- //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file provides a simple and efficient mechanism for performing general 
- // tree-based pattern matches on the LLVM IR. The power of these routines is 
- // that it allows you to write concise patterns that are expressive and easy to 
- // understand. The other major advantage of this is that it allows you to 
- // trivially capture/bind elements in the pattern to variables. For example, 
- // you can do something like this: 
- // 
- //  Value *Exp = ... 
- //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2) 
- //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), 
- //                      m_And(m_Value(Y), m_ConstantInt(C2))))) { 
- //    ... Pattern is matched and variables are bound ... 
- //  } 
- // 
- // This is primarily useful to things like the instruction combiner, but can 
- // also be useful for static analysis tools or code generators. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_IR_PATTERNMATCH_H 
- #define LLVM_IR_PATTERNMATCH_H 
-   
- #include "llvm/ADT/APFloat.h" 
- #include "llvm/ADT/APInt.h" 
- #include "llvm/IR/Constant.h" 
- #include "llvm/IR/Constants.h" 
- #include "llvm/IR/DataLayout.h" 
- #include "llvm/IR/InstrTypes.h" 
- #include "llvm/IR/Instruction.h" 
- #include "llvm/IR/Instructions.h" 
- #include "llvm/IR/IntrinsicInst.h" 
- #include "llvm/IR/Intrinsics.h" 
- #include "llvm/IR/Operator.h" 
- #include "llvm/IR/Value.h" 
- #include "llvm/Support/Casting.h" 
- #include <cstdint> 
-   
- namespace llvm { 
- namespace PatternMatch { 
-   
- template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { 
-   return const_cast<Pattern &>(P).match(V); 
- } 
-   
- template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { 
-   return const_cast<Pattern &>(P).match(Mask); 
- } 
-   
- template <typename SubPattern_t> struct OneUse_match { 
-   SubPattern_t SubPattern; 
-   
-   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     return V->hasOneUse() && SubPattern.match(V); 
-   } 
- }; 
-   
- template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { 
-   return SubPattern; 
- } 
-   
- template <typename Class> struct class_match { 
-   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } 
- }; 
-   
- /// Match an arbitrary value and ignore it. 
- inline class_match<Value> m_Value() { return class_match<Value>(); } 
-   
- /// Match an arbitrary unary operation and ignore it. 
- inline class_match<UnaryOperator> m_UnOp() { 
-   return class_match<UnaryOperator>(); 
- } 
-   
- /// Match an arbitrary binary operation and ignore it. 
- inline class_match<BinaryOperator> m_BinOp() { 
-   return class_match<BinaryOperator>(); 
- } 
-   
- /// Matches any compare instruction and ignore it. 
- inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } 
-   
- struct undef_match { 
-   static bool check(const Value *V) { 
-     if (isa<UndefValue>(V)) 
-       return true; 
-   
-     const auto *CA = dyn_cast<ConstantAggregate>(V); 
-     if (!CA) 
-       return false; 
-   
-     SmallPtrSet<const ConstantAggregate *, 8> Seen; 
-     SmallVector<const ConstantAggregate *, 8> Worklist; 
-   
-     // Either UndefValue, PoisonValue, or an aggregate that only contains 
-     // these is accepted by matcher. 
-     // CheckValue returns false if CA cannot satisfy this constraint. 
-     auto CheckValue = [&](const ConstantAggregate *CA) { 
-       for (const Value *Op : CA->operand_values()) { 
-         if (isa<UndefValue>(Op)) 
-           continue; 
-   
-         const auto *CA = dyn_cast<ConstantAggregate>(Op); 
-         if (!CA) 
-           return false; 
-         if (Seen.insert(CA).second) 
-           Worklist.emplace_back(CA); 
-       } 
-   
-       return true; 
-     }; 
-   
-     if (!CheckValue(CA)) 
-       return false; 
-   
-     while (!Worklist.empty()) { 
-       if (!CheckValue(Worklist.pop_back_val())) 
-         return false; 
-     } 
-     return true; 
-   } 
-   template <typename ITy> bool match(ITy *V) { return check(V); } 
- }; 
-   
- /// Match an arbitrary undef constant. This matches poison as well. 
- /// If this is an aggregate and contains a non-aggregate element that is 
- /// neither undef nor poison, the aggregate is not matched. 
- inline auto m_Undef() { return undef_match(); } 
-   
- /// Match an arbitrary poison constant. 
- inline class_match<PoisonValue> m_Poison() { 
-   return class_match<PoisonValue>(); 
- } 
-   
- /// Match an arbitrary Constant and ignore it. 
- inline class_match<Constant> m_Constant() { return class_match<Constant>(); } 
-   
- /// Match an arbitrary ConstantInt and ignore it. 
- inline class_match<ConstantInt> m_ConstantInt() { 
-   return class_match<ConstantInt>(); 
- } 
-   
- /// Match an arbitrary ConstantFP and ignore it. 
- inline class_match<ConstantFP> m_ConstantFP() { 
-   return class_match<ConstantFP>(); 
- } 
-   
- struct constantexpr_match { 
-   template <typename ITy> bool match(ITy *V) { 
-     auto *C = dyn_cast<Constant>(V); 
-     return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); 
-   } 
- }; 
-   
- /// Match a constant expression or a constant that contains a constant 
- /// expression. 
- inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } 
-   
- /// Match an arbitrary basic block value and ignore it. 
- inline class_match<BasicBlock> m_BasicBlock() { 
-   return class_match<BasicBlock>(); 
- } 
-   
- /// Inverting matcher 
- template <typename Ty> struct match_unless { 
-   Ty M; 
-   
-   match_unless(const Ty &Matcher) : M(Matcher) {} 
-   
-   template <typename ITy> bool match(ITy *V) { return !M.match(V); } 
- }; 
-   
- /// Match if the inner matcher does *NOT* match. 
- template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { 
-   return match_unless<Ty>(M); 
- } 
-   
- /// Matching combinators 
- template <typename LTy, typename RTy> struct match_combine_or { 
-   LTy L; 
-   RTy R; 
-   
-   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (L.match(V)) 
-       return true; 
-     if (R.match(V)) 
-       return true; 
-     return false; 
-   } 
- }; 
-   
- template <typename LTy, typename RTy> struct match_combine_and { 
-   LTy L; 
-   RTy R; 
-   
-   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (L.match(V)) 
-       if (R.match(V)) 
-         return true; 
-     return false; 
-   } 
- }; 
-   
- /// Combine two pattern matchers matching L || R 
- template <typename LTy, typename RTy> 
- inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { 
-   return match_combine_or<LTy, RTy>(L, R); 
- } 
-   
- /// Combine two pattern matchers matching L && R 
- template <typename LTy, typename RTy> 
- inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { 
-   return match_combine_and<LTy, RTy>(L, R); 
- } 
-   
- struct apint_match { 
-   const APInt *&Res; 
-   bool AllowUndef; 
-   
-   apint_match(const APInt *&Res, bool AllowUndef) 
-       : Res(Res), AllowUndef(AllowUndef) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (auto *CI = dyn_cast<ConstantInt>(V)) { 
-       Res = &CI->getValue(); 
-       return true; 
-     } 
-     if (V->getType()->isVectorTy()) 
-       if (const auto *C = dyn_cast<Constant>(V)) 
-         if (auto *CI = 
-                 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) { 
-           Res = &CI->getValue(); 
-           return true; 
-         } 
-     return false; 
-   } 
- }; 
- // Either constexpr if or renaming ConstantFP::getValueAPF to 
- // ConstantFP::getValue is needed to do it via single template 
- // function for both apint/apfloat. 
- struct apfloat_match { 
-   const APFloat *&Res; 
-   bool AllowUndef; 
-   
-   apfloat_match(const APFloat *&Res, bool AllowUndef) 
-       : Res(Res), AllowUndef(AllowUndef) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (auto *CI = dyn_cast<ConstantFP>(V)) { 
-       Res = &CI->getValueAPF(); 
-       return true; 
-     } 
-     if (V->getType()->isVectorTy()) 
-       if (const auto *C = dyn_cast<Constant>(V)) 
-         if (auto *CI = 
-                 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) { 
-           Res = &CI->getValueAPF(); 
-           return true; 
-         } 
-     return false; 
-   } 
- }; 
-   
- /// Match a ConstantInt or splatted ConstantVector, binding the 
- /// specified pointer to the contained APInt. 
- inline apint_match m_APInt(const APInt *&Res) { 
-   // Forbid undefs by default to maintain previous behavior. 
-   return apint_match(Res, /* AllowUndef */ false); 
- } 
-   
- /// Match APInt while allowing undefs in splat vector constants. 
- inline apint_match m_APIntAllowUndef(const APInt *&Res) { 
-   return apint_match(Res, /* AllowUndef */ true); 
- } 
-   
- /// Match APInt while forbidding undefs in splat vector constants. 
