//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
///
 
/// This header defines various interfaces for pass management in LLVM. There
 
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
 
/// which supports a method to 'run' it over a unit of IR can be used as
 
/// a pass. A pass manager is generally a tool to collect a sequence of passes
 
/// which run over a particular IR construct, and run each of them in sequence
 
/// over each such construct in the containing IR construct. As there is no
 
/// containing IR construct for a Module, a manager for passes over modules
 
/// forms the base case which runs its managed passes in sequence over the
 
/// single module provided.
 
///
 
/// The core IR library provides managers for running passes over
 
/// modules and functions.
 
///
 
/// * FunctionPassManager can run over a Module, runs each pass over
 
///   a Function.
 
/// * ModulePassManager must be directly run, runs each pass over the Module.
 
///
 
/// Note that the implementations of the pass managers use concept-based
 
/// polymorphism as outlined in the "Value Semantics and Concept-based
 
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
 
/// Class of Evil") by Sean Parent:
 
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
 
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
 
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_PASSMANAGER_H
 
#define LLVM_IR_PASSMANAGER_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/TinyPtrVector.h"
 
#include "llvm/IR/Function.h"
 
#include "llvm/IR/Module.h"
 
#include "llvm/IR/PassInstrumentation.h"
 
#include "llvm/IR/PassManagerInternal.h"
 
#include "llvm/Support/TimeProfiler.h"
 
#include "llvm/Support/TypeName.h"
 
#include <cassert>
 
#include <cstring>
 
#include <iterator>
 
#include <list>
 
#include <memory>
 
#include <tuple>
 
#include <type_traits>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
/// A special type used by analysis passes to provide an address that
 
/// identifies that particular analysis pass type.
 
///
 
/// Analysis passes should have a static data member of this type and derive
 
/// from the \c AnalysisInfoMixin to get a static ID method used to identify
 
/// the analysis in the pass management infrastructure.
 
struct alignas(8) AnalysisKey {};
 
 
 
/// A special type used to provide an address that identifies a set of related
 
/// analyses.  These sets are primarily used below to mark sets of analyses as
 
/// preserved.
 
///
 
/// For example, a transformation can indicate that it preserves the CFG of a
 
/// function by preserving the appropriate AnalysisSetKey.  An analysis that
 
/// depends only on the CFG can then check if that AnalysisSetKey is preserved;
 
/// if it is, the analysis knows that it itself is preserved.
 
struct alignas(8) AnalysisSetKey {};
 
 
 
/// This templated class represents "all analyses that operate over \<a
 
/// particular IR unit\>" (e.g. a Function or a Module) in instances of
 
/// PreservedAnalysis.
 
///
 
/// This lets a transformation say e.g. "I preserved all function analyses".
 
///
 
/// Note that you must provide an explicit instantiation declaration and
 
/// definition for this template in order to get the correct behavior on
 
/// Windows. Otherwise, the address of SetKey will not be stable.
 
template <typename IRUnitT> class AllAnalysesOn {
 
public:
 
  static AnalysisSetKey *ID() { return &SetKey; }
 
 
 
private:
 
  static AnalysisSetKey SetKey;
 
};
 
 
 
template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
 
 
 
extern template class AllAnalysesOn<Module>;
 
extern template class AllAnalysesOn<Function>;
 
 
 
/// Represents analyses that only rely on functions' control flow.
 
///
 
/// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
 
/// to query whether it has been preserved.
 
///
 
/// The CFG of a function is defined as the set of basic blocks and the edges
 
/// between them. Changing the set of basic blocks in a function is enough to
 
/// mutate the CFG. Mutating the condition of a branch or argument of an
 
/// invoked function does not mutate the CFG, but changing the successor labels
 
/// of those instructions does.
 
class CFGAnalyses {
 
public:
 
  static AnalysisSetKey *ID() { return &SetKey; }
 
 
 
private:
 
  static AnalysisSetKey SetKey;
 
};
 
 
 
/// A set of analyses that are preserved following a run of a transformation
 
/// pass.
 
///
 
/// Transformation passes build and return these objects to communicate which
 
/// analyses are still valid after the transformation. For most passes this is
 
/// fairly simple: if they don't change anything all analyses are preserved,
 
/// otherwise only a short list of analyses that have been explicitly updated
 
/// are preserved.
 
