Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. /// \file
  9. ///
  10. /// This header defines various interfaces for pass management in LLVM. There
  11. /// is no "pass" interface in LLVM per se. Instead, an instance of any class
  12. /// which supports a method to 'run' it over a unit of IR can be used as
  13. /// a pass. A pass manager is generally a tool to collect a sequence of passes
  14. /// which run over a particular IR construct, and run each of them in sequence
  15. /// over each such construct in the containing IR construct. As there is no
  16. /// containing IR construct for a Module, a manager for passes over modules
  17. /// forms the base case which runs its managed passes in sequence over the
  18. /// single module provided.
  19. ///
  20. /// The core IR library provides managers for running passes over
  21. /// modules and functions.
  22. ///
  23. /// * FunctionPassManager can run over a Module, runs each pass over
  24. ///   a Function.
  25. /// * ModulePassManager must be directly run, runs each pass over the Module.
  26. ///
  27. /// Note that the implementations of the pass managers use concept-based
  28. /// polymorphism as outlined in the "Value Semantics and Concept-based
  29. /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
  30. /// Class of Evil") by Sean Parent:
  31. /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
  32. /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
  33. /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
  34. ///
  35. //===----------------------------------------------------------------------===//
  36.  
  37. #ifndef LLVM_IR_PASSMANAGER_H
  38. #define LLVM_IR_PASSMANAGER_H
  39.  
  40. #include "llvm/ADT/DenseMap.h"
  41. #include "llvm/ADT/STLExtras.h"
  42. #include "llvm/ADT/SmallPtrSet.h"
  43. #include "llvm/ADT/StringRef.h"
  44. #include "llvm/ADT/TinyPtrVector.h"
  45. #include "llvm/IR/Function.h"
  46. #include "llvm/IR/Module.h"
  47. #include "llvm/IR/PassInstrumentation.h"
  48. #include "llvm/IR/PassManagerInternal.h"
  49. #include "llvm/Support/TimeProfiler.h"
  50. #include "llvm/Support/TypeName.h"
  51. #include <cassert>
  52. #include <cstring>
  53. #include <iterator>
  54. #include <list>
  55. #include <memory>
  56. #include <tuple>
  57. #include <type_traits>
  58. #include <utility>
  59. #include <vector>
  60.  
  61. namespace llvm {
  62.  
  63. /// A special type used by analysis passes to provide an address that
  64. /// identifies that particular analysis pass type.
  65. ///
  66. /// Analysis passes should have a static data member of this type and derive
  67. /// from the \c AnalysisInfoMixin to get a static ID method used to identify
  68. /// the analysis in the pass management infrastructure.
  69. struct alignas(8) AnalysisKey {};
  70.  
  71. /// A special type used to provide an address that identifies a set of related
  72. /// analyses.  These sets are primarily used below to mark sets of analyses as
  73. /// preserved.
  74. ///
  75. /// For example, a transformation can indicate that it preserves the CFG of a
  76. /// function by preserving the appropriate AnalysisSetKey.  An analysis that
  77. /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
  78. /// if it is, the analysis knows that it itself is preserved.
  79. struct alignas(8) AnalysisSetKey {};
  80.  
  81. /// This templated class represents "all analyses that operate over \<a
  82. /// particular IR unit\>" (e.g. a Function or a Module) in instances of
  83. /// PreservedAnalysis.
  84. ///
  85. /// This lets a transformation say e.g. "I preserved all function analyses".
  86. ///
  87. /// Note that you must provide an explicit instantiation declaration and
  88. /// definition for this template in order to get the correct behavior on
  89. /// Windows. Otherwise, the address of SetKey will not be stable.
  90. template <typename IRUnitT> class AllAnalysesOn {
  91. public:
  92.   static AnalysisSetKey *ID() { return &SetKey; }
  93.  
  94. private:
  95.   static AnalysisSetKey SetKey;
  96. };
  97.  
  98. template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
  99.  
  100. extern template class AllAnalysesOn<Module>;
  101. extern template class AllAnalysesOn<Function>;
  102.  
  103. /// Represents analyses that only rely on functions' control flow.
  104. ///
  105. /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
  106. /// to query whether it has been preserved.
  107. ///
  108. /// The CFG of a function is defined as the set of basic blocks and the edges
  109. /// between them. Changing the set of basic blocks in a function is enough to
  110. /// mutate the CFG. Mutating the condition of a branch or argument of an
  111. /// invoked function does not mutate the CFG, but changing the successor labels
  112. /// of those instructions does.
  113. class CFGAnalyses {
  114. public:
  115.   static AnalysisSetKey *ID() { return &SetKey; }
  116.  
  117. private:
  118.   static AnalysisSetKey SetKey;
  119. };
  120.  
  121. /// A set of analyses that are preserved following a run of a transformation
  122. /// pass.
  123. ///
  124. /// Transformation passes build and return these objects to communicate which
  125. /// analyses are still valid after the transformation. For most passes this is
  126. /// fairly simple: if they don't change anything all analyses are preserved,
  127. /// otherwise only a short list of analyses that have been explicitly updated
  128. /// are preserved.
  129. ///
  130. /// This class also lets transformation passes mark abstract *sets* of analyses
  131. /// as preserved. A transformation that (say) does not alter the CFG can
  132. /// indicate such by marking a particular AnalysisSetKey as preserved, and
  133. /// then analyses can query whether that AnalysisSetKey is preserved.
  134. ///
  135. /// Finally, this class can represent an "abandoned" analysis, which is
  136. /// not preserved even if it would be covered by some abstract set of analyses.
  137. ///
  138. /// Given a `PreservedAnalyses` object, an analysis will typically want to
  139. /// figure out whether it is preserved. In the example below, MyAnalysisType is
  140. /// preserved if it's not abandoned, and (a) it's explicitly marked as
  141. /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
  142. /// AnalysisSetA and AnalysisSetB are preserved.
  143. ///
  144. /// ```
  145. ///   auto PAC = PA.getChecker<MyAnalysisType>();
  146. ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
  147. ///       (PAC.preservedSet<AnalysisSetA>() &&
  148. ///        PAC.preservedSet<AnalysisSetB>())) {
  149. ///     // The analysis has been successfully preserved ...
  150. ///   }
  151. /// ```
  152. class PreservedAnalyses {
  153. public:
  154.   /// Convenience factory function for the empty preserved set.
  155.   static PreservedAnalyses none() { return PreservedAnalyses(); }
  156.  
  157.   /// Construct a special preserved set that preserves all passes.
  158.   static PreservedAnalyses all() {
  159.     PreservedAnalyses PA;
  160.     PA.PreservedIDs.insert(&AllAnalysesKey);
  161.     return PA;
  162.   }
  163.  
  164.   /// Construct a preserved analyses object with a single preserved set.