- inline apint_match m_APIntForbidUndef(const APInt *&Res) { 
-   return apint_match(Res, /* AllowUndef */ false); 
- } 
-   
- /// Match a ConstantFP or splatted ConstantVector, binding the 
- /// specified pointer to the contained APFloat. 
- inline apfloat_match m_APFloat(const APFloat *&Res) { 
-   // Forbid undefs by default to maintain previous behavior. 
-   return apfloat_match(Res, /* AllowUndef */ false); 
- } 
-   
- /// Match APFloat while allowing undefs in splat vector constants. 
- inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { 
-   return apfloat_match(Res, /* AllowUndef */ true); 
- } 
-   
- /// Match APFloat while forbidding undefs in splat vector constants. 
- inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { 
-   return apfloat_match(Res, /* AllowUndef */ false); 
- } 
-   
- template <int64_t Val> struct constantint_match { 
-   template <typename ITy> bool match(ITy *V) { 
-     if (const auto *CI = dyn_cast<ConstantInt>(V)) { 
-       const APInt &CIV = CI->getValue(); 
-       if (Val >= 0) 
-         return CIV == static_cast<uint64_t>(Val); 
-       // If Val is negative, and CI is shorter than it, truncate to the right 
-       // number of bits.  If it is larger, then we have to sign extend.  Just 
-       // compare their negated values. 
-       return -CIV == -Val; 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// Match a ConstantInt with a specific value. 
- template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { 
-   return constantint_match<Val>(); 
- } 
-   
- /// This helper class is used to match constant scalars, vector splats, 
- /// and fixed width vectors that satisfy a specified predicate. 
- /// For fixed width vector constants, undefined elements are ignored. 
- template <typename Predicate, typename ConstantVal> 
- struct cstval_pred_ty : public Predicate { 
-   template <typename ITy> bool match(ITy *V) { 
-     if (const auto *CV = dyn_cast<ConstantVal>(V)) 
-       return this->isValue(CV->getValue()); 
-     if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { 
-       if (const auto *C = dyn_cast<Constant>(V)) { 
-         if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) 
-           return this->isValue(CV->getValue()); 
-   
-         // Number of elements of a scalable vector unknown at compile time 
-         auto *FVTy = dyn_cast<FixedVectorType>(VTy); 
-         if (!FVTy) 
-           return false; 
-   
-         // Non-splat vector constant: check each element for a match. 
-         unsigned NumElts = FVTy->getNumElements(); 
-         assert(NumElts != 0 && "Constant vector with no elements?"); 
-         bool HasNonUndefElements = false; 
-         for (unsigned i = 0; i != NumElts; ++i) { 
-           Constant *Elt = C->getAggregateElement(i); 
-           if (!Elt) 
-             return false; 
-           if (isa<UndefValue>(Elt)) 
-             continue; 
-           auto *CV = dyn_cast<ConstantVal>(Elt); 
-           if (!CV || !this->isValue(CV->getValue())) 
-             return false; 
-           HasNonUndefElements = true; 
-         } 
-         return HasNonUndefElements; 
-       } 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// specialization of cstval_pred_ty for ConstantInt 
- template <typename Predicate> 
- using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>; 
-   
- /// specialization of cstval_pred_ty for ConstantFP 
- template <typename Predicate> 
- using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>; 
-   
- /// This helper class is used to match scalar and vector constants that 
- /// satisfy a specified predicate, and bind them to an APInt. 
- template <typename Predicate> struct api_pred_ty : public Predicate { 
-   const APInt *&Res; 
-   
-   api_pred_ty(const APInt *&R) : Res(R) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (const auto *CI = dyn_cast<ConstantInt>(V)) 
-       if (this->isValue(CI->getValue())) { 
-         Res = &CI->getValue(); 
-         return true; 
-       } 
-     if (V->getType()->isVectorTy()) 
-       if (const auto *C = dyn_cast<Constant>(V)) 
-         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) 
-           if (this->isValue(CI->getValue())) { 
-             Res = &CI->getValue(); 
-             return true; 
-           } 
-   
-     return false; 
-   } 
- }; 
-   
- /// This helper class is used to match scalar and vector constants that 
- /// satisfy a specified predicate, and bind them to an APFloat. 
- /// Undefs are allowed in splat vector constants. 
- template <typename Predicate> struct apf_pred_ty : public Predicate { 
-   const APFloat *&Res; 
-   
-   apf_pred_ty(const APFloat *&R) : Res(R) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (const auto *CI = dyn_cast<ConstantFP>(V)) 
-       if (this->isValue(CI->getValue())) { 
-         Res = &CI->getValue(); 
-         return true; 
-       } 
-     if (V->getType()->isVectorTy()) 
-       if (const auto *C = dyn_cast<Constant>(V)) 
-         if (auto *CI = dyn_cast_or_null<ConstantFP>( 
-                 C->getSplatValue(/* AllowUndef */ true))) 
-           if (this->isValue(CI->getValue())) { 
-             Res = &CI->getValue(); 
-             return true; 
-           } 
-   
-     return false; 
-   } 
- }; 
-   
- /////////////////////////////////////////////////////////////////////////////// 
- // 
- // Encapsulate constant value queries for use in templated predicate matchers. 
- // This allows checking if constants match using compound predicates and works 
- // with vector constants, possibly with relaxed constraints. For example, ignore 
- // undef values. 
- // 
- /////////////////////////////////////////////////////////////////////////////// 
-   
- struct is_any_apint { 
-   bool isValue(const APInt &C) { return true; } 
- }; 
- /// Match an integer or vector with any integral constant. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { 
-   return cst_pred_ty<is_any_apint>(); 
- } 
-   
- struct is_all_ones { 
-   bool isValue(const APInt &C) { return C.isAllOnes(); } 
- }; 
- /// Match an integer or vector with all bits set. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_all_ones> m_AllOnes() { 
-   return cst_pred_ty<is_all_ones>(); 
- } 
-   
- struct is_maxsignedvalue { 
-   bool isValue(const APInt &C) { return C.isMaxSignedValue(); } 
- }; 
- /// Match an integer or vector with values having all bits except for the high 
- /// bit set (0x7f...). 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { 
-   return cst_pred_ty<is_maxsignedvalue>(); 
- } 
- inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { 
-   return V; 
- } 
-   
- struct is_negative { 
-   bool isValue(const APInt &C) { return C.isNegative(); } 
- }; 
- /// Match an integer or vector of negative values. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_negative> m_Negative() { 
-   return cst_pred_ty<is_negative>(); 
- } 
- inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } 
-   
- struct is_nonnegative { 
-   bool isValue(const APInt &C) { return C.isNonNegative(); } 
- }; 
- /// Match an integer or vector of non-negative values. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_nonnegative> m_NonNegative() { 
-   return cst_pred_ty<is_nonnegative>(); 
- } 
- inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } 
-   
- struct is_strictlypositive { 
-   bool isValue(const APInt &C) { return C.isStrictlyPositive(); } 
- }; 
- /// Match an integer or vector of strictly positive values. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { 
-   return cst_pred_ty<is_strictlypositive>(); 
- } 
- inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { 
-   return V; 
- } 
-   
- struct is_nonpositive { 
-   bool isValue(const APInt &C) { return C.isNonPositive(); } 
- }; 
- /// Match an integer or vector of non-positive values. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_nonpositive> m_NonPositive() { 
-   return cst_pred_ty<is_nonpositive>(); 
- } 
- inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } 
-   
- struct is_one { 
-   bool isValue(const APInt &C) { return C.isOne(); } 
- }; 
- /// Match an integer 1 or a vector with all elements equal to 1. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } 
-   
- struct is_zero_int { 
-   bool isValue(const APInt &C) { return C.isZero(); } 
- }; 
- /// Match an integer 0 or a vector with all elements equal to 0. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_zero_int> m_ZeroInt() { 
-   return cst_pred_ty<is_zero_int>(); 
- } 
-   
- struct is_zero { 
-   template <typename ITy> bool match(ITy *V) { 
-     auto *C = dyn_cast<Constant>(V); 
-     // FIXME: this should be able to do something for scalable vectors 
-     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); 
-   } 
- }; 
- /// Match any null constant or a vector with all elements equal to 0. 
- /// For vectors, this includes constants with undefined elements. 