///
 
/// This class also lets transformation passes mark abstract *sets* of analyses
 
/// as preserved. A transformation that (say) does not alter the CFG can
 
/// indicate such by marking a particular AnalysisSetKey as preserved, and
 
/// then analyses can query whether that AnalysisSetKey is preserved.
 
///
 
/// Finally, this class can represent an "abandoned" analysis, which is
 
/// not preserved even if it would be covered by some abstract set of analyses.
 
///
 
/// Given a `PreservedAnalyses` object, an analysis will typically want to
 
/// figure out whether it is preserved. In the example below, MyAnalysisType is
 
/// preserved if it's not abandoned, and (a) it's explicitly marked as
 
/// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
 
/// AnalysisSetA and AnalysisSetB are preserved.
 
///
 
/// ```
 
///   auto PAC = PA.getChecker<MyAnalysisType>();
 
///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
 
///       (PAC.preservedSet<AnalysisSetA>() &&
 
///        PAC.preservedSet<AnalysisSetB>())) {
 
///     // The analysis has been successfully preserved ...
 
///   }
 
/// ```
 
class PreservedAnalyses {
 
public:
 
  /// Convenience factory function for the empty preserved set.
 
  static PreservedAnalyses none() { return PreservedAnalyses(); }
 
 
 
  /// Construct a special preserved set that preserves all passes.
 
  static PreservedAnalyses all() {
 
    PreservedAnalyses PA;
 
    PA.PreservedIDs.insert(&AllAnalysesKey);
 
    return PA;
 
  }
 
 
 
  /// Construct a preserved analyses object with a single preserved set.
 
  template <typename AnalysisSetT>
 
  static PreservedAnalyses allInSet() {
 
    PreservedAnalyses PA;
 
    PA.preserveSet<AnalysisSetT>();
 
    return PA;
 
  }
 
 
 
  /// Mark an analysis as preserved.
 
  template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
 
 
 
  /// Given an analysis's ID, mark the analysis as preserved, adding it
 
  /// to the set.
 
  void preserve(AnalysisKey *ID) {
 
    // Clear this ID from the explicit not-preserved set if present.
 
    NotPreservedAnalysisIDs.erase(ID);
 
 
 
    // If we're not already preserving all analyses (other than those in
 
    // NotPreservedAnalysisIDs).
 
    if (!areAllPreserved())
 
      PreservedIDs.insert(ID);
 
  }
 
 
 
  /// Mark an analysis set as preserved.
 
  template <typename AnalysisSetT> void preserveSet() {
 
    preserveSet(AnalysisSetT::ID());
 
  }
 
 
 
  /// Mark an analysis set as preserved using its ID.
 
  void preserveSet(AnalysisSetKey *ID) {
 
    // If we're not already in the saturated 'all' state, add this set.
 
    if (!areAllPreserved())
 
      PreservedIDs.insert(ID);
 
  }
 
 
 
  /// Mark an analysis as abandoned.
 
  ///
 
  /// An abandoned analysis is not preserved, even if it is nominally covered
 
  /// by some other set or was previously explicitly marked as preserved.
 
  ///
 
  /// Note that you can only abandon a specific analysis, not a *set* of
 
  /// analyses.
 
  template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
 
 
 
  /// Mark an analysis as abandoned using its ID.
 
  ///
 
  /// An abandoned analysis is not preserved, even if it is nominally covered
 
  /// by some other set or was previously explicitly marked as preserved.
 
  ///
 
  /// Note that you can only abandon a specific analysis, not a *set* of
 
  /// analyses.
 
  void abandon(AnalysisKey *ID) {
 
    PreservedIDs.erase(ID);
 
    NotPreservedAnalysisIDs.insert(ID);
 
  }
 
 
 
  /// Intersect this set with another in place.
 
  ///
 
  /// This is a mutating operation on this preserved set, removing all
 
  /// preserved passes which are not also preserved in the argument.
 
  void intersect(const PreservedAnalyses &Arg) {
 
    if (Arg.areAllPreserved())
 
      return;
 
    if (areAllPreserved()) {
 
      *this = Arg;
 
      return;
 
    }
 
    // The intersection requires the *union* of the explicitly not-preserved
 
    // IDs and the *intersection* of the preserved IDs.
 
    for (auto *ID : Arg.NotPreservedAnalysisIDs) {
 
      PreservedIDs.erase(ID);
 
      NotPreservedAnalysisIDs.insert(ID);
 
    }
 
    for (auto *ID : PreservedIDs)
 
      if (!Arg.PreservedIDs.count(ID))
 
        PreservedIDs.erase(ID);
 
  }
 
 
 
  /// Intersect this set with a temporary other set in place.
 