  165.   template <typename AnalysisSetT>
  166.   static PreservedAnalyses allInSet() {
  167.     PreservedAnalyses PA;
  168.     PA.preserveSet<AnalysisSetT>();
  169.     return PA;
  170.   }
  171.  
  172.   /// Mark an analysis as preserved.
  173.   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
  174.  
  175.   /// Given an analysis's ID, mark the analysis as preserved, adding it
  176.   /// to the set.
  177.   void preserve(AnalysisKey *ID) {
  178.     // Clear this ID from the explicit not-preserved set if present.
  179.     NotPreservedAnalysisIDs.erase(ID);
  180.  
  181.     // If we're not already preserving all analyses (other than those in
  182.     // NotPreservedAnalysisIDs).
  183.     if (!areAllPreserved())
  184.       PreservedIDs.insert(ID);
  185.   }
  186.  
  187.   /// Mark an analysis set as preserved.
  188.   template <typename AnalysisSetT> void preserveSet() {
  189.     preserveSet(AnalysisSetT::ID());
  190.   }
  191.  
  192.   /// Mark an analysis set as preserved using its ID.
  193.   void preserveSet(AnalysisSetKey *ID) {
  194.     // If we're not already in the saturated 'all' state, add this set.
  195.     if (!areAllPreserved())
  196.       PreservedIDs.insert(ID);
  197.   }
  198.  
  199.   /// Mark an analysis as abandoned.
  200.   ///
  201.   /// An abandoned analysis is not preserved, even if it is nominally covered
  202.   /// by some other set or was previously explicitly marked as preserved.
  203.   ///
  204.   /// Note that you can only abandon a specific analysis, not a *set* of
  205.   /// analyses.
  206.   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
  207.  
  208.   /// Mark an analysis as abandoned using its ID.
  209.   ///
  210.   /// An abandoned analysis is not preserved, even if it is nominally covered
  211.   /// by some other set or was previously explicitly marked as preserved.
  212.   ///
  213.   /// Note that you can only abandon a specific analysis, not a *set* of
  214.   /// analyses.
  215.   void abandon(AnalysisKey *ID) {
  216.     PreservedIDs.erase(ID);
  217.     NotPreservedAnalysisIDs.insert(ID);
  218.   }
  219.  
  220.   /// Intersect this set with another in place.
  221.   ///
  222.   /// This is a mutating operation on this preserved set, removing all
  223.   /// preserved passes which are not also preserved in the argument.
  224.   void intersect(const PreservedAnalyses &Arg) {
  225.     if (Arg.areAllPreserved())
  226.       return;
  227.     if (areAllPreserved()) {
  228.       *this = Arg;
  229.       return;
  230.     }
  231.     // The intersection requires the *union* of the explicitly not-preserved
  232.     // IDs and the *intersection* of the preserved IDs.
  233.     for (auto *ID : Arg.NotPreservedAnalysisIDs) {
  234.       PreservedIDs.erase(ID);
  235.       NotPreservedAnalysisIDs.insert(ID);
  236.     }
  237.     for (auto *ID : PreservedIDs)
  238.       if (!Arg.PreservedIDs.count(ID))
  239.         PreservedIDs.erase(ID);
  240.   }
  241.  
  242.   /// Intersect this set with a temporary other set in place.
  243.   ///
  244.   /// This is a mutating operation on this preserved set, removing all
  245.   /// preserved passes which are not also preserved in the argument.
  246.   void intersect(PreservedAnalyses &&Arg) {
  247.     if (Arg.areAllPreserved())
  248.       return;
  249.     if (areAllPreserved()) {
  250.       *this = std::move(Arg);
  251.       return;
  252.     }
  253.     // The intersection requires the *union* of the explicitly not-preserved
  254.     // IDs and the *intersection* of the preserved IDs.
  255.     for (auto *ID : Arg.NotPreservedAnalysisIDs) {
  256.       PreservedIDs.erase(ID);
  257.       NotPreservedAnalysisIDs.insert(ID);
  258.     }
  259.     for (auto *ID : PreservedIDs)
  260.       if (!Arg.PreservedIDs.count(ID))
  261.         PreservedIDs.erase(ID);
  262.   }
  263.  
  264.   /// A checker object that makes it easy to query for whether an analysis or
  265.   /// some set covering it is preserved.
  266.   class PreservedAnalysisChecker {
  267.     friend class PreservedAnalyses;
  268.  
  269.     const PreservedAnalyses &PA;
  270.     AnalysisKey *const ID;
  271.     const bool IsAbandoned;
  272.  
  273.     /// A PreservedAnalysisChecker is tied to a particular Analysis because
  274.     /// `preserved()` and `preservedSet()` both return false if the Analysis
  275.     /// was abandoned.
  276.     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
  277.         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
  278.  
  279.   public:
  280.     /// Returns true if the checker's analysis was not abandoned and either
  281.     ///  - the analysis is explicitly preserved or
  282.     ///  - all analyses are preserved.
  283.     bool preserved() {
  284.       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
  285.                               PA.PreservedIDs.count(ID));
  286.     }
  287.  
  288.     /// Return true if the checker's analysis was not abandoned, i.e. it was not
  289.     /// explicitly invalidated. Even if the analysis is not explicitly
  290.     /// preserved, if the analysis is known stateless, then it is preserved.
  291.     bool preservedWhenStateless() {
  292.       return !IsAbandoned;
  293.     }
  294.  
  295.     /// Returns true if the checker's analysis was not abandoned and either
  296.     ///  - \p AnalysisSetT is explicitly preserved or
  297.     ///  - all analyses are preserved.
  298.     template <typename AnalysisSetT> bool preservedSet() {
  299.       AnalysisSetKey *SetID = AnalysisSetT::ID();
  300.       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
  301.                               PA.PreservedIDs.count(SetID));
  302.     }
  303.   };
  304.  
  305.   /// Build a checker for this `PreservedAnalyses` and the specified analysis
  306.   /// type.
  307.   ///
  308.   /// You can use the returned object to query whether an analysis was
  309.   /// preserved. See the example in the comment on `PreservedAnalysis`.
  310.   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
  311.     return PreservedAnalysisChecker(*this, AnalysisT::ID());
  312.   }
  313.  
  314.   /// Build a checker for this `PreservedAnalyses` and the specified analysis
  315.   /// ID.
  316.   ///
  317.   /// You can use the returned object to query whether an analysis was
  318.   /// preserved. See the example in the comment on `PreservedAnalysis`.
  319.   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
  320.     return PreservedAnalysisChecker(*this, ID);
  321.   }
  322.  
  323.   /// Test whether all analyses are preserved (and none are abandoned).
  324.   ///
  325.   /// This is used primarily to optimize for the common case of a transformation
  326.   /// which makes no changes to the IR.