- inline is_zero m_Zero() { return is_zero(); } 
-   
- struct is_power2 { 
-   bool isValue(const APInt &C) { return C.isPowerOf2(); } 
- }; 
- /// Match an integer or vector power-of-2. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } 
- inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } 
-   
- struct is_negated_power2 { 
-   bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } 
- }; 
- /// Match a integer or vector negated power-of-2. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { 
-   return cst_pred_ty<is_negated_power2>(); 
- } 
- inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { 
-   return V; 
- } 
-   
- struct is_power2_or_zero { 
-   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } 
- }; 
- /// Match an integer or vector of 0 or power-of-2 values. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { 
-   return cst_pred_ty<is_power2_or_zero>(); 
- } 
- inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { 
-   return V; 
- } 
-   
- struct is_sign_mask { 
-   bool isValue(const APInt &C) { return C.isSignMask(); } 
- }; 
- /// Match an integer or vector with only the sign bit(s) set. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_sign_mask> m_SignMask() { 
-   return cst_pred_ty<is_sign_mask>(); 
- } 
-   
- struct is_lowbit_mask { 
-   bool isValue(const APInt &C) { return C.isMask(); } 
- }; 
- /// Match an integer or vector with only the low bit(s) set. 
- /// For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { 
-   return cst_pred_ty<is_lowbit_mask>(); 
- } 
- inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; } 
-   
- struct icmp_pred_with_threshold { 
-   ICmpInst::Predicate Pred; 
-   const APInt *Thr; 
-   bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } 
- }; 
- /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) 
- /// to Threshold. For vectors, this includes constants with undefined elements. 
- inline cst_pred_ty<icmp_pred_with_threshold> 
- m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { 
-   cst_pred_ty<icmp_pred_with_threshold> P; 
-   P.Pred = Predicate; 
-   P.Thr = &Threshold; 
-   return P; 
- } 
-   
- struct is_nan { 
-   bool isValue(const APFloat &C) { return C.isNaN(); } 
- }; 
- /// Match an arbitrary NaN constant. This includes quiet and signalling nans. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } 
-   
- struct is_nonnan { 
-   bool isValue(const APFloat &C) { return !C.isNaN(); } 
- }; 
- /// Match a non-NaN FP constant. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_nonnan> m_NonNaN() { 
-   return cstfp_pred_ty<is_nonnan>(); 
- } 
-   
- struct is_inf { 
-   bool isValue(const APFloat &C) { return C.isInfinity(); } 
- }; 
- /// Match a positive or negative infinity FP constant. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); } 
-   
- struct is_noninf { 
-   bool isValue(const APFloat &C) { return !C.isInfinity(); } 
- }; 
- /// Match a non-infinity FP constant, i.e. finite or NaN. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_noninf> m_NonInf() { 
-   return cstfp_pred_ty<is_noninf>(); 
- } 
-   
- struct is_finite { 
-   bool isValue(const APFloat &C) { return C.isFinite(); } 
- }; 
- /// Match a finite FP constant, i.e. not infinity or NaN. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_finite> m_Finite() { 
-   return cstfp_pred_ty<is_finite>(); 
- } 
- inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } 
-   
- struct is_finitenonzero { 
-   bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } 
- }; 
- /// Match a finite non-zero FP constant. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { 
-   return cstfp_pred_ty<is_finitenonzero>(); 
- } 
- inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { 
-   return V; 
- } 
-   
- struct is_any_zero_fp { 
-   bool isValue(const APFloat &C) { return C.isZero(); } 
- }; 
- /// Match a floating-point negative zero or positive zero. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { 
-   return cstfp_pred_ty<is_any_zero_fp>(); 
- } 
-   
- struct is_pos_zero_fp { 
-   bool isValue(const APFloat &C) { return C.isPosZero(); } 
- }; 
- /// Match a floating-point positive zero. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { 
-   return cstfp_pred_ty<is_pos_zero_fp>(); 
- } 
-   
- struct is_neg_zero_fp { 
-   bool isValue(const APFloat &C) { return C.isNegZero(); } 
- }; 
- /// Match a floating-point negative zero. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { 
-   return cstfp_pred_ty<is_neg_zero_fp>(); 
- } 
-   
- struct is_non_zero_fp { 
-   bool isValue(const APFloat &C) { return C.isNonZero(); } 
- }; 
- /// Match a floating-point non-zero. 
- /// For vectors, this includes constants with undefined elements. 
- inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { 
-   return cstfp_pred_ty<is_non_zero_fp>(); 
- } 
-   
- /////////////////////////////////////////////////////////////////////////////// 
-   
- template <typename Class> struct bind_ty { 
-   Class *&VR; 
-   
-   bind_ty(Class *&V) : VR(V) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (auto *CV = dyn_cast<Class>(V)) { 
-       VR = CV; 
-       return true; 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// Match a value, capturing it if we match. 
- inline bind_ty<Value> m_Value(Value *&V) { return V; } 
- inline bind_ty<const Value> m_Value(const Value *&V) { return V; } 
-   
- /// Match an instruction, capturing it if we match. 
- inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } 
- /// Match a unary operator, capturing it if we match. 
- inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } 
- /// Match a binary operator, capturing it if we match. 
- inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } 
- /// Match a with overflow intrinsic, capturing it if we match. 
- inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { 
-   return I; 
- } 
- inline bind_ty<const WithOverflowInst> 
- m_WithOverflowInst(const WithOverflowInst *&I) { 
-   return I; 
- } 
-   
- /// Match a Constant, capturing the value if we match. 
- inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } 
-   
- /// Match a ConstantInt, capturing the value if we match. 
- inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } 
-   
- /// Match a ConstantFP, capturing the value if we match. 
- inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } 
-   
- /// Match a ConstantExpr, capturing the value if we match. 
- inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } 
-   
- /// Match a basic block value, capturing it if we match. 
- inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } 
- inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { 
-   return V; 
- } 
-   
- /// Match an arbitrary immediate Constant and ignore it. 
- inline match_combine_and<class_match<Constant>, 
-                          match_unless<constantexpr_match>> 
- m_ImmConstant() { 
-   return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); 
- } 
-   
- /// Match an immediate Constant, capturing the value if we match. 
- inline match_combine_and<bind_ty<Constant>, 
-                          match_unless<constantexpr_match>> 
- m_ImmConstant(Constant *&C) { 
-   return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); 
- } 
-   
- /// Match a specified Value*. 
- struct specificval_ty { 
-   const Value *Val; 
-   
-   specificval_ty(const Value *V) : Val(V) {} 
-   
-   template <typename ITy> bool match(ITy *V) { return V == Val; } 
- }; 
-   
- /// Match if we have a specific specified value. 
- inline specificval_ty m_Specific(const Value *V) { return V; } 
-   
- /// Stores a reference to the Value *, not the Value * itself, 
- /// thus can be used in commutative matchers. 
- template <typename Class> struct deferredval_ty { 
-   Class *const &Val; 
-   
-   deferredval_ty(Class *const &V) : Val(V) {} 
-   
-   template <typename ITy> bool match(ITy *const V) { return V == Val; } 
- }; 
-   
- /// Like m_Specific(), but works if the specific value to match is determined 
- /// as part of the same match() expression. For example: 
- /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will 
- /// bind X before the pattern match starts. 
- /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against 
- /// whichever value m_Value(X) populated. 
- inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } 
- inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { 
-   return V; 
- } 
-   
- /// Match a specified floating point value or vector of all elements of 
- /// that value. 
- struct specific_fpval { 
-   double Val; 
-   
-   specific_fpval(double V) : Val(V) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (const auto *CFP = dyn_cast<ConstantFP>(V)) 
-       return CFP->isExactlyValue(Val); 
-     if (V->getType()->isVectorTy()) 
-       if (const auto *C = dyn_cast<Constant>(V)) 
-         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) 
-           return CFP->isExactlyValue(Val); 
-     return false; 
-   } 
- }; 
-   
- /// Match a specific floating point value or vector with all elements 
- /// equal to the value. 
- inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } 
-   
- /// Match a float 1.0 or vector with all elements equal to 1.0. 
- inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } 
-   
- struct bind_const_intval_ty { 
-   uint64_t &VR; 
-   
-   bind_const_intval_ty(uint64_t &V) : VR(V) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (const auto *CV = dyn_cast<ConstantInt>(V)) 
-       if (CV->getValue().ule(UINT64_MAX)) { 
-         VR = CV->getZExtValue(); 
-         return true; 
-       } 
-     return false; 
-   } 
- }; 
-   
- /// Match a specified integer value or vector of all elements of that 
- /// value. 
- template <bool AllowUndefs> struct specific_intval { 
-   APInt Val; 
-   
-   specific_intval(APInt V) : Val(std::move(V)) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     const auto *CI = dyn_cast<ConstantInt>(V); 
-     if (!CI && V->getType()->isVectorTy()) 
-       if (const auto *C = dyn_cast<Constant>(V)) 
-         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs)); 
-   
-     return CI && APInt::isSameValue(CI->getValue(), Val); 
-   } 
- }; 
-   
- /// Match a specific integer value or vector with all elements equal to 
- /// the value. 