  ///
 
  /// This is a mutating operation on this preserved set, removing all
 
  /// preserved passes which are not also preserved in the argument.
 
  void intersect(PreservedAnalyses &&Arg) {
 
    if (Arg.areAllPreserved())
 
      return;
 
    if (areAllPreserved()) {
 
      *this = std::move(Arg);
 
      return;
 
    }
 
    // The intersection requires the *union* of the explicitly not-preserved
 
    // IDs and the *intersection* of the preserved IDs.
 
    for (auto *ID : Arg.NotPreservedAnalysisIDs) {
 
      PreservedIDs.erase(ID);
 
      NotPreservedAnalysisIDs.insert(ID);
 
    }
 
    for (auto *ID : PreservedIDs)
 
      if (!Arg.PreservedIDs.count(ID))
 
        PreservedIDs.erase(ID);
 
  }
 
 
 
  /// A checker object that makes it easy to query for whether an analysis or
 
  /// some set covering it is preserved.
 
  class PreservedAnalysisChecker {
 
    friend class PreservedAnalyses;
 
 
 
    const PreservedAnalyses &PA;
 
    AnalysisKey *const ID;
 
    const bool IsAbandoned;
 
 
 
    /// A PreservedAnalysisChecker is tied to a particular Analysis because
 
    /// `preserved()` and `preservedSet()` both return false if the Analysis
 
    /// was abandoned.
 
    PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
 
        : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
 
 
 
  public:
 
    /// Returns true if the checker's analysis was not abandoned and either
 
    ///  - the analysis is explicitly preserved or
 
    ///  - all analyses are preserved.
 
    bool preserved() {
 
      return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
 
                              PA.PreservedIDs.count(ID));
 
    }
 
 
 
    /// Return true if the checker's analysis was not abandoned, i.e. it was not
 
    /// explicitly invalidated. Even if the analysis is not explicitly
 
    /// preserved, if the analysis is known stateless, then it is preserved.
 
    bool preservedWhenStateless() {
 
      return !IsAbandoned;
 
    }
 
 
 
    /// Returns true if the checker's analysis was not abandoned and either
 
    ///  - \p AnalysisSetT is explicitly preserved or
 
    ///  - all analyses are preserved.
 
    template <typename AnalysisSetT> bool preservedSet() {
 
      AnalysisSetKey *SetID = AnalysisSetT::ID();
 
      return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
 
                              PA.PreservedIDs.count(SetID));
 
    }
 
  };
 
 
 
  /// Build a checker for this `PreservedAnalyses` and the specified analysis
 
  /// type.
 
  ///
 
  /// You can use the returned object to query whether an analysis was
 
  /// preserved. See the example in the comment on `PreservedAnalysis`.
 
  template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
 
    return PreservedAnalysisChecker(*this, AnalysisT::ID());
 
  }
 
 
 
  /// Build a checker for this `PreservedAnalyses` and the specified analysis
 
  /// ID.
 
  ///
 
  /// You can use the returned object to query whether an analysis was
 
  /// preserved. See the example in the comment on `PreservedAnalysis`.
 
  PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
 
    return PreservedAnalysisChecker(*this, ID);
 
  }
 
 
 
  /// Test whether all analyses are preserved (and none are abandoned).
 
  ///
 
  /// This is used primarily to optimize for the common case of a transformation
 
  /// which makes no changes to the IR.
 
  bool areAllPreserved() const {
 
    return NotPreservedAnalysisIDs.empty() &&
 
           PreservedIDs.count(&AllAnalysesKey);
 
  }
 
 
 
  /// Directly test whether a set of analyses is preserved.
 
  ///
 
  /// This is only true when no analyses have been explicitly abandoned.
 
  template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
 
    return allAnalysesInSetPreserved(AnalysisSetT::ID());
 
  }
 
 
 
  /// Directly test whether a set of analyses is preserved.
 