  327.   bool areAllPreserved() const {
  328.     return NotPreservedAnalysisIDs.empty() &&
  329.            PreservedIDs.count(&AllAnalysesKey);
  330.   }
  331.  
  332.   /// Directly test whether a set of analyses is preserved.
  333.   ///
  334.   /// This is only true when no analyses have been explicitly abandoned.
  335.   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
  336.     return allAnalysesInSetPreserved(AnalysisSetT::ID());
  337.   }
  338.  
  339.   /// Directly test whether a set of analyses is preserved.
  340.   ///
  341.   /// This is only true when no analyses have been explicitly abandoned.
  342.   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
  343.     return NotPreservedAnalysisIDs.empty() &&
  344.            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
  345.   }
  346.  
  347. private:
  348.   /// A special key used to indicate all analyses.
  349.   static AnalysisSetKey AllAnalysesKey;
  350.  
  351.   /// The IDs of analyses and analysis sets that are preserved.
  352.   SmallPtrSet<void *, 2> PreservedIDs;
  353.  
  354.   /// The IDs of explicitly not-preserved analyses.
  355.   ///
  356.   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
  357.   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
  358.   /// "wins" over analysis sets in `PreservedIDs`.
  359.   ///
  360.   /// Also, a given ID should never occur both here and in `PreservedIDs`.
  361.   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
  362. };
  363.  
  364. // Forward declare the analysis manager template.
  365. template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
  366.  
  367. /// A CRTP mix-in to automatically provide informational APIs needed for
  368. /// passes.
  369. ///
  370. /// This provides some boilerplate for types that are passes.
  371. template <typename DerivedT> struct PassInfoMixin {
  372.   /// Gets the name of the pass we are mixed into.
  373.   static StringRef name() {
  374.     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
  375.                   "Must pass the derived type as the template argument!");
  376.     StringRef Name = getTypeName<DerivedT>();
  377.     Name.consume_front("llvm::");
  378.     return Name;
  379.   }
  380.  
  381.   void printPipeline(raw_ostream &OS,
  382.                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
  383.     StringRef ClassName = DerivedT::name();
  384.     auto PassName = MapClassName2PassName(ClassName);
  385.     OS << PassName;
  386.   }
  387. };
  388.  
  389. /// A CRTP mix-in that provides informational APIs needed for analysis passes.
  390. ///
  391. /// This provides some boilerplate for types that are analysis passes. It
  392. /// automatically mixes in \c PassInfoMixin.
  393. template <typename DerivedT>
  394. struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
  395.   /// Returns an opaque, unique ID for this analysis type.
  396.   ///
  397.   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
  398.   /// suitable for use in sets, maps, and other data structures that use the low
  399.   /// bits of pointers.
  400.   ///
  401.   /// Note that this requires the derived type provide a static \c AnalysisKey
  402.   /// member called \c Key.
  403.   ///
  404.   /// FIXME: The only reason the mixin type itself can't declare the Key value
  405.   /// is that some compilers cannot correctly unique a templated static variable
  406.   /// so it has the same addresses in each instantiation. The only currently
  407.   /// known platform with this limitation is Windows DLL builds, specifically
  408.   /// building each part of LLVM as a DLL. If we ever remove that build
  409.   /// configuration, this mixin can provide the static key as well.
  410.   static AnalysisKey *ID() {
  411.     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
  412.                   "Must pass the derived type as the template argument!");
  413.     return &DerivedT::Key;
  414.   }
  415. };
  416.  
  417. namespace detail {
  418.  
  419. /// Actual unpacker of extra arguments in getAnalysisResult,
  420. /// passes only those tuple arguments that are mentioned in index_sequence.
  421. template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
  422.           typename... ArgTs, size_t... Ns>
  423. typename PassT::Result
  424. getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
  425.                              std::tuple<ArgTs...> Args,
  426.                              std::index_sequence<Ns...>) {
  427.   (void)Args;
  428.   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
  429. }
  430.  
  431. /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
  432. ///
  433. /// Arguments passed in tuple come from PassManager, so they might have extra
  434. /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
  435. /// pass to getResult.
  436. template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
  437.           typename... MainArgTs>
  438. typename PassT::Result
  439. getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
  440.                   std::tuple<MainArgTs...> Args) {
  441.   return (getAnalysisResultUnpackTuple<
  442.           PassT, IRUnitT>)(AM, IR, Args,
  443.                            std::index_sequence_for<AnalysisArgTs...>{});
  444. }
  445.  
  446. } // namespace detail
  447.  
  448. // Forward declare the pass instrumentation analysis explicitly queried in
  449. // generic PassManager code.
  450. // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
  451. // header.
  452. class PassInstrumentationAnalysis;
  453.  
  454. /// Manages a sequence of passes over a particular unit of IR.
  455. ///
  456. /// A pass manager contains a sequence of passes to run over a particular unit
  457. /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
  458. /// IR, and when run over some given IR will run each of its contained passes in
  459. /// sequence. Pass managers are the primary and most basic building block of a
  460. /// pass pipeline.
  461. ///
  462. /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
  463. /// argument. The pass manager will propagate that analysis manager to each
  464. /// pass it runs, and will call the analysis manager's invalidation routine with
  465. /// the PreservedAnalyses of each pass it runs.
  466. template <typename IRUnitT,
  467.           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
  468.           typename... ExtraArgTs>
  469. class PassManager : public PassInfoMixin<
  470.                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
  471. public:
  472.   /// Construct a pass manager.
  473.   explicit PassManager() = default;
  474.  
  475.   // FIXME: These are equivalent to the default move constructor/move
  476.   // assignment. However, using = default triggers linker errors due to the
  477.   // explicit instantiations below. Find away to use the default and remove the
  478.   // duplicated code here.
  479.   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
  480.  
  481.   PassManager &operator=(PassManager &&RHS) {
  482.     Passes = std::move(RHS.Passes);
  483.     return *this;
  484.   }
  485.  
  486.   void printPipeline(raw_ostream &OS,
  487.                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
  488.     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
  489.       auto *P = Passes[Idx].get();
  490.       P->printPipeline(OS, MapClassName2PassName);
  491.       if (Idx + 1 < Size)
  492.         OS << ",";
  493.     }
  494.   }
  495.  
  496.   /// Run all of the passes in this manager over the given unit of IR.
  497.   /// ExtraArgs are passed to each pass.
  498.   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
  499.                         ExtraArgTs... ExtraArgs) {
  500.     PreservedAnalyses PA = PreservedAnalyses::all();
  501.  
  502.     // Request PassInstrumentation from analysis manager, will use it to run
  503.     // instrumenting callbacks for the passes later.
  504.     // Here we use std::tuple wrapper over getResult which helps to extract
  505.     // AnalysisManager's arguments out of the whole ExtraArgs set.