- inline specific_intval<false> m_SpecificInt(APInt V) { 
-   return specific_intval<false>(std::move(V)); 
- } 
-   
- inline specific_intval<false> m_SpecificInt(uint64_t V) { 
-   return m_SpecificInt(APInt(64, V)); 
- } 
-   
- inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) { 
-   return specific_intval<true>(std::move(V)); 
- } 
-   
- inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) { 
-   return m_SpecificIntAllowUndef(APInt(64, V)); 
- } 
-   
- /// Match a ConstantInt and bind to its value.  This does not match 
- /// ConstantInts wider than 64-bits. 
- inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } 
-   
- /// Match a specified basic block value. 
- struct specific_bbval { 
-   BasicBlock *Val; 
-   
-   specific_bbval(BasicBlock *Val) : Val(Val) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     const auto *BB = dyn_cast<BasicBlock>(V); 
-     return BB && BB == Val; 
-   } 
- }; 
-   
- /// Match a specific basic block value. 
- inline specific_bbval m_SpecificBB(BasicBlock *BB) { 
-   return specific_bbval(BB); 
- } 
-   
- /// A commutative-friendly version of m_Specific(). 
- inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { 
-   return BB; 
- } 
- inline deferredval_ty<const BasicBlock> 
- m_Deferred(const BasicBlock *const &BB) { 
-   return BB; 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matcher for any binary operator. 
- // 
- template <typename LHS_t, typename RHS_t, bool Commutable = false> 
- struct AnyBinaryOp_match { 
-   LHS_t L; 
-   RHS_t R; 
-   
-   // The evaluation order is always stable, regardless of Commutability. 
-   // The LHS is always matched first. 
-   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *I = dyn_cast<BinaryOperator>(V)) 
-       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 
-              (Commutable && L.match(I->getOperand(1)) && 
-               R.match(I->getOperand(0))); 
-     return false; 
-   } 
- }; 
-   
- template <typename LHS, typename RHS> 
- inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { 
-   return AnyBinaryOp_match<LHS, RHS>(L, R); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matcher for any unary operator. 
- // TODO fuse unary, binary matcher into n-ary matcher 
- // 
- template <typename OP_t> struct AnyUnaryOp_match { 
-   OP_t X; 
-   
-   AnyUnaryOp_match(const OP_t &X) : X(X) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *I = dyn_cast<UnaryOperator>(V)) 
-       return X.match(I->getOperand(0)); 
-     return false; 
-   } 
- }; 
-   
- template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { 
-   return AnyUnaryOp_match<OP_t>(X); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for specific binary operators. 
- // 
-   
- template <typename LHS_t, typename RHS_t, unsigned Opcode, 
-           bool Commutable = false> 
- struct BinaryOp_match { 
-   LHS_t L; 
-   RHS_t R; 
-   
-   // The evaluation order is always stable, regardless of Commutability. 
-   // The LHS is always matched first. 
-   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 
-   
-   template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) { 
-     if (V->getValueID() == Value::InstructionVal + Opc) { 
-       auto *I = cast<BinaryOperator>(V); 
-       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 
-              (Commutable && L.match(I->getOperand(1)) && 
-               R.match(I->getOperand(0))); 
-     } 
-     if (auto *CE = dyn_cast<ConstantExpr>(V)) 
-       return CE->getOpcode() == Opc && 
-              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || 
-               (Commutable && L.match(CE->getOperand(1)) && 
-                R.match(CE->getOperand(0)))); 
-     return false; 
-   } 
-   
-   template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); } 
- }; 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, 
-                                                         const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, 
-                                                         const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); 
- } 
-   
- template <typename Op_t> struct FNeg_match { 
-   Op_t X; 
-   
-   FNeg_match(const Op_t &Op) : X(Op) {} 
-   template <typename OpTy> bool match(OpTy *V) { 
-     auto *FPMO = dyn_cast<FPMathOperator>(V); 
-     if (!FPMO) 
-       return false; 
-   
-     if (FPMO->getOpcode() == Instruction::FNeg) 
-       return X.match(FPMO->getOperand(0)); 
-   
-     if (FPMO->getOpcode() == Instruction::FSub) { 
-       if (FPMO->hasNoSignedZeros()) { 
-         // With 'nsz', any zero goes. 
-         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) 
-           return false; 
-       } else { 
-         // Without 'nsz', we need fsub -0.0, X exactly. 
-         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) 
-           return false; 
-       } 
-   
-       return X.match(FPMO->getOperand(1)); 
-     } 
-   
-     return false; 
-   } 
- }; 
-   
- /// Match 'fneg X' as 'fsub -0.0, X'. 
- template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { 
-   return FNeg_match<OpTy>(X); 
- } 
-   
- /// Match 'fneg X' as 'fsub +-0.0, X'. 
- template <typename RHS> 
- inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> 
- m_FNegNSZ(const RHS &X) { 
-   return m_FSub(m_AnyZeroFP(), X); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, 
-                                                         const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, 
-                                                         const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, 
-                                                       const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, 
-                                                         const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, 
-                                                         const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); 
- } 
-   
- template <typename LHS_t, typename RHS_t, unsigned Opcode, 
-           unsigned WrapFlags = 0> 
- struct OverflowingBinaryOp_match { 
-   LHS_t L; 
-   RHS_t R; 
-   
-   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) 
-       : L(LHS), R(RHS) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { 
-       if (Op->getOpcode() != Opcode) 
-         return false; 
-       if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && 
-           !Op->hasNoUnsignedWrap()) 
-         return false; 
-       if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && 
-           !Op->hasNoSignedWrap()) 
-         return false; 
-       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); 
-     } 
-     return false; 
-   } 
- }; 
-   
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 
-                                  OverflowingBinaryOperator::NoSignedWrap> 
- m_NSWAdd(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 
-                                    OverflowingBinaryOperator::NoSignedWrap>(L, 
-                                                                             R); 
- } 
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 
-                                  OverflowingBinaryOperator::NoSignedWrap> 
- m_NSWSub(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 
-                                    OverflowingBinaryOperator::NoSignedWrap>(L, 
-                                                                             R); 
- } 
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 
-                                  OverflowingBinaryOperator::NoSignedWrap> 
- m_NSWMul(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 
-                                    OverflowingBinaryOperator::NoSignedWrap>(L, 
-                                                                             R); 
- } 
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 
-                                  OverflowingBinaryOperator::NoSignedWrap> 
- m_NSWShl(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 
-                                    OverflowingBinaryOperator::NoSignedWrap>(L, 
-                                                                             R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 
-                                  OverflowingBinaryOperator::NoUnsignedWrap> 
- m_NUWAdd(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 
-                                    OverflowingBinaryOperator::NoUnsignedWrap>( 
-       L, R); 
- } 
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 
-                                  OverflowingBinaryOperator::NoUnsignedWrap> 
- m_NUWSub(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 
-                                    OverflowingBinaryOperator::NoUnsignedWrap>( 
-       L, R); 
- } 
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 
-                                  OverflowingBinaryOperator::NoUnsignedWrap> 
- m_NUWMul(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 
-                                    OverflowingBinaryOperator::NoUnsignedWrap>( 
-       L, R); 
- } 
- template <typename LHS, typename RHS> 
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 
-                                  OverflowingBinaryOperator::NoUnsignedWrap> 
- m_NUWShl(const LHS &L, const RHS &R) { 
-   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 
-                                    OverflowingBinaryOperator::NoUnsignedWrap>( 
-       L, R); 
- } 
-   
- template <typename LHS_t, typename RHS_t, bool Commutable = false> 
- struct SpecificBinaryOp_match 
-     : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { 
-   unsigned Opcode; 
-   
-   SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) 
-       : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); 
-   } 
- }; 
-   
- /// Matches a specific opcode. 
- template <typename LHS, typename RHS> 
- inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, 
-                                                 const RHS &R) { 
-   return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Class that matches a group of binary opcodes. 
- // 
- template <typename LHS_t, typename RHS_t, typename Predicate> 
- struct BinOpPred_match : Predicate { 
-   LHS_t L; 
-   RHS_t R; 
-   
-   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *I = dyn_cast<Instruction>(V)) 
-       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && 
-              R.match(I->getOperand(1)); 
-     if (auto *CE = dyn_cast<ConstantExpr>(V)) 
-       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && 
-              R.match(CE->getOperand(1)); 
-     return false; 
-   } 
- }; 
-   
- struct is_shift_op { 
-   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } 
- }; 
-   
- struct is_right_shift_op { 
-   bool isOpType(unsigned Opcode) { 
-     return Opcode == Instruction::LShr || Opcode == Instruction::AShr; 
-   } 
- }; 
-   
- struct is_logical_shift_op { 
-   bool isOpType(unsigned Opcode) { 
-     return Opcode == Instruction::LShr || Opcode == Instruction::Shl; 
-   } 
- }; 
-   
- struct is_bitwiselogic_op { 
-   bool isOpType(unsigned Opcode) { 
-     return Instruction::isBitwiseLogicOp(Opcode); 
-   } 
- }; 
-   
- struct is_idiv_op { 
-   bool isOpType(unsigned Opcode) { 
-     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; 
-   } 
- }; 
-   
- struct is_irem_op { 
-   bool isOpType(unsigned Opcode) { 
-     return Opcode == Instruction::SRem || Opcode == Instruction::URem; 
-   } 
- }; 
-   
- /// Matches shift operations. 
