistingUseList(ValueHandleBase **List);
 
 
 
  /// Add this ValueHandle to the use list after Node.
 
  void AddToExistingUseListAfter(ValueHandleBase *Node);
 
 
 
  /// Add this ValueHandle to the use list for V.
 
  void AddToUseList();
 
};
 
 
 
/// A nullable Value handle that is nullable.
 
///
 
/// This is a value handle that points to a value, and nulls itself
 
/// out if that value is deleted.
 
class WeakVH : public ValueHandleBase {
 
public:
 
  WeakVH() : ValueHandleBase(Weak) {}
 
  WeakVH(Value *P) : ValueHandleBase(Weak, P) {}
 
  WeakVH(const WeakVH &RHS)
 
      : ValueHandleBase(Weak, RHS) {}
 
 
 
  WeakVH &operator=(const WeakVH &RHS) = default;
 
 
 
  Value *operator=(Value *RHS) {
 
    return ValueHandleBase::operator=(RHS);
 
  }
 
  Value *operator=(const ValueHandleBase &RHS) {
 
    return ValueHandleBase::operator=(RHS);
 
  }
 
 
 
  operator Value*() const {
 
    return getValPtr();
 
  }
 
};
 
 
 
// Specialize simplify_type to allow WeakVH to participate in
 
// dyn_cast, isa, etc.
 
template <> struct simplify_type<WeakVH> {
 
  using SimpleType = Value *;
 
 
 
  static SimpleType getSimplifiedValue(WeakVH &WVH) { return WVH; }
 
};
 
template <> struct simplify_type<const WeakVH> {
 
  using SimpleType = Value *;
 
 
 
  static SimpleType getSimplifiedValue(const WeakVH &WVH) { return WVH; }
 
};
 
 
 
// Specialize DenseMapInfo to allow WeakVH to participate in DenseMap.
 
template <> struct DenseMapInfo<WeakVH> {
 
  static inline WeakVH getEmptyKey() {
 
    return WeakVH(DenseMapInfo<Value *>::getEmptyKey());
 
  }
 
 
 
  static inline WeakVH getTombstoneKey() {
 
    return WeakVH(DenseMapInfo<Value *>::getTombstoneKey());
 
  }
 
 
 
  static unsigned getHashValue(const WeakVH &Val) {
 
    return DenseMapInfo<Value *>::getHashValue(Val);
 
  }
 
 
 
  static bool isEqual(const WeakVH &LHS, const WeakVH &RHS) {
 
    return DenseMapInfo<Value *>::isEqual(LHS, RHS);
 
  }
 
};
 
 
 
/// Value handle that is nullable, but tries to track the Value.
 
///
 
/// This is a value handle that tries hard to point to a Value, even across
 
/// RAUW operations, but will null itself out if the value is destroyed.  this
 
/// is useful for advisory sorts of information, but should not be used as the
 
/// key of a map (since the map would have to rearrange itself when the pointer
 
/// changes).
 
class WeakTrackingVH : public ValueHandleBase {
 
public:
 
  WeakTrackingVH() : ValueHandleBase(WeakTracking) {}
 
  WeakTrackingVH(Value *P) : ValueHandleBase(WeakTracking, P) {}
 
  WeakTrackingVH(const WeakTrackingVH &RHS)
 
      : ValueHandleBase(WeakTracking, RHS) {}
 
 
 
  WeakTrackingVH &operator=(const WeakTrackingVH &RHS) = default;
 
 
 
  Value *operator=(Value *RHS) {
 
    return ValueHandleBase::operator=(RHS);
 
  }
 
  Value *operator=(const ValueHandleBase &RHS) {
 
    return ValueHandleBase::operator=(RHS);
 
  }
 
 
 
  operator Value*() const {
 
    return getValPtr();
 
  }
 
 
 
  bool pointsToAliveValue() const {
 
    return ValueHandleBase::isValid(getValPtr());
 
  }
 
};
 
 
 
// Specialize simplify_type to allow WeakTrackingVH to participate in
 
// dyn_cast, isa, etc.
 
template <> struct simplify_type<WeakTrackingVH> {
 
  using SimpleType = Value *;
 
 
 
  static SimpleType getSimplifiedValue(WeakTrackingVH &WVH) { return WVH; }
 
};
 
template <> struct simplify_type<const WeakTrackingVH> {
 
  using SimpleType = Value *;
 
 
 
  static SimpleType getSimplifiedValue(const WeakTrackingVH &WVH) {
 
    return WVH;
 
  }
 
};
 
 
 
/// Value handle that asserts if the Value is deleted.
 