  506.     PassInstrumentation PI =
  507.         detail::getAnalysisResult<PassInstrumentationAnalysis>(
  508.             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
  509.  
  510.     for (auto &Pass : Passes) {
  511.       // Check the PassInstrumentation's BeforePass callbacks before running the
  512.       // pass, skip its execution completely if asked to (callback returns
  513.       // false).
  514.       if (!PI.runBeforePass<IRUnitT>(*Pass, IR))
  515.         continue;
  516.  
  517.       PreservedAnalyses PassPA = Pass->run(IR, AM, ExtraArgs...);
  518.  
  519.       // Call onto PassInstrumentation's AfterPass callbacks immediately after
  520.       // running the pass.
  521.       PI.runAfterPass<IRUnitT>(*Pass, IR, PassPA);
  522.  
  523.       // Update the analysis manager as each pass runs and potentially
  524.       // invalidates analyses.
  525.       AM.invalidate(IR, PassPA);
  526.  
  527.       // Finally, intersect the preserved analyses to compute the aggregate
  528.       // preserved set for this pass manager.
  529.       PA.intersect(std::move(PassPA));
  530.     }
  531.  
  532.     // Invalidation was handled after each pass in the above loop for the
  533.     // current unit of IR. Therefore, the remaining analysis results in the
  534.     // AnalysisManager are preserved. We mark this with a set so that we don't
  535.     // need to inspect each one individually.
  536.     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
  537.  
  538.     return PA;
  539.   }
  540.  
  541.   template <typename PassT>
  542.   LLVM_ATTRIBUTE_MINSIZE
  543.       std::enable_if_t<!std::is_same<PassT, PassManager>::value>
  544.       addPass(PassT &&Pass) {
  545.     using PassModelT =
  546.         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
  547.                           ExtraArgTs...>;
  548.     // Do not use make_unique or emplace_back, they cause too many template
  549.     // instantiations, causing terrible compile times.
  550.     Passes.push_back(std::unique_ptr<PassConceptT>(
  551.         new PassModelT(std::forward<PassT>(Pass))));
  552.   }
  553.  
  554.   /// When adding a pass manager pass that has the same type as this pass
  555.   /// manager, simply move the passes over. This is because we don't have use
  556.   /// cases rely on executing nested pass managers. Doing this could reduce
  557.   /// implementation complexity and avoid potential invalidation issues that may
  558.   /// happen with nested pass managers of the same type.
  559.   template <typename PassT>
  560.   LLVM_ATTRIBUTE_MINSIZE
  561.       std::enable_if_t<std::is_same<PassT, PassManager>::value>
  562.       addPass(PassT &&Pass) {
  563.     for (auto &P : Pass.Passes)
  564.       Passes.push_back(std::move(P));
  565.   }
  566.  
  567.   /// Returns if the pass manager contains any passes.
  568.   bool isEmpty() const { return Passes.empty(); }
  569.  
  570.   static bool isRequired() { return true; }
  571.  
  572. protected:
  573.   using PassConceptT =
  574.       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
  575.  
  576.   std::vector<std::unique_ptr<PassConceptT>> Passes;
  577. };
  578.  
  579. extern template class PassManager<Module>;
  580.  
  581. /// Convenience typedef for a pass manager over modules.
  582. using ModulePassManager = PassManager<Module>;
  583.  
  584. extern template class PassManager<Function>;
  585.  
  586. /// Convenience typedef for a pass manager over functions.
  587. using FunctionPassManager = PassManager<Function>;
  588.  
  589. /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
  590. /// managers. Goes before AnalysisManager definition to provide its
  591. /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
  592. /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
  593. /// header.
  594. class PassInstrumentationAnalysis
  595.     : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
  596.   friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
  597.   static AnalysisKey Key;
  598.  
  599.   PassInstrumentationCallbacks *Callbacks;
  600.  
  601. public:
  602.   /// PassInstrumentationCallbacks object is shared, owned by something else,
  603.   /// not this analysis.
  604.   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
  605.       : Callbacks(Callbacks) {}
  606.  
  607.   using Result = PassInstrumentation;
  608.  
  609.   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
  610.   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
  611.     return PassInstrumentation(Callbacks);
  612.   }
  613. };
  614.  
  615. /// A container for analyses that lazily runs them and caches their
  616. /// results.
  617. ///
  618. /// This class can manage analyses for any IR unit where the address of the IR
  619. /// unit sufficies as its identity.
  620. template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
  621. public:
  622.   class Invalidator;
  623.  
  624. private:
  625.   // Now that we've defined our invalidator, we can define the concept types.
  626.   using ResultConceptT =
  627.       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
  628.   using PassConceptT =
  629.       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
  630.                                   ExtraArgTs...>;
  631.  
  632.   /// List of analysis pass IDs and associated concept pointers.
  633.   ///
  634.   /// Requires iterators to be valid across appending new entries and arbitrary
  635.   /// erases. Provides the analysis ID to enable finding iterators to a given
  636.   /// entry in maps below, and provides the storage for the actual result
  637.   /// concept.
  638.   using AnalysisResultListT =
  639.       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
  640.  
  641.   /// Map type from IRUnitT pointer to our custom list type.
  642.   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
  643.  
  644.   /// Map type from a pair of analysis ID and IRUnitT pointer to an
  645.   /// iterator into a particular result list (which is where the actual analysis
  646.   /// result is stored).
  647.   using AnalysisResultMapT =
  648.       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
  649.                typename AnalysisResultListT::iterator>;
  650.  
  651. public:
  652.   /// API to communicate dependencies between analyses during invalidation.
  653.   ///
  654.   /// When an analysis result embeds handles to other analysis results, it
  655.   /// needs to be invalidated both when its own information isn't preserved and
  656.   /// when any of its embedded analysis results end up invalidated. We pass an
  657.   /// \c Invalidator object as an argument to \c invalidate() in order to let
  658.   /// the analysis results themselves define the dependency graph on the fly.
  659.   /// This lets us avoid building an explicit representation of the
  660.   /// dependencies between analysis results.
  661.   class Invalidator {
  662.   public:
  663.     /// Trigger the invalidation of some other analysis pass if not already
  664.     /// handled and return whether it was in fact invalidated.
  665.     ///
  666.     /// This is expected to be called from within a given analysis result's \c
  667.     /// invalidate method to trigger a depth-first walk of all inter-analysis
  668.     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
  669.     /// invalidate method should in turn be provided to this routine.
  670.     ///
  671.     /// The first time this is called for a given analysis pass, it will call
  672.     /// the corresponding result's \c invalidate method.  Subsequent calls will
  673.     /// use a cache of the results of that initial call.  It is an error to form
  674.     /// cyclic dependencies between analysis results.