- template <typename LHS, typename RHS> 
- inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, 
-                                                       const RHS &R) { 
-   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); 
- } 
-   
- /// Matches logical shift operations. 
- template <typename LHS, typename RHS> 
- inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, 
-                                                           const RHS &R) { 
-   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); 
- } 
-   
- /// Matches logical shift operations. 
- template <typename LHS, typename RHS> 
- inline BinOpPred_match<LHS, RHS, is_logical_shift_op> 
- m_LogicalShift(const LHS &L, const RHS &R) { 
-   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); 
- } 
-   
- /// Matches bitwise logic operations. 
- template <typename LHS, typename RHS> 
- inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> 
- m_BitwiseLogic(const LHS &L, const RHS &R) { 
-   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); 
- } 
-   
- /// Matches integer division operations. 
- template <typename LHS, typename RHS> 
- inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, 
-                                                     const RHS &R) { 
-   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); 
- } 
-   
- /// Matches integer remainder operations. 
- template <typename LHS, typename RHS> 
- inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, 
-                                                     const RHS &R) { 
-   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Class that matches exact binary ops. 
- // 
- template <typename SubPattern_t> struct Exact_match { 
-   SubPattern_t SubPattern; 
-   
-   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) 
-       return PEO->isExact() && SubPattern.match(V); 
-     return false; 
-   } 
- }; 
-   
- template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { 
-   return SubPattern; 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for CmpInst classes 
- // 
-   
- template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, 
-           bool Commutable = false> 
- struct CmpClass_match { 
-   PredicateTy &Predicate; 
-   LHS_t L; 
-   RHS_t R; 
-   
-   // The evaluation order is always stable, regardless of Commutability. 
-   // The LHS is always matched first. 
-   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) 
-       : Predicate(Pred), L(LHS), R(RHS) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *I = dyn_cast<Class>(V)) { 
-       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { 
-         Predicate = I->getPredicate(); 
-         return true; 
-       } else if (Commutable && L.match(I->getOperand(1)) && 
-                  R.match(I->getOperand(0))) { 
-         Predicate = I->getSwappedPredicate(); 
-         return true; 
-       } 
-     } 
-     return false; 
-   } 
- }; 
-   
- template <typename LHS, typename RHS> 
- inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> 
- m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 
-   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 
- m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 
-   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 
- m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 
-   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for instructions with a given opcode and number of operands. 
- // 
-   
- /// Matches instructions with Opcode and three operands. 
- template <typename T0, unsigned Opcode> struct OneOps_match { 
-   T0 Op1; 
-   
-   OneOps_match(const T0 &Op1) : Op1(Op1) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (V->getValueID() == Value::InstructionVal + Opcode) { 
-       auto *I = cast<Instruction>(V); 
-       return Op1.match(I->getOperand(0)); 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// Matches instructions with Opcode and three operands. 
- template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { 
-   T0 Op1; 
-   T1 Op2; 
-   
-   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (V->getValueID() == Value::InstructionVal + Opcode) { 
-       auto *I = cast<Instruction>(V); 
-       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// Matches instructions with Opcode and three operands. 
- template <typename T0, typename T1, typename T2, unsigned Opcode> 
- struct ThreeOps_match { 
-   T0 Op1; 
-   T1 Op2; 
-   T2 Op3; 
-   
-   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) 
-       : Op1(Op1), Op2(Op2), Op3(Op3) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (V->getValueID() == Value::InstructionVal + Opcode) { 
-       auto *I = cast<Instruction>(V); 
-       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 
-              Op3.match(I->getOperand(2)); 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// Matches SelectInst. 
- template <typename Cond, typename LHS, typename RHS> 
- inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> 
- m_Select(const Cond &C, const LHS &L, const RHS &R) { 
-   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); 
- } 
-   
- /// This matches a select of two constants, e.g.: 
- /// m_SelectCst<-1, 0>(m_Value(V)) 
- template <int64_t L, int64_t R, typename Cond> 
- inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, 
-                       Instruction::Select> 
- m_SelectCst(const Cond &C) { 
-   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); 
- } 
-   
- /// Matches FreezeInst. 
- template <typename OpTy> 
- inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { 
-   return OneOps_match<OpTy, Instruction::Freeze>(Op); 
- } 
-   
- /// Matches InsertElementInst. 
- template <typename Val_t, typename Elt_t, typename Idx_t> 
- inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> 
- m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { 
-   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( 
-       Val, Elt, Idx); 
- } 
-   
- /// Matches ExtractElementInst. 
- template <typename Val_t, typename Idx_t> 
- inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> 
- m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { 
-   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); 
- } 
-   
- /// Matches shuffle. 
- template <typename T0, typename T1, typename T2> struct Shuffle_match { 
-   T0 Op1; 
-   T1 Op2; 
-   T2 Mask; 
-   
-   Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) 
-       : Op1(Op1), Op2(Op2), Mask(Mask) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { 
-       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 
-              Mask.match(I->getShuffleMask()); 
-     } 
-     return false; 
-   } 
- }; 
-   
- struct m_Mask { 
-   ArrayRef<int> &MaskRef; 
-   m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 
-   bool match(ArrayRef<int> Mask) { 
-     MaskRef = Mask; 
-     return true; 
-   } 
- }; 
-   
- struct m_ZeroMask { 
-   bool match(ArrayRef<int> Mask) { 
-     return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); 
-   } 
- }; 
-   
- struct m_SpecificMask { 
-   ArrayRef<int> &MaskRef; 
-   m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 
-   bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } 
- }; 
-   
- struct m_SplatOrUndefMask { 
-   int &SplatIndex; 
-   m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} 
-   bool match(ArrayRef<int> Mask) { 
-     auto First = find_if(Mask, [](int Elem) { return Elem != -1; }); 
-     if (First == Mask.end()) 
-       return false; 
-     SplatIndex = *First; 
-     return all_of(Mask, 
-                   [First](int Elem) { return Elem == *First || Elem == -1; }); 
-   } 
- }; 
-   
- /// Matches ShuffleVectorInst independently of mask value. 
- template <typename V1_t, typename V2_t> 
- inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> 
- m_Shuffle(const V1_t &v1, const V2_t &v2) { 
-   return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); 
- } 
-   
- template <typename V1_t, typename V2_t, typename Mask_t> 
- inline Shuffle_match<V1_t, V2_t, Mask_t> 
- m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { 
-   return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); 
- } 
-   
- /// Matches LoadInst. 
- template <typename OpTy> 
- inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { 
-   return OneOps_match<OpTy, Instruction::Load>(Op); 
- } 
-   
- /// Matches StoreInst. 
- template <typename ValueOpTy, typename PointerOpTy> 
- inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> 
- m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { 
-   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, 
-                                                                   PointerOp); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for CastInst classes 
- // 
-   
- template <typename Op_t, unsigned Opcode> struct CastClass_match { 
-   Op_t Op; 
-   
-   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *O = dyn_cast<Operator>(V)) 
-       return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); 
-     return false; 
-   } 
- }; 
-   
- /// Matches BitCast. 
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::BitCast>(Op); 
- } 
-   
- /// Matches PtrToInt. 
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::PtrToInt>(Op); 
- } 
-   
- /// Matches IntToPtr. 
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::IntToPtr>(Op); 
- } 
-   
- /// Matches Trunc. 
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::Trunc>(Op); 
- } 
-   
- template <typename OpTy> 
- inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy> 
- m_TruncOrSelf(const OpTy &Op) { 
-   return m_CombineOr(m_Trunc(Op), Op); 
- } 
-   
- /// Matches SExt. 
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::SExt>(Op); 
- } 
-   
- /// Matches ZExt. 