  ///
 
  /// This is only true when no analyses have been explicitly abandoned.
 
  bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
 
    return NotPreservedAnalysisIDs.empty() &&
 
           (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
 
  }
 
 
 
private:
 
  /// A special key used to indicate all analyses.
 
  static AnalysisSetKey AllAnalysesKey;
 
 
 
  /// The IDs of analyses and analysis sets that are preserved.
 
  SmallPtrSet<void *, 2> PreservedIDs;
 
 
 
  /// The IDs of explicitly not-preserved analyses.
 
  ///
 
  /// If an analysis in this set is covered by a set in `PreservedIDs`, we
 
  /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
 
  /// "wins" over analysis sets in `PreservedIDs`.
 
  ///
 
  /// Also, a given ID should never occur both here and in `PreservedIDs`.
 
  SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
 
};
 
 
 
// Forward declare the analysis manager template.
 
template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
 
 
 
/// A CRTP mix-in to automatically provide informational APIs needed for
 
/// passes.
 
///
 
/// This provides some boilerplate for types that are passes.
 
template <typename DerivedT> struct PassInfoMixin {
 
  /// Gets the name of the pass we are mixed into.
 
  static StringRef name() {
 
    static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
 
                  "Must pass the derived type as the template argument!");
 
    StringRef Name = getTypeName<DerivedT>();
 
    Name.consume_front("llvm::");
 
    return Name;
 
  }
 
 
 
  void printPipeline(raw_ostream &OS,
 
                     function_ref<StringRef(StringRef)> MapClassName2PassName) {
 
    StringRef ClassName = DerivedT::name();
 
    auto PassName = MapClassName2PassName(ClassName);
 
    OS << PassName;
 
  }
 
};
 
 
 
/// A CRTP mix-in that provides informational APIs needed for analysis passes.
 
///
 
/// This provides some boilerplate for types that are analysis passes. It
 
/// automatically mixes in \c PassInfoMixin.
 
template <typename DerivedT>
 
struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
 
  /// Returns an opaque, unique ID for this analysis type.
 
  ///
 
  /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
 
  /// suitable for use in sets, maps, and other data structures that use the low
 
  /// bits of pointers.
 
  ///
 
  /// Note that this requires the derived type provide a static \c AnalysisKey
 
  /// member called \c Key.
 
  ///
 
  /// FIXME: The only reason the mixin type itself can't declare the Key value
 
  /// is that some compilers cannot correctly unique a templated static variable
 
  /// so it has the same addresses in each instantiation. The only currently
 
  /// known platform with this limitation is Windows DLL builds, specifically
 
  /// building each part of LLVM as a DLL. If we ever remove that build
 
  /// configuration, this mixin can provide the static key as well.
 
  static AnalysisKey *ID() {
 
    static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
 
                  "Must pass the derived type as the template argument!");
 
    return &DerivedT::Key;
 
  }
 
};
 
 
 
namespace detail {
 
 
 
/// Actual unpacker of extra arguments in getAnalysisResult,
 
/// passes only those tuple arguments that are mentioned in index_sequence.
 
template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
 
          typename... ArgTs, size_t... Ns>
 
typename PassT::Result
 
getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
 
                             std::tuple<ArgTs...> Args,
 
                             std::index_sequence<Ns...>) {
 
  (void)Args;
 
  return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
 
}
 
 
 
/// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
 
///
 
/// Arguments passed in tuple come from PassManager, so they might have extra
 
/// arguments after those AnalysisManager's ExtraArgTs ones that we need to
 
/// pass to getResult.
 
template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
 
          typename... MainArgTs>
 
typename PassT::Result
 
getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
 
                  std::tuple<MainArgTs...> Args) {
 
  return (getAnalysisResultUnpackTuple<
 
          PassT, IRUnitT>)(AM, IR, Args,
 
                           std::index_sequence_for<AnalysisArgTs...>{});
 
}
 
 
 
} // namespace detail
 
 
 
// Forward declare the pass instrumentation analysis explicitly queried in
 
// generic PassManager code.
 
// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
 
// header.
 
class PassInstrumentationAnalysis;
 
 
 
/// Manages a sequence of passes over a particular unit of IR.
 
///
 
/// A pass manager contains a sequence of passes to run over a particular unit
 
/// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
 
/// IR, and when run over some given IR will run each of its contained passes in
 
/// sequence. Pass managers are the primary and most basic building block of a
 
/// pass pipeline.
 