  675.     ///
  676.     /// This returns true if the given analysis's result is invalid. Any
  677.     /// dependecies on it will become invalid as a result.
  678.     template <typename PassT>
  679.     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
  680.       using ResultModelT =
  681.           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
  682.                                       PreservedAnalyses, Invalidator>;
  683.  
  684.       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
  685.     }
  686.  
  687.     /// A type-erased variant of the above invalidate method with the same core
  688.     /// API other than passing an analysis ID rather than an analysis type
  689.     /// parameter.
  690.     ///
  691.     /// This is sadly less efficient than the above routine, which leverages
  692.     /// the type parameter to avoid the type erasure overhead.
  693.     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
  694.       return invalidateImpl<>(ID, IR, PA);
  695.     }
  696.  
  697.   private:
  698.     friend class AnalysisManager;
  699.  
  700.     template <typename ResultT = ResultConceptT>
  701.     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
  702.                         const PreservedAnalyses &PA) {
  703.       // If we've already visited this pass, return true if it was invalidated
  704.       // and false otherwise.
  705.       auto IMapI = IsResultInvalidated.find(ID);
  706.       if (IMapI != IsResultInvalidated.end())
  707.         return IMapI->second;
  708.  
  709.       // Otherwise look up the result object.
  710.       auto RI = Results.find({ID, &IR});
  711.       assert(RI != Results.end() &&
  712.              "Trying to invalidate a dependent result that isn't in the "
  713.              "manager's cache is always an error, likely due to a stale result "
  714.              "handle!");
  715.  
  716.       auto &Result = static_cast<ResultT &>(*RI->second->second);
  717.  
  718.       // Insert into the map whether the result should be invalidated and return
  719.       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
  720.       // as calling invalidate could (recursively) insert things into the map,
  721.       // making any iterator or reference invalid.
  722.       bool Inserted;
  723.       std::tie(IMapI, Inserted) =
  724.           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
  725.       (void)Inserted;
  726.       assert(Inserted && "Should not have already inserted this ID, likely "
  727.                          "indicates a dependency cycle!");
  728.       return IMapI->second;
  729.     }
  730.  
  731.     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
  732.                 const AnalysisResultMapT &Results)
  733.         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
  734.  
  735.     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
  736.     const AnalysisResultMapT &Results;
  737.   };
  738.  
  739.   /// Construct an empty analysis manager.
  740.   AnalysisManager();
  741.   AnalysisManager(AnalysisManager &&);
  742.   AnalysisManager &operator=(AnalysisManager &&);
  743.  
  744.   /// Returns true if the analysis manager has an empty results cache.
  745.   bool empty() const {
  746.     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
  747.            "The storage and index of analysis results disagree on how many "
  748.            "there are!");
  749.     return AnalysisResults.empty();
  750.   }
  751.  
  752.   /// Clear any cached analysis results for a single unit of IR.
  753.   ///
  754.   /// This doesn't invalidate, but instead simply deletes, the relevant results.
  755.   /// It is useful when the IR is being removed and we want to clear out all the
  756.   /// memory pinned for it.
  757.   void clear(IRUnitT &IR, llvm::StringRef Name);
  758.  
  759.   /// Clear all analysis results cached by this AnalysisManager.
  760.   ///
  761.   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
  762.   /// deletes them.  This lets you clean up the AnalysisManager when the set of
  763.   /// IR units itself has potentially changed, and thus we can't even look up a
  764.   /// a result and invalidate/clear it directly.
  765.   void clear() {
  766.     AnalysisResults.clear();
  767.     AnalysisResultLists.clear();
  768.   }
  769.  
  770.   /// Get the result of an analysis pass for a given IR unit.
  771.   ///
  772.   /// Runs the analysis if a cached result is not available.
  773.   template <typename PassT>
  774.   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
  775.     assert(AnalysisPasses.count(PassT::ID()) &&
  776.            "This analysis pass was not registered prior to being queried");
  777.     ResultConceptT &ResultConcept =
  778.         getResultImpl(PassT::ID(), IR, ExtraArgs...);
  779.  
  780.     using ResultModelT =
  781.         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
  782.                                     PreservedAnalyses, Invalidator>;
  783.  
  784.     return static_cast<ResultModelT &>(ResultConcept).Result;
  785.   }
  786.  
  787.   /// Get the cached result of an analysis pass for a given IR unit.
  788.   ///
  789.   /// This method never runs the analysis.
  790.   ///
  791.   /// \returns null if there is no cached result.
  792.   template <typename PassT>
  793.   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
  794.     assert(AnalysisPasses.count(PassT::ID()) &&
  795.            "This analysis pass was not registered prior to being queried");
  796.  
  797.     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
  798.     if (!ResultConcept)
  799.       return nullptr;
  800.  
  801.     using ResultModelT =
  802.         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
  803.                                     PreservedAnalyses, Invalidator>;
  804.  
  805.     return &static_cast<ResultModelT *>(ResultConcept)->Result;
  806.   }
  807.  
  808.   /// Verify that the given Result cannot be invalidated, assert otherwise.
  809.   template <typename PassT>
  810.   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
  811.     PreservedAnalyses PA = PreservedAnalyses::none();
  812.     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
  813.     Invalidator Inv(IsResultInvalidated, AnalysisResults);
  814.     assert(!Result->invalidate(IR, PA, Inv) &&
  815.            "Cached result cannot be invalidated");
  816.   }
  817.  
  818.   /// Register an analysis pass with the manager.
  819.   ///
  820.   /// The parameter is a callable whose result is an analysis pass. This allows
  821.   /// passing in a lambda to construct the analysis.
  822.   ///
  823.   /// The analysis type to register is the type returned by calling the \c
  824.   /// PassBuilder argument. If that type has already been registered, then the
  825.   /// argument will not be called and this function will return false.
  826.   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
  827.   /// and this function returns true.
  828.   ///
  829.   /// (Note: Although the return value of this function indicates whether or not
  830.   /// an analysis was previously registered, there intentionally isn't a way to
  831.   /// query this directly.  Instead, you should just register all the analyses
  832.   /// you might want and let this class run them lazily.  This idiom lets us
  833.   /// minimize the number of times we have to look up analyses in our
  834.   /// hashtable.)
  835.   template <typename PassBuilderT>
  836.   bool registerPass(PassBuilderT &&PassBuilder) {
  837.     using PassT = decltype(PassBuilder());
  838.     using PassModelT =
  839.         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
  840.                                   Invalidator, ExtraArgTs...>;
  841.  
  842.     auto &PassPtr = AnalysisPasses[PassT::ID()];
  843.     if (PassPtr)
  844.       // Already registered this pass type!
  845.       return false;
  846.  
  847.     // Construct a new model around the instance returned by the builder.