///
 
/// This is a Value Handle that points to a value and asserts out if the value
 
/// is destroyed while the handle is still live.  This is very useful for
 
/// catching dangling pointer bugs and other things which can be non-obvious.
 
/// One particularly useful place to use this is as the Key of a map.  Dangling
 
/// pointer bugs often lead to really subtle bugs that only occur if another
 
/// object happens to get allocated to the same address as the old one.  Using
 
/// an AssertingVH ensures that an assert is triggered as soon as the bad
 
/// delete occurs.
 
///
 
/// Note that an AssertingVH handle does *not* follow values across RAUW
 
/// operations.  This means that RAUW's need to explicitly update the
 
/// AssertingVH's as it moves.  This is required because in non-assert mode this
 
/// class turns into a trivial wrapper around a pointer.
 
template <typename ValueTy>
 
class AssertingVH
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    : public ValueHandleBase
 
#endif
 
{
 
  friend struct DenseMapInfo<AssertingVH<ValueTy>>;
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  Value *getRawValPtr() const { return ValueHandleBase::getValPtr(); }
 
  void setRawValPtr(Value *P) { ValueHandleBase::operator=(P); }
 
#else
 
  Value *ThePtr;
 
  Value *getRawValPtr() const { return ThePtr; }
 
  void setRawValPtr(Value *P) { ThePtr = P; }
 
#endif
 
  // Convert a ValueTy*, which may be const, to the raw Value*.
 
  static Value *GetAsValue(Value *V) { return V; }
 
  static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
 
 
 
  ValueTy *getValPtr() const { return static_cast<ValueTy *>(getRawValPtr()); }
 
  void setValPtr(ValueTy *P) { setRawValPtr(GetAsValue(P)); }
 
 
 
public:
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  AssertingVH() : ValueHandleBase(Assert) {}
 
  AssertingVH(ValueTy *P) : ValueHandleBase(Assert, GetAsValue(P)) {}
 
  AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {}
 
#else
 
  AssertingVH() : ThePtr(nullptr) {}
 
  AssertingVH(ValueTy *P) : ThePtr(GetAsValue(P)) {}
 
  AssertingVH(const AssertingVH &) = default;
 
#endif
 
 
 
  operator ValueTy*() const {
 
    return getValPtr();
 
  }
 
 
 
  ValueTy *operator=(ValueTy *RHS) {
 
    setValPtr(RHS);
 
    return getValPtr();
 
  }
 
  ValueTy *operator=(const AssertingVH<ValueTy> &RHS) {
 
    setValPtr(RHS.getValPtr());
 
    return getValPtr();
 
  }
 
 
 
  ValueTy *operator->() const { return getValPtr(); }
 
  ValueTy &operator*() const { return *getValPtr(); }
 
};
 
 
 
// Treat AssertingVH<T> like T* inside maps. This also allows using find_as()
 
// to look up a value without constructing a value handle.
 
template<typename T>
 
struct DenseMapInfo<AssertingVH<T>> : DenseMapInfo<T *> {};
 
 
 
/// Value handle that tracks a Value across RAUW.
 
///
 
/// TrackingVH is designed for situations where a client needs to hold a handle
 
/// to a Value (or subclass) across some operations which may move that value,
 
/// but should never destroy it or replace it with some unacceptable type.
 
///
 
/// It is an error to attempt to replace a value with one of a type which is
 
/// incompatible with any of its outstanding TrackingVHs.
 
///
 
/// It is an error to read from a TrackingVH that does not point to a valid
 
/// value.  A TrackingVH is said to not point to a valid value if either it
 
/// hasn't yet been assigned a value yet or because the value it was tracking
 
/// has since been deleted.
 
///
 
/// Assigning a value to a TrackingVH is always allowed, even if said TrackingVH
 
/// no longer points to a valid value.
 
template <typename ValueTy> class TrackingVH {
 
  WeakTrackingVH InnerHandle;
 
 
 
public:
 
  ValueTy *getValPtr() const {
 
    assert(InnerHandle.pointsToAliveValue() &&
 
           "TrackingVH must be non-null and valid on dereference!");
 
 
 
    // Check that the value is a member of the correct subclass. We would like
 
    // to check this property on assignment for better debugging, but we don't
 
    // want to require a virtual interface on this VH. Instead we allow RAUW to
 
    // replace this value with a value of an invalid type, and check it here.
 
    assert(isa<ValueTy>(InnerHandle) &&
 
           "Tracked Value was replaced by one with an invalid type!");
 
    return cast<ValueTy>(InnerHandle);
 
  }
 
 
 
  void setValPtr(ValueTy *P) {
 
    // Assigning to non-valid TrackingVH's are fine so we just unconditionally
 
    // assign here.
 