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::ZExt>(Op); 
- } 
-   
- template <typename OpTy> 
- inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy> 
- m_ZExtOrSelf(const OpTy &Op) { 
-   return m_CombineOr(m_ZExt(Op), Op); 
- } 
-   
- template <typename OpTy> 
- inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy> 
- m_SExtOrSelf(const OpTy &Op) { 
-   return m_CombineOr(m_SExt(Op), Op); 
- } 
-   
- template <typename OpTy> 
- inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, 
-                         CastClass_match<OpTy, Instruction::SExt>> 
- m_ZExtOrSExt(const OpTy &Op) { 
-   return m_CombineOr(m_ZExt(Op), m_SExt(Op)); 
- } 
-   
- template <typename OpTy> 
- inline match_combine_or< 
-     match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, 
-                      CastClass_match<OpTy, Instruction::SExt>>, 
-     OpTy> 
- m_ZExtOrSExtOrSelf(const OpTy &Op) { 
-   return m_CombineOr(m_ZExtOrSExt(Op), Op); 
- } 
-   
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::UIToFP>(Op); 
- } 
-   
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::SIToFP>(Op); 
- } 
-   
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::FPToUI>(Op); 
- } 
-   
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::FPToSI>(Op); 
- } 
-   
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::FPTrunc>(Op); 
- } 
-   
- template <typename OpTy> 
- inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { 
-   return CastClass_match<OpTy, Instruction::FPExt>(Op); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for control flow. 
- // 
-   
- struct br_match { 
-   BasicBlock *&Succ; 
-   
-   br_match(BasicBlock *&Succ) : Succ(Succ) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *BI = dyn_cast<BranchInst>(V)) 
-       if (BI->isUnconditional()) { 
-         Succ = BI->getSuccessor(0); 
-         return true; 
-       } 
-     return false; 
-   } 
- }; 
-   
- inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } 
-   
- template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 
- struct brc_match { 
-   Cond_t Cond; 
-   TrueBlock_t T; 
-   FalseBlock_t F; 
-   
-   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) 
-       : Cond(C), T(t), F(f) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *BI = dyn_cast<BranchInst>(V)) 
-       if (BI->isConditional() && Cond.match(BI->getCondition())) 
-         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); 
-     return false; 
-   } 
- }; 
-   
- template <typename Cond_t> 
- inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> 
- m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { 
-   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( 
-       C, m_BasicBlock(T), m_BasicBlock(F)); 
- } 
-   
- template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 
- inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> 
- m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { 
-   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). 
- // 
-   
- template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, 
-           bool Commutable = false> 
- struct MaxMin_match { 
-   using PredType = Pred_t; 
-   LHS_t L; 
-   RHS_t R; 
-   
-   // The evaluation order is always stable, regardless of Commutability. 
-   // The LHS is always matched first. 
-   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *II = dyn_cast<IntrinsicInst>(V)) { 
-       Intrinsic::ID IID = II->getIntrinsicID(); 
-       if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || 
-           (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || 
-           (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || 
-           (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { 
-         Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); 
-         return (L.match(LHS) && R.match(RHS)) || 
-                (Commutable && L.match(RHS) && R.match(LHS)); 
-       } 
-     } 
-     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". 
-     auto *SI = dyn_cast<SelectInst>(V); 
-     if (!SI) 
-       return false; 
-     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); 
-     if (!Cmp) 
-       return false; 
-     // At this point we have a select conditioned on a comparison.  Check that 
-     // it is the values returned by the select that are being compared. 
-     auto *TrueVal = SI->getTrueValue(); 
-     auto *FalseVal = SI->getFalseValue(); 
-     auto *LHS = Cmp->getOperand(0); 
-     auto *RHS = Cmp->getOperand(1); 
-     if ((TrueVal != LHS || FalseVal != RHS) && 
-         (TrueVal != RHS || FalseVal != LHS)) 
-       return false; 
-     typename CmpInst_t::Predicate Pred = 
-         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); 
-     // Does "(x pred y) ? x : y" represent the desired max/min operation? 
-     if (!Pred_t::match(Pred)) 
-       return false; 
-     // It does!  Bind the operands. 
-     return (L.match(LHS) && R.match(RHS)) || 
-            (Commutable && L.match(RHS) && R.match(LHS)); 
-   } 
- }; 
-   
- /// Helper class for identifying signed max predicates. 
- struct smax_pred_ty { 
-   static bool match(ICmpInst::Predicate Pred) { 
-     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; 
-   } 
- }; 
-   
- /// Helper class for identifying signed min predicates. 
- struct smin_pred_ty { 
-   static bool match(ICmpInst::Predicate Pred) { 
-     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; 
-   } 
- }; 
-   
- /// Helper class for identifying unsigned max predicates. 
- struct umax_pred_ty { 
-   static bool match(ICmpInst::Predicate Pred) { 
-     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; 
-   } 
- }; 
-   
- /// Helper class for identifying unsigned min predicates. 
- struct umin_pred_ty { 
-   static bool match(ICmpInst::Predicate Pred) { 
-     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; 
-   } 
- }; 
-   
- /// Helper class for identifying ordered max predicates. 
- struct ofmax_pred_ty { 
-   static bool match(FCmpInst::Predicate Pred) { 
-     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; 
-   } 
- }; 
-   
- /// Helper class for identifying ordered min predicates. 
- struct ofmin_pred_ty { 
-   static bool match(FCmpInst::Predicate Pred) { 
-     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; 
-   } 
- }; 
-   
- /// Helper class for identifying unordered max predicates. 
- struct ufmax_pred_ty { 
-   static bool match(FCmpInst::Predicate Pred) { 
-     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; 
-   } 
- }; 
-   
- /// Helper class for identifying unordered min predicates. 
- struct ufmin_pred_ty { 
-   static bool match(FCmpInst::Predicate Pred) { 
-     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; 
-   } 
- }; 
-   
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, 
-                                                              const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, 
-                                                              const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, 
-                                                              const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, 
-                                                              const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline match_combine_or< 
-     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, 
-                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, 
-     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, 
-                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> 
- m_MaxOrMin(const LHS &L, const RHS &R) { 
-   return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), 
-                      m_CombineOr(m_UMax(L, R), m_UMin(L, R))); 
- } 
-   
- /// Match an 'ordered' floating point maximum function. 
- /// Floating point has one special value 'NaN'. Therefore, there is no total 
- /// order. However, if we can ignore the 'NaN' value (for example, because of a 
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 
- /// semantics. In the presence of 'NaN' we have to preserve the original 
- /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. 
- /// 
- ///                         max(L, R)  iff L and R are not NaN 
- ///  m_OrdFMax(L, R) =      R          iff L or R are NaN 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, 
-                                                                  const RHS &R) { 
-   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); 
- } 
-   
- /// Match an 'ordered' floating point minimum function. 
- /// Floating point has one special value 'NaN'. Therefore, there is no total 
- /// order. However, if we can ignore the 'NaN' value (for example, because of a 
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 
- /// semantics. In the presence of 'NaN' we have to preserve the original 
- /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. 
- /// 
- ///                         min(L, R)  iff L and R are not NaN 
- ///  m_OrdFMin(L, R) =      R          iff L or R are NaN 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, 
-                                                                  const RHS &R) { 
-   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); 
- } 
-   
- /// Match an 'unordered' floating point maximum function. 
- /// Floating point has one special value 'NaN'. Therefore, there is no total 
- /// order. However, if we can ignore the 'NaN' value (for example, because of a 
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 
- /// semantics. In the presence of 'NaN' we have to preserve the original 
- /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. 
- /// 
- ///                         max(L, R)  iff L and R are not NaN 
- ///  m_UnordFMax(L, R) =    L          iff L or R are NaN 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> 
- m_UnordFMax(const LHS &L, const RHS &R) { 
-   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); 
- } 
-   
- /// Match an 'unordered' floating point minimum function. 
- /// Floating point has one special value 'NaN'. Therefore, there is no total 
- /// order. However, if we can ignore the 'NaN' value (for example, because of a 
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 
- /// semantics. In the presence of 'NaN' we have to preserve the original 
- /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. 
- /// 
- ///                          min(L, R)  iff L and R are not NaN 
- ///  m_UnordFMin(L, R) =     L          iff L or R are NaN 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> 
- m_UnordFMin(const LHS &L, const RHS &R) { 
-   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b 
- // Note that S might be matched to other instructions than AddInst. 
- // 
-   
- template <typename LHS_t, typename RHS_t, typename Sum_t> 
- struct UAddWithOverflow_match { 
-   LHS_t L; 
-   RHS_t R; 
-   Sum_t S; 
-   
-   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) 
-       : L(L), R(R), S(S) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     Value *ICmpLHS, *ICmpRHS; 
-     ICmpInst::Predicate Pred; 
-     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) 
-       return false; 
-   
-     Value *AddLHS, *AddRHS; 
-     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); 
-   
-     // (a + b) u< a, (a + b) u< b 
-     if (Pred == ICmpInst::ICMP_ULT) 
-       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) 
-         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 
-   
-     // a >u (a + b), b >u (a + b) 
-     if (Pred == ICmpInst::ICMP_UGT) 
-       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) 
-         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 
-   
-     Value *Op1; 
-     auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); 
-     // (a ^ -1) <u b 
-     if (Pred == ICmpInst::ICMP_ULT) { 
-       if (XorExpr.match(ICmpLHS)) 
-         return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); 
-     } 
-     //  b > u (a ^ -1) 
-     if (Pred == ICmpInst::ICMP_UGT) { 
-       if (XorExpr.match(ICmpRHS)) 
-         return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); 
-     } 
-   
-     // Match special-case for increment-by-1. 