  848.     PassPtr.reset(new PassModelT(PassBuilder()));
  849.     return true;
  850.   }
  851.  
  852.   /// Invalidate cached analyses for an IR unit.
  853.   ///
  854.   /// Walk through all of the analyses pertaining to this unit of IR and
  855.   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
  856.   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
  857.  
  858. private:
  859.   /// Look up a registered analysis pass.
  860.   PassConceptT &lookUpPass(AnalysisKey *ID) {
  861.     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
  862.     assert(PI != AnalysisPasses.end() &&
  863.            "Analysis passes must be registered prior to being queried!");
  864.     return *PI->second;
  865.   }
  866.  
  867.   /// Look up a registered analysis pass.
  868.   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
  869.     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
  870.     assert(PI != AnalysisPasses.end() &&
  871.            "Analysis passes must be registered prior to being queried!");
  872.     return *PI->second;
  873.   }
  874.  
  875.   /// Get an analysis result, running the pass if necessary.
  876.   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
  877.                                 ExtraArgTs... ExtraArgs);
  878.  
  879.   /// Get a cached analysis result or return null.
  880.   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
  881.     typename AnalysisResultMapT::const_iterator RI =
  882.         AnalysisResults.find({ID, &IR});
  883.     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
  884.   }
  885.  
  886.   /// Map type from analysis pass ID to pass concept pointer.
  887.   using AnalysisPassMapT =
  888.       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
  889.  
  890.   /// Collection of analysis passes, indexed by ID.
  891.   AnalysisPassMapT AnalysisPasses;
  892.  
  893.   /// Map from IR unit to a list of analysis results.
  894.   ///
  895.   /// Provides linear time removal of all analysis results for a IR unit and
  896.   /// the ultimate storage for a particular cached analysis result.
  897.   AnalysisResultListMapT AnalysisResultLists;
  898.  
  899.   /// Map from an analysis ID and IR unit to a particular cached
  900.   /// analysis result.
  901.   AnalysisResultMapT AnalysisResults;
  902. };
  903.  
  904. extern template class AnalysisManager<Module>;
  905.  
  906. /// Convenience typedef for the Module analysis manager.
  907. using ModuleAnalysisManager = AnalysisManager<Module>;
  908.  
  909. extern template class AnalysisManager<Function>;
  910.  
  911. /// Convenience typedef for the Function analysis manager.
  912. using FunctionAnalysisManager = AnalysisManager<Function>;
  913.  
  914. /// An analysis over an "outer" IR unit that provides access to an
  915. /// analysis manager over an "inner" IR unit.  The inner unit must be contained
  916. /// in the outer unit.
  917. ///
  918. /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
  919. /// an analysis over Modules (the "outer" unit) that provides access to a
  920. /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
  921. /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
  922. /// relationship is valid because each Function is contained in one Module.
  923. ///
  924. /// If you're (transitively) within a pass manager for an IR unit U that
  925. /// contains IR unit V, you should never use an analysis manager over V, except
  926. /// via one of these proxies.
  927. ///
  928. /// Note that the proxy's result is a move-only RAII object.  The validity of
  929. /// the analyses in the inner analysis manager is tied to its lifetime.
  930. template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
  931. class InnerAnalysisManagerProxy
  932.     : public AnalysisInfoMixin<
  933.           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
  934. public:
  935.   class Result {
  936.   public:
  937.     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
  938.  
  939.     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
  940.       // We have to null out the analysis manager in the moved-from state
  941.       // because we are taking ownership of the responsibilty to clear the
  942.       // analysis state.
  943.       Arg.InnerAM = nullptr;
  944.     }
  945.  
  946.     ~Result() {
  947.       // InnerAM is cleared in a moved from state where there is nothing to do.
  948.       if (!InnerAM)
  949.         return;
  950.  
  951.       // Clear out the analysis manager if we're being destroyed -- it means we
  952.       // didn't even see an invalidate call when we got invalidated.
  953.       InnerAM->clear();
  954.     }
  955.  
  956.     Result &operator=(Result &&RHS) {
  957.       InnerAM = RHS.InnerAM;
  958.       // We have to null out the analysis manager in the moved-from state
  959.       // because we are taking ownership of the responsibilty to clear the
  960.       // analysis state.
  961.       RHS.InnerAM = nullptr;
  962.       return *this;
  963.     }
  964.  
  965.     /// Accessor for the analysis manager.
  966.     AnalysisManagerT &getManager() { return *InnerAM; }
  967.  
  968.     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
  969.     ///
  970.     /// If the proxy analysis itself is not preserved, we assume that the set of
  971.     /// inner IR objects contained in IRUnit may have changed.  In this case,
  972.     /// we have to call \c clear() on the inner analysis manager, as it may now
  973.     /// have stale pointers to its inner IR objects.
  974.     ///
  975.     /// Regardless of whether the proxy analysis is marked as preserved, all of
  976.     /// the analyses in the inner analysis manager are potentially invalidated
  977.     /// based on the set of preserved analyses.
  978.     bool invalidate(
  979.         IRUnitT &IR, const PreservedAnalyses &PA,
  980.         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
  981.  
  982.   private:
  983.     AnalysisManagerT *InnerAM;
  984.   };
  985.  
  986.   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
  987.       : InnerAM(&InnerAM) {}
  988.  
  989.   /// Run the analysis pass and create our proxy result object.
  990.   ///
  991.   /// This doesn't do any interesting work; it is primarily used to insert our
  992.   /// proxy result object into the outer analysis cache so that we can proxy
  993.   /// invalidation to the inner analysis manager.
  994.   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
  995.              ExtraArgTs...) {
  996.     return Result(*InnerAM);
  997.   }
  998.  
  999. private:
  1000.   friend AnalysisInfoMixin<
  1001.       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
  1002.  
  1003.   static AnalysisKey Key;
  1004.  
  1005.   AnalysisManagerT *InnerAM;
  1006. };
  1007.  
  1008. template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
  1009. AnalysisKey
  1010.     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
  1011.  
  1012. /// Provide the \c FunctionAnalysisManager to \c Module proxy.
  1013. using FunctionAnalysisManagerModuleProxy =
  1014.     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
  1015.  
  1016. /// Specialization of the invalidate method for the \c
  1017. /// FunctionAnalysisManagerModuleProxy's result.
  1018. template <>
  1019. bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
  1020.     Module &M, const PreservedAnalyses &PA,
  1021.     ModuleAnalysisManager::Invalidator &Inv);
  1022.  
  1023. // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
  1024. // template.
  1025. extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
  1026.                                                 Module>;
  1027.  
  1028. /// An analysis over an "inner" IR unit that provides access to an
  1029. /// analysis manager over a "outer" IR unit.  The inner unit must be contained
  1030. /// in the outer unit.