    InnerHandle = GetAsValue(P);
 
  }
 
 
 
  // Convert a ValueTy*, which may be const, to the type the base
 
  // class expects.
 
  static Value *GetAsValue(Value *V) { return V; }
 
  static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
 
 
 
public:
 
  TrackingVH() = default;
 
  TrackingVH(ValueTy *P) { setValPtr(P); }
 
 
 
  operator ValueTy*() const {
 
    return getValPtr();
 
  }
 
 
 
  ValueTy *operator=(ValueTy *RHS) {
 
    setValPtr(RHS);
 
    return getValPtr();
 
  }
 
 
 
  ValueTy *operator->() const { return getValPtr(); }
 
  ValueTy &operator*() const { return *getValPtr(); }
 
};
 
 
 
/// Value handle with callbacks on RAUW and destruction.
 
///
 
/// This is a value handle that allows subclasses to define callbacks that run
 
/// when the underlying Value has RAUW called on it or is destroyed.  This
 
/// class can be used as the key of a map, as long as the user takes it out of
 
/// the map before calling setValPtr() (since the map has to rearrange itself
 
/// when the pointer changes).  Unlike ValueHandleBase, this class has a vtable.
 
class CallbackVH : public ValueHandleBase {
 
  virtual void anchor();
 
protected:
 
  ~CallbackVH() = default;
 
  CallbackVH(const CallbackVH &) = default;
 
  CallbackVH &operator=(const CallbackVH &) = default;
 
 
 
  void setValPtr(Value *P) {
 
    ValueHandleBase::operator=(P);
 
  }
 
 
 
public:
 
  CallbackVH() : ValueHandleBase(Callback) {}
 
  CallbackVH(Value *P) : ValueHandleBase(Callback, P) {}
 
  CallbackVH(const Value *P) : CallbackVH(const_cast<Value *>(P)) {}
 
 
 
  operator Value*() const {
 
    return getValPtr();
 
  }
 
 
 
  /// Callback for Value destruction.
 
  ///
 
  /// Called when this->getValPtr() is destroyed, inside ~Value(), so you
 
  /// may call any non-virtual Value method on getValPtr(), but no subclass
 
  /// methods.  If WeakTrackingVH were implemented as a CallbackVH, it would use
 
  /// this
 
  /// method to call setValPtr(NULL).  AssertingVH would use this method to
 
  /// cause an assertion failure.
 
  ///
 
  /// All implementations must remove the reference from this object to the
 
  /// Value that's being destroyed.
 
  virtual void deleted() { setValPtr(nullptr); }
 
 
 
  /// Callback for Value RAUW.
 
  ///
 
  /// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called,
 
  /// _before_ any of the uses have actually been replaced.  If WeakTrackingVH
 
  /// were
 
  /// implemented as a CallbackVH, it would use this method to call
 
  /// setValPtr(new_value).  AssertingVH would do nothing in this method.
 
  virtual void allUsesReplacedWith(Value *) {}
 
};
 
 
 
/// Value handle that poisons itself if the Value is deleted.
 
///
 
/// This is a Value Handle that points to a value and poisons itself if the
 
/// value is destroyed while the handle is still live.  This is very useful for
 
/// catching dangling pointer bugs where an \c AssertingVH cannot be used
 
/// because the dangling handle needs to outlive the value without ever being
 
/// used.
 
///
 
/// One particularly useful place to use this is as the Key of a map. Dangling
 
/// pointer bugs often lead to really subtle bugs that only occur if another
 
/// object happens to get allocated to the same address as the old one. Using
 
/// a PoisoningVH ensures that an assert is triggered if looking up a new value
 
/// in the map finds a handle from the old value.
 
///
 
/// Note that a PoisoningVH handle does *not* follow values across RAUW
 
/// operations. This means that RAUW's need to explicitly update the
 
/// PoisoningVH's as it moves. This is required because in non-assert mode this
 
/// class turns into a trivial wrapper around a pointer.
 
template <typename ValueTy>
 
class PoisoningVH final
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    : public CallbackVH
 
#endif
 
{
 
  friend struct DenseMapInfo<PoisoningVH<ValueTy>>;
 
 
 
  // Convert a ValueTy*, which may be const, to the raw Value*.
 
  static Value *GetAsValue(Value *V) { return V; }
 
  static Value *GetAsValue(const Value *V) { return const_cast<Value *>(V); }
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  /// A flag tracking whether this value has been poisoned.
 