-     if (Pred == ICmpInst::ICMP_EQ) { 
-       // (a + 1) == 0 
-       // (1 + a) == 0 
-       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && 
-           (m_One().match(AddLHS) || m_One().match(AddRHS))) 
-         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 
-       // 0 == (a + 1) 
-       // 0 == (1 + a) 
-       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && 
-           (m_One().match(AddLHS) || m_One().match(AddRHS))) 
-         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 
-     } 
-   
-     return false; 
-   } 
- }; 
-   
- /// Match an icmp instruction checking for unsigned overflow on addition. 
- /// 
- /// S is matched to the addition whose result is being checked for overflow, and 
- /// L and R are matched to the LHS and RHS of S. 
- template <typename LHS_t, typename RHS_t, typename Sum_t> 
- UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> 
- m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { 
-   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); 
- } 
-   
- template <typename Opnd_t> struct Argument_match { 
-   unsigned OpI; 
-   Opnd_t Val; 
-   
-   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     // FIXME: Should likely be switched to use `CallBase`. 
-     if (const auto *CI = dyn_cast<CallInst>(V)) 
-       return Val.match(CI->getArgOperand(OpI)); 
-     return false; 
-   } 
- }; 
-   
- /// Match an argument. 
- template <unsigned OpI, typename Opnd_t> 
- inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { 
-   return Argument_match<Opnd_t>(OpI, Op); 
- } 
-   
- /// Intrinsic matchers. 
- struct IntrinsicID_match { 
-   unsigned ID; 
-   
-   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (const auto *CI = dyn_cast<CallInst>(V)) 
-       if (const auto *F = CI->getCalledFunction()) 
-         return F->getIntrinsicID() == ID; 
-     return false; 
-   } 
- }; 
-   
- /// Intrinsic matches are combinations of ID matchers, and argument 
- /// matchers. Higher arity matcher are defined recursively in terms of and-ing 
- /// them with lower arity matchers. Here's some convenient typedefs for up to 
- /// several arguments, and more can be added as needed 
- template <typename T0 = void, typename T1 = void, typename T2 = void, 
-           typename T3 = void, typename T4 = void, typename T5 = void, 
-           typename T6 = void, typename T7 = void, typename T8 = void, 
-           typename T9 = void, typename T10 = void> 
- struct m_Intrinsic_Ty; 
- template <typename T0> struct m_Intrinsic_Ty<T0> { 
-   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; 
- }; 
- template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { 
-   using Ty = 
-       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; 
- }; 
- template <typename T0, typename T1, typename T2> 
- struct m_Intrinsic_Ty<T0, T1, T2> { 
-   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, 
-                                Argument_match<T2>>; 
- }; 
- template <typename T0, typename T1, typename T2, typename T3> 
- struct m_Intrinsic_Ty<T0, T1, T2, T3> { 
-   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, 
-                                Argument_match<T3>>; 
- }; 
-   
- template <typename T0, typename T1, typename T2, typename T3, typename T4> 
- struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { 
-   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, 
-                                Argument_match<T4>>; 
- }; 
-   
- template <typename T0, typename T1, typename T2, typename T3, typename T4, 
-           typename T5> 
- struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { 
-   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, 
-                                Argument_match<T5>>; 
- }; 
-   
- /// Match intrinsic calls like this: 
- /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) 
- template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { 
-   return IntrinsicID_match(IntrID); 
- } 
-   
- /// Matches MaskedLoad Intrinsic. 
- template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 
- m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 
-              const Opnd3 &Op3) { 
-   return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); 
- } 
-   
- /// Matches MaskedGather Intrinsic. 
- template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 
- m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 
-                const Opnd3 &Op3) { 
-   return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); 
- } 
-   
- template <Intrinsic::ID IntrID, typename T0> 
- inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { 
-   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); 
- } 
-   
- template <Intrinsic::ID IntrID, typename T0, typename T1> 
- inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, 
-                                                        const T1 &Op1) { 
-   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); 
- } 
-   
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> 
- inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty 
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { 
-   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); 
- } 
-   
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 
-           typename T3> 
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty 
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { 
-   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); 
- } 
-   
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 
-           typename T3, typename T4> 
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty 
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 
-             const T4 &Op4) { 
-   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), 
-                       m_Argument<4>(Op4)); 
- } 
-   
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 
-           typename T3, typename T4, typename T5> 
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty 
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 
-             const T4 &Op4, const T5 &Op5) { 
-   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), 
-                       m_Argument<5>(Op5)); 
- } 
-   
- // Helper intrinsic matching specializations. 
- template <typename Opnd0> 
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { 
-   return m_Intrinsic<Intrinsic::bitreverse>(Op0); 
- } 
-   
- template <typename Opnd0> 
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { 
-   return m_Intrinsic<Intrinsic::bswap>(Op0); 
- } 
-   
- template <typename Opnd0> 
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { 
-   return m_Intrinsic<Intrinsic::fabs>(Op0); 
- } 
-   
- template <typename Opnd0> 
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { 
-   return m_Intrinsic<Intrinsic::canonicalize>(Op0); 
- } 
-   
- template <typename Opnd0, typename Opnd1> 
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, 
-                                                         const Opnd1 &Op1) { 
-   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); 
- } 
-   
- template <typename Opnd0, typename Opnd1> 
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, 
-                                                         const Opnd1 &Op1) { 
-   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); 
- } 
-   
- template <typename Opnd0, typename Opnd1, typename Opnd2> 
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 
- m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 
-   return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); 
- } 
-   
- template <typename Opnd0, typename Opnd1, typename Opnd2> 
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 
- m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 
-   return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); 
- } 
-   
- template <typename Opnd0> 
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { 
-   return m_Intrinsic<Intrinsic::sqrt>(Op0); 
- } 
-   
- template <typename Opnd0, typename Opnd1> 
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0, 
-                                                             const Opnd1 &Op1) { 
-   return m_Intrinsic<Intrinsic::copysign>(Op0, Op1); 
- } 
-   
- template <typename Opnd0> 
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) { 
-   return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // Matchers for two-operands operators with the operators in either order 
- // 
-   
- /// Matches a BinaryOperator with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { 
-   return AnyBinaryOp_match<LHS, RHS, true>(L, R); 
- } 
-   
- /// Matches an ICmp with a predicate over LHS and RHS in either order. 
- /// Swaps the predicate if operands are commuted. 
- template <typename LHS, typename RHS> 
- inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> 
- m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 
-   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, 
-                                                                        R); 
- } 
-   
- /// Matches a specific opcode with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline SpecificBinaryOp_match<LHS, RHS, true> 
- m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { 
-   return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); 
- } 
-   
- /// Matches a Add with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, 
-                                                                 const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); 
- } 
-   
- /// Matches a Mul with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, 
-                                                                 const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); 
- } 
-   
- /// Matches an And with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, 
-                                                                 const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); 
- } 
-   
- /// Matches an Or with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, 
-                                                               const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); 
- } 
-   
- /// Matches an Xor with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, 
-                                                                 const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); 
- } 
-   
- /// Matches a 'Neg' as 'sub 0, V'. 
- template <typename ValTy> 
- inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> 
- m_Neg(const ValTy &V) { 
-   return m_Sub(m_ZeroInt(), V); 
- } 
-   
- /// Matches a 'Neg' as 'sub nsw 0, V'. 
- template <typename ValTy> 
- inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, 
-                                  Instruction::Sub, 
-                                  OverflowingBinaryOperator::NoSignedWrap> 
- m_NSWNeg(const ValTy &V) { 
-   return m_NSWSub(m_ZeroInt(), V); 
- } 
-   
- /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. 
- /// NOTE: we first match the 'Not' (by matching '-1'), 
- /// and only then match the inner matcher! 
- template <typename ValTy> 
- inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true> 
- m_Not(const ValTy &V) { 
-   return m_c_Xor(m_AllOnes(), V); 
- } 
-   
- template <typename ValTy> struct NotForbidUndef_match { 
-   ValTy Val; 
-   NotForbidUndef_match(const ValTy &V) : Val(V) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     // We do not use m_c_Xor because that could match an arbitrary APInt that is 
-     // not -1 as C and then fail to match the other operand if it is -1. 
-     // This code should still work even when both operands are constants. 