  1031. ///
  1032. /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
  1033. /// analysis over Functions (the "inner" unit) which provides access to a Module
  1034. /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
  1035. /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
  1036. /// is valid because each Function is contained in one Module.
  1037. ///
  1038. /// This proxy only exposes the const interface of the outer analysis manager,
  1039. /// to indicate that you cannot cause an outer analysis to run from within an
  1040. /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
  1041. /// due to keeping potential future concurrency in mind. To give an example,
  1042. /// running a module analysis before any function passes may give a different
  1043. /// result than running it in a function pass. Both may be valid, but it would
  1044. /// produce non-deterministic results. GlobalsAA is a good analysis example,
  1045. /// because the cached information has the mod/ref info for all memory for each
  1046. /// function at the time the analysis was computed. The information is still
  1047. /// valid after a function transformation, but it may be *different* if
  1048. /// recomputed after that transform. GlobalsAA is never invalidated.
  1049.  
  1050. ///
  1051. /// This proxy doesn't manage invalidation in any way -- that is handled by the
  1052. /// recursive return path of each layer of the pass manager.  A consequence of
  1053. /// this is the outer analyses may be stale.  We invalidate the outer analyses
  1054. /// only when we're done running passes over the inner IR units.
  1055. template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
  1056. class OuterAnalysisManagerProxy
  1057.     : public AnalysisInfoMixin<
  1058.           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
  1059. public:
  1060.   /// Result proxy object for \c OuterAnalysisManagerProxy.
  1061.   class Result {
  1062.   public:
  1063.     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
  1064.  
  1065.     /// Get a cached analysis. If the analysis can be invalidated, this will
  1066.     /// assert.
  1067.     template <typename PassT, typename IRUnitTParam>
  1068.     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
  1069.       typename PassT::Result *Res =
  1070.           OuterAM->template getCachedResult<PassT>(IR);
  1071.       if (Res)
  1072.         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
  1073.       return Res;
  1074.     }
  1075.  
  1076.     /// Method provided for unit testing, not intended for general use.
  1077.     template <typename PassT, typename IRUnitTParam>
  1078.     bool cachedResultExists(IRUnitTParam &IR) const {
  1079.       typename PassT::Result *Res =
  1080.           OuterAM->template getCachedResult<PassT>(IR);
  1081.       return Res != nullptr;
  1082.     }
  1083.  
  1084.     /// When invalidation occurs, remove any registered invalidation events.
  1085.     bool invalidate(
  1086.         IRUnitT &IRUnit, const PreservedAnalyses &PA,
  1087.         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
  1088.       // Loop over the set of registered outer invalidation mappings and if any
  1089.       // of them map to an analysis that is now invalid, clear it out.
  1090.       SmallVector<AnalysisKey *, 4> DeadKeys;
  1091.       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
  1092.         AnalysisKey *OuterID = KeyValuePair.first;
  1093.         auto &InnerIDs = KeyValuePair.second;
  1094.         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
  1095.           return Inv.invalidate(InnerID, IRUnit, PA);
  1096.         });
  1097.         if (InnerIDs.empty())
  1098.           DeadKeys.push_back(OuterID);
  1099.       }
  1100.  
  1101.       for (auto *OuterID : DeadKeys)
  1102.         OuterAnalysisInvalidationMap.erase(OuterID);
  1103.  
  1104.       // The proxy itself remains valid regardless of anything else.
  1105.       return false;
  1106.     }
  1107.  
  1108.     /// Register a deferred invalidation event for when the outer analysis
  1109.     /// manager processes its invalidations.
  1110.     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
  1111.     void registerOuterAnalysisInvalidation() {
  1112.       AnalysisKey *OuterID = OuterAnalysisT::ID();
  1113.       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
  1114.  
  1115.       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
  1116.       // Note, this is a linear scan. If we end up with large numbers of
  1117.       // analyses that all trigger invalidation on the same outer analysis,
  1118.       // this entire system should be changed to some other deterministic
  1119.       // data structure such as a `SetVector` of a pair of pointers.
  1120.       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
  1121.         InvalidatedIDList.push_back(InvalidatedID);
  1122.     }
  1123.  
  1124.     /// Access the map from outer analyses to deferred invalidation requiring
  1125.     /// analyses.
  1126.     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
  1127.     getOuterInvalidations() const {
  1128.       return OuterAnalysisInvalidationMap;
  1129.     }
  1130.  
  1131.   private:
  1132.     const AnalysisManagerT *OuterAM;
  1133.  
  1134.     /// A map from an outer analysis ID to the set of this IR-unit's analyses
  1135.     /// which need to be invalidated.
  1136.     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
  1137.         OuterAnalysisInvalidationMap;
  1138.   };
  1139.  
  1140.   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
  1141.       : OuterAM(&OuterAM) {}
  1142.  
  1143.   /// Run the analysis pass and create our proxy result object.
  1144.   /// Nothing to see here, it just forwards the \c OuterAM reference into the
  1145.   /// result.
  1146.   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
  1147.              ExtraArgTs...) {
  1148.     return Result(*OuterAM);
  1149.   }
  1150.  
  1151. private:
  1152.   friend AnalysisInfoMixin<
  1153.       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
  1154.  
  1155.   static AnalysisKey Key;
  1156.  
  1157.   const AnalysisManagerT *OuterAM;
  1158. };
  1159.  
  1160. template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
  1161. AnalysisKey
  1162.     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
  1163.  
  1164. extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
  1165.                                                 Function>;
  1166. /// Provide the \c ModuleAnalysisManager to \c Function proxy.
  1167. using ModuleAnalysisManagerFunctionProxy =
  1168.     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
  1169.  
  1170. /// Trivial adaptor that maps from a module to its functions.
  1171. ///
  1172. /// Designed to allow composition of a FunctionPass(Manager) and
  1173. /// a ModulePassManager, by running the FunctionPass(Manager) over every
  1174. /// function in the module.
  1175. ///
  1176. /// Function passes run within this adaptor can rely on having exclusive access
  1177. /// to the function they are run over. They should not read or modify any other
  1178. /// functions! Other threads or systems may be manipulating other functions in
  1179. /// the module, and so their state should never be relied on.
  1180. /// FIXME: Make the above true for all of LLVM's actual passes, some still
  1181. /// violate this principle.
  1182. ///
  1183. /// Function passes can also read the module containing the function, but they
  1184. /// should not modify that module outside of the use lists of various globals.
  1185. /// For example, a function pass is not permitted to add functions to the
  1186. /// module.
  1187. /// FIXME: Make the above true for all of LLVM's actual passes, some still
  1188. /// violate this principle.
  1189. ///
  1190. /// Note that although function passes can access module analyses, module
  1191. /// analyses are not invalidated while the function passes are running, so they
  1192. /// may be stale.  Function analyses will not be stale.