  ///
 
  /// On delete and RAUW, we leave the value pointer alone so that as a raw
 
  /// pointer it produces the same value (and we fit into the same key of
 
  /// a hash table, etc), but we poison the handle so that any top-level usage
 
  /// will fail.
 
  bool Poisoned = false;
 
 
 
  Value *getRawValPtr() const { return ValueHandleBase::getValPtr(); }
 
  void setRawValPtr(Value *P) { ValueHandleBase::operator=(P); }
 
 
 
  /// Handle deletion by poisoning the handle.
 
  void deleted() override {
 
    assert(!Poisoned && "Tried to delete an already poisoned handle!");
 
    Poisoned = true;
 
    RemoveFromUseList();
 
  }
 
 
 
  /// Handle RAUW by poisoning the handle.
 
  void allUsesReplacedWith(Value *) override {
 
    assert(!Poisoned && "Tried to RAUW an already poisoned handle!");
 
    Poisoned = true;
 
    RemoveFromUseList();
 
  }
 
#else // LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  Value *ThePtr = nullptr;
 
 
 
  Value *getRawValPtr() const { return ThePtr; }
 
  void setRawValPtr(Value *P) { ThePtr = P; }
 
#endif
 
 
 
  ValueTy *getValPtr() const {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    assert(!Poisoned && "Accessed a poisoned value handle!");
 
#endif
 
    return static_cast<ValueTy *>(getRawValPtr());
 
  }
 
  void setValPtr(ValueTy *P) { setRawValPtr(GetAsValue(P)); }
 
 
 
public:
 
  PoisoningVH() = default;
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  PoisoningVH(ValueTy *P) : CallbackVH(GetAsValue(P)) {}
 
  PoisoningVH(const PoisoningVH &RHS)
 
      : CallbackVH(RHS), Poisoned(RHS.Poisoned) {}
 
 
 
  ~PoisoningVH() {
 
    if (Poisoned)
 
      clearValPtr();
 
  }
 
 
 
  PoisoningVH &operator=(const PoisoningVH &RHS) {
 
    if (Poisoned)
 
      clearValPtr();
 
    CallbackVH::operator=(RHS);
 
    Poisoned = RHS.Poisoned;
 
    return *this;
 
  }
 
#else
 
  PoisoningVH(ValueTy *P) : ThePtr(GetAsValue(P)) {}
 
#endif
 
 
 
  operator ValueTy *() const { return getValPtr(); }
 
 
 
  ValueTy *operator->() const { return getValPtr(); }
 
  ValueTy &operator*() const { return *getValPtr(); }
 
};
 
 
 
// Specialize DenseMapInfo to allow PoisoningVH to participate in DenseMap.
 
template <typename T> struct DenseMapInfo<PoisoningVH<T>> {
 
  static inline PoisoningVH<T> getEmptyKey() {
 
    PoisoningVH<T> Res;
 
    Res.setRawValPtr(DenseMapInfo<Value *>::getEmptyKey());
 
    return Res;
 
  }
 
 
 
  static inline PoisoningVH<T> getTombstoneKey() {
 
    PoisoningVH<T> Res;
 
    Res.setRawValPtr(DenseMapInfo<Value *>::getTombstoneKey());
 
    return Res;
 
  }
 
 
 
  static unsigned getHashValue(const PoisoningVH<T> &Val) {
 
    return DenseMapInfo<Value *>::getHashValue(Val.getRawValPtr());
 
  }
 
 
 
  static bool isEqual(const PoisoningVH<T> &LHS, const PoisoningVH<T> &RHS) {
 
    return DenseMapInfo<Value *>::isEqual(LHS.getRawValPtr(),
 
                                          RHS.getRawValPtr());
 
  }
 
 
 
  // Allow lookup by T* via find_as(), without constructing a temporary
 
  // value handle.
 
 
 
  static unsigned getHashValue(const T *Val) {
 
    return DenseMapInfo<Value *>::getHashValue(Val);
 
  }
 
 
 
  static bool isEqual(const T *LHS, const PoisoningVH<T> &RHS) {
 
    return DenseMapInfo<Value *>::isEqual(LHS, RHS.getRawValPtr());
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_VALUEHANDLE_H