-     Value *X; 
-     const APInt *C; 
-     if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes()) 
-       return Val.match(X); 
-     if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes()) 
-       return Val.match(X); 
-     return false; 
-   } 
- }; 
-   
- /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the 
- /// constant value must be composed of only -1 scalar elements. 
- template <typename ValTy> 
- inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) { 
-   return NotForbidUndef_match<ValTy>(V); 
- } 
-   
- /// Matches an SMin with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> 
- m_c_SMin(const LHS &L, const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); 
- } 
- /// Matches an SMax with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> 
- m_c_SMax(const LHS &L, const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); 
- } 
- /// Matches a UMin with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> 
- m_c_UMin(const LHS &L, const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); 
- } 
- /// Matches a UMax with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> 
- m_c_UMax(const LHS &L, const RHS &R) { 
-   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); 
- } 
-   
- template <typename LHS, typename RHS> 
- inline match_combine_or< 
-     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, 
-                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, 
-     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, 
-                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> 
- m_c_MaxOrMin(const LHS &L, const RHS &R) { 
-   return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), 
-                      m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); 
- } 
-   
- /// Matches FAdd with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> 
- m_c_FAdd(const LHS &L, const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); 
- } 
-   
- /// Matches FMul with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> 
- m_c_FMul(const LHS &L, const RHS &R) { 
-   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); 
- } 
-   
- template <typename Opnd_t> struct Signum_match { 
-   Opnd_t Val; 
-   Signum_match(const Opnd_t &V) : Val(V) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     unsigned TypeSize = V->getType()->getScalarSizeInBits(); 
-     if (TypeSize == 0) 
-       return false; 
-   
-     unsigned ShiftWidth = TypeSize - 1; 
-     Value *OpL = nullptr, *OpR = nullptr; 
-   
-     // This is the representation of signum we match: 
-     // 
-     //  signum(x) == (x >> 63) | (-x >>u 63) 
-     // 
-     // An i1 value is its own signum, so it's correct to match 
-     // 
-     //  signum(x) == (x >> 0)  | (-x >>u 0) 
-     // 
-     // for i1 values. 
-   
-     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); 
-     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); 
-     auto Signum = m_Or(LHS, RHS); 
-   
-     return Signum.match(V) && OpL == OpR && Val.match(OpL); 
-   } 
- }; 
-   
- /// Matches a signum pattern. 
- /// 
- /// signum(x) = 
- ///      x >  0  ->  1 
- ///      x == 0  ->  0 
- ///      x <  0  -> -1 
- template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { 
-   return Signum_match<Val_t>(V); 
- } 
-   
- template <int Ind, typename Opnd_t> struct ExtractValue_match { 
-   Opnd_t Val; 
-   ExtractValue_match(const Opnd_t &V) : Val(V) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *I = dyn_cast<ExtractValueInst>(V)) { 
-       // If Ind is -1, don't inspect indices 
-       if (Ind != -1 && 
-           !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) 
-         return false; 
-       return Val.match(I->getAggregateOperand()); 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// Match a single index ExtractValue instruction. 
- /// For example m_ExtractValue<1>(...) 
- template <int Ind, typename Val_t> 
- inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { 
-   return ExtractValue_match<Ind, Val_t>(V); 
- } 
-   
- /// Match an ExtractValue instruction with any index. 
- /// For example m_ExtractValue(...) 
- template <typename Val_t> 
- inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { 
-   return ExtractValue_match<-1, Val_t>(V); 
- } 
-   
- /// Matcher for a single index InsertValue instruction. 
- template <int Ind, typename T0, typename T1> struct InsertValue_match { 
-   T0 Op0; 
-   T1 Op1; 
-   
-   InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} 
-   
-   template <typename OpTy> bool match(OpTy *V) { 
-     if (auto *I = dyn_cast<InsertValueInst>(V)) { 
-       return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && 
-              I->getNumIndices() == 1 && Ind == I->getIndices()[0]; 
-     } 
-     return false; 
-   } 
- }; 
-   
- /// Matches a single index InsertValue instruction. 
- template <int Ind, typename Val_t, typename Elt_t> 
- inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, 
-                                                           const Elt_t &Elt) { 
-   return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); 
- } 
-   
- /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or 
- /// the constant expression 
- ///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>` 
- /// under the right conditions determined by DataLayout. 
- struct VScaleVal_match { 
-   const DataLayout &DL; 
-   VScaleVal_match(const DataLayout &DL) : DL(DL) {} 
-   
-   template <typename ITy> bool match(ITy *V) { 
-     if (m_Intrinsic<Intrinsic::vscale>().match(V)) 
-       return true; 
-   
-     Value *Ptr; 
-     if (m_PtrToInt(m_Value(Ptr)).match(V)) { 
-       if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 
-         auto *DerefTy = GEP->getSourceElementType(); 
-         if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) && 
-             m_Zero().match(GEP->getPointerOperand()) && 
-             m_SpecificInt(1).match(GEP->idx_begin()->get()) && 
-             DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8) 
-           return true; 
-       } 
-     } 
-   
-     return false; 
-   } 
- }; 
-   
- inline VScaleVal_match m_VScale(const DataLayout &DL) { 
-   return VScaleVal_match(DL); 
- } 
-   
- template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> 
- struct LogicalOp_match { 
-   LHS L; 
-   RHS R; 
-   
-   LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} 
-   
-   template <typename T> bool match(T *V) { 
-     auto *I = dyn_cast<Instruction>(V); 
-     if (!I || !I->getType()->isIntOrIntVectorTy(1)) 
-       return false; 
-   
-     if (I->getOpcode() == Opcode) { 
-       auto *Op0 = I->getOperand(0); 
-       auto *Op1 = I->getOperand(1); 
-       return (L.match(Op0) && R.match(Op1)) || 
-              (Commutable && L.match(Op1) && R.match(Op0)); 
-     } 
-   
-     if (auto *Select = dyn_cast<SelectInst>(I)) { 
-       auto *Cond = Select->getCondition(); 
-       auto *TVal = Select->getTrueValue(); 
-       auto *FVal = Select->getFalseValue(); 
-   
-       // Don't match a scalar select of bool vectors. 
-       // Transforms expect a single type for operands if this matches. 
-       if (Cond->getType() != Select->getType()) 
-         return false; 
-   
-       if (Opcode == Instruction::And) { 
-         auto *C = dyn_cast<Constant>(FVal); 
-         if (C && C->isNullValue()) 
-           return (L.match(Cond) && R.match(TVal)) || 
-                  (Commutable && L.match(TVal) && R.match(Cond)); 
-       } else { 
-         assert(Opcode == Instruction::Or); 
-         auto *C = dyn_cast<Constant>(TVal); 
-         if (C && C->isOneValue()) 
-           return (L.match(Cond) && R.match(FVal)) || 
-                  (Commutable && L.match(FVal) && R.match(Cond)); 
-       } 
-     } 
-   
-     return false; 
-   } 
- }; 
-   
- /// Matches L && R either in the form of L & R or L ? R : false. 
- /// Note that the latter form is poison-blocking. 
- template <typename LHS, typename RHS> 
- inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, 
-                                                                 const RHS &R) { 
-   return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); 
- } 
-   
- /// Matches L && R where L and R are arbitrary values. 
- inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } 
-   
- /// Matches L && R with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline LogicalOp_match<LHS, RHS, Instruction::And, true> 
- m_c_LogicalAnd(const LHS &L, const RHS &R) { 
-   return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); 
- } 
-   
- /// Matches L || R either in the form of L | R or L ? true : R. 
- /// Note that the latter form is poison-blocking. 
- template <typename LHS, typename RHS> 
- inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, 
-                                                               const RHS &R) { 
-   return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); 
- } 
-   
- /// Matches L || R where L and R are arbitrary values. 
- inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); } 
-   
- /// Matches L || R with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline LogicalOp_match<LHS, RHS, Instruction::Or, true> 
- m_c_LogicalOr(const LHS &L, const RHS &R) { 
-   return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); 
- } 
-   
- /// Matches either L && R or L || R, 
- /// either one being in the either binary or logical form. 
- /// Note that the latter form is poison-blocking. 
- template <typename LHS, typename RHS, bool Commutable = false> 
- inline auto m_LogicalOp(const LHS &L, const RHS &R) { 
-   return m_CombineOr( 
-       LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R), 
-       LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R)); 
- } 
-   
- /// Matches either L && R or L || R where L and R are arbitrary values. 
- inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); } 
-   
- /// Matches either L && R or L || R with LHS and RHS in either order. 
- template <typename LHS, typename RHS> 
- inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { 
-   return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R); 
- } 
-   
- } // end namespace PatternMatch 
- } // end namespace llvm 
-   
- #endif // LLVM_IR_PATTERNMATCH_H 
-