  1193. class ModuleToFunctionPassAdaptor
  1194.     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
  1195. public:
  1196.   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
  1197.  
  1198.   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
  1199.                                        bool EagerlyInvalidate)
  1200.       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
  1201.  
  1202.   /// Runs the function pass across every function in the module.
  1203.   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
  1204.   void printPipeline(raw_ostream &OS,
  1205.                      function_ref<StringRef(StringRef)> MapClassName2PassName);
  1206.  
  1207.   static bool isRequired() { return true; }
  1208.  
  1209. private:
  1210.   std::unique_ptr<PassConceptT> Pass;
  1211.   bool EagerlyInvalidate;
  1212. };
  1213.  
  1214. /// A function to deduce a function pass type and wrap it in the
  1215. /// templated adaptor.
  1216. template <typename FunctionPassT>
  1217. ModuleToFunctionPassAdaptor
  1218. createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
  1219.                                   bool EagerlyInvalidate = false) {
  1220.   using PassModelT =
  1221.       detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
  1222.                         FunctionAnalysisManager>;
  1223.   // Do not use make_unique, it causes too many template instantiations,
  1224.   // causing terrible compile times.
  1225.   return ModuleToFunctionPassAdaptor(
  1226.       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
  1227.           new PassModelT(std::forward<FunctionPassT>(Pass))),
  1228.       EagerlyInvalidate);
  1229. }
  1230.  
  1231. /// A utility pass template to force an analysis result to be available.
  1232. ///
  1233. /// If there are extra arguments at the pass's run level there may also be
  1234. /// extra arguments to the analysis manager's \c getResult routine. We can't
  1235. /// guess how to effectively map the arguments from one to the other, and so
  1236. /// this specialization just ignores them.
  1237. ///
  1238. /// Specific patterns of run-method extra arguments and analysis manager extra
  1239. /// arguments will have to be defined as appropriate specializations.
  1240. template <typename AnalysisT, typename IRUnitT,
  1241.           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
  1242.           typename... ExtraArgTs>
  1243. struct RequireAnalysisPass
  1244.     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
  1245.                                         ExtraArgTs...>> {
  1246.   /// Run this pass over some unit of IR.
  1247.   ///
  1248.   /// This pass can be run over any unit of IR and use any analysis manager
  1249.   /// provided they satisfy the basic API requirements. When this pass is
  1250.   /// created, these methods can be instantiated to satisfy whatever the
  1251.   /// context requires.
  1252.   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
  1253.                         ExtraArgTs &&... Args) {
  1254.     (void)AM.template getResult<AnalysisT>(Arg,
  1255.                                            std::forward<ExtraArgTs>(Args)...);
  1256.  
  1257.     return PreservedAnalyses::all();
  1258.   }
  1259.   void printPipeline(raw_ostream &OS,
  1260.                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
  1261.     auto ClassName = AnalysisT::name();
  1262.     auto PassName = MapClassName2PassName(ClassName);
  1263.     OS << "require<" << PassName << ">";
  1264.   }
  1265.   static bool isRequired() { return true; }
  1266. };
  1267.  
  1268. /// A no-op pass template which simply forces a specific analysis result
  1269. /// to be invalidated.
  1270. template <typename AnalysisT>
  1271. struct InvalidateAnalysisPass
  1272.     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
  1273.   /// Run this pass over some unit of IR.
  1274.   ///
  1275.   /// This pass can be run over any unit of IR and use any analysis manager,
  1276.   /// provided they satisfy the basic API requirements. When this pass is
  1277.   /// created, these methods can be instantiated to satisfy whatever the
  1278.   /// context requires.
  1279.   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
  1280.   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
  1281.     auto PA = PreservedAnalyses::all();
  1282.     PA.abandon<AnalysisT>();
  1283.     return PA;
  1284.   }
  1285.   void printPipeline(raw_ostream &OS,
  1286.                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
  1287.     auto ClassName = AnalysisT::name();
  1288.     auto PassName = MapClassName2PassName(ClassName);
  1289.     OS << "invalidate<" << PassName << ">";
  1290.   }
  1291. };
  1292.  
  1293. /// A utility pass that does nothing, but preserves no analyses.
  1294. ///
  1295. /// Because this preserves no analyses, any analysis passes queried after this
  1296. /// pass runs will recompute fresh results.
  1297. struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
  1298.   /// Run this pass over some unit of IR.
  1299.   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
  1300.   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
  1301.     return PreservedAnalyses::none();
  1302.   }
  1303. };
  1304.  
  1305. /// A utility pass template that simply runs another pass multiple times.
  1306. ///
  1307. /// This can be useful when debugging or testing passes. It also serves as an
  1308. /// example of how to extend the pass manager in ways beyond composition.
  1309. template <typename PassT>
  1310. class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
  1311. public:
  1312.   RepeatedPass(int Count, PassT &&P)
  1313.       : Count(Count), P(std::forward<PassT>(P)) {}
  1314.  
  1315.   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
  1316.   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
  1317.  
  1318.     // Request PassInstrumentation from analysis manager, will use it to run
  1319.     // instrumenting callbacks for the passes later.
  1320.     // Here we use std::tuple wrapper over getResult which helps to extract
  1321.     // AnalysisManager's arguments out of the whole Args set.
  1322.     PassInstrumentation PI =
  1323.         detail::getAnalysisResult<PassInstrumentationAnalysis>(
  1324.             AM, IR, std::tuple<Ts...>(Args...));
  1325.  
  1326.     auto PA = PreservedAnalyses::all();
  1327.     for (int i = 0; i < Count; ++i) {
  1328.       // Check the PassInstrumentation's BeforePass callbacks before running the
  1329.       // pass, skip its execution completely if asked to (callback returns
  1330.       // false).
  1331.       if (!PI.runBeforePass<IRUnitT>(P, IR))
  1332.         continue;
  1333.       PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...);
  1334.       PA.intersect(IterPA);
  1335.       PI.runAfterPass(P, IR, IterPA);
  1336.     }
  1337.     return PA;
  1338.   }
  1339.  
  1340.   void printPipeline(raw_ostream &OS,
  1341.                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
  1342.     OS << "repeat<" << Count << ">(";
  1343.     P.printPipeline(OS, MapClassName2PassName);
  1344.     OS << ")";
  1345.   }
  1346.  
  1347. private:
  1348.   int Count;
  1349.   PassT P;
  1350. };
  1351.  
  1352. template <typename PassT>
  1353. RepeatedPass<PassT> createRepeatedPass(int Count, PassT &&P) {
  1354.   return RepeatedPass<PassT>(Count, std::forward<PassT>(P));
  1355. }
  1356.  
  1357. } // end namespace llvm
  1358.  
  1359. #endif // LLVM_IR_PASSMANAGER_H
  1360.