///
 
/// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
 
/// argument. The pass manager will propagate that analysis manager to each
 
/// pass it runs, and will call the analysis manager's invalidation routine with
 
/// the PreservedAnalyses of each pass it runs.
 
template <typename IRUnitT,
 
          typename AnalysisManagerT = AnalysisManager<IRUnitT>,
 
          typename... ExtraArgTs>
 
class PassManager : public PassInfoMixin<
 
                        PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
 
public:
 
  /// Construct a pass manager.
 
  explicit PassManager() = default;
 
 
 
  // FIXME: These are equivalent to the default move constructor/move
 
  // assignment. However, using = default triggers linker errors due to the
 
  // explicit instantiations below. Find away to use the default and remove the
 
  // duplicated code here.
 
  PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
 
 
 
  PassManager &operator=(PassManager &&RHS) {
 
    Passes = std::move(RHS.Passes);
 
    return *this;
 
  }
 
 
 
  void printPipeline(raw_ostream &OS,
 
                     function_ref<StringRef(StringRef)> MapClassName2PassName) {
 
    for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
 
      auto *P = Passes[Idx].get();
 
      P->printPipeline(OS, MapClassName2PassName);
 
      if (Idx + 1 < Size)
 
        OS << ",";
 
    }
 
  }
 
 
 
  /// Run all of the passes in this manager over the given unit of IR.
 
  /// ExtraArgs are passed to each pass.
 
  PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
 
                        ExtraArgTs... ExtraArgs) {
 
    PreservedAnalyses PA = PreservedAnalyses::all();
 
 
 
    // Request PassInstrumentation from analysis manager, will use it to run
 
    // instrumenting callbacks for the passes later.
 
    // Here we use std::tuple wrapper over getResult which helps to extract
 
    // AnalysisManager's arguments out of the whole ExtraArgs set.
 
    PassInstrumentation PI =
 
        detail::getAnalysisResult<PassInstrumentationAnalysis>(
 
            AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
 
 
 
    for (auto &Pass : Passes) {
 
      // Check the PassInstrumentation's BeforePass callbacks before running the
 
      // pass, skip its execution completely if asked to (callback returns
 
      // false).
 
      if (!PI.runBeforePass<IRUnitT>(*Pass, IR))
 
        continue;
 
 
 
      PreservedAnalyses PassPA = Pass->run(IR, AM, ExtraArgs...);
 
 
 
      // Call onto PassInstrumentation's AfterPass callbacks immediately after
 
      // running the pass.
 
      PI.runAfterPass<IRUnitT>(*Pass, IR, PassPA);
 
 
 
      // Update the analysis manager as each pass runs and potentially
 
      // invalidates analyses.
 
      AM.invalidate(IR, PassPA);
 
 
 
      // Finally, intersect the preserved analyses to compute the aggregate
 
      // preserved set for this pass manager.
 
      PA.intersect(std::move(PassPA));
 
    }
 
 
 
    // Invalidation was handled after each pass in the above loop for the
 
    // current unit of IR. Therefore, the remaining analysis results in the
 
    // AnalysisManager are preserved. We mark this with a set so that we don't
 
    // need to inspect each one individually.
 
    PA.preserveSet<AllAnalysesOn<IRUnitT>>();
 
 
 
    return PA;
 
  }
 
 
 
  template <typename PassT>
 
  LLVM_ATTRIBUTE_MINSIZE
 
      std::enable_if_t<!std::is_same<PassT, PassManager>::value>
 
      addPass(PassT &&Pass) {
 
    using PassModelT =
 
        detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
 
                          ExtraArgTs...>;
 
    // Do not use make_unique or emplace_back, they cause too many template
 
    // instantiations, causing terrible compile times.
 
    Passes.push_back(std::unique_ptr<PassConceptT>(
 
        new PassModelT(std::forward<PassT>(Pass))));
 
  }
 
 
 
  /// When adding a pass manager pass that has the same type as this pass
 
  /// manager, simply move the passes over. This is because we don't have use
 
  /// cases rely on executing nested pass managers. Doing this could reduce
 
  /// implementation complexity and avoid potential invalidation issues that may
 
  /// happen with nested pass managers of the same type.
 
  template <typename PassT>
 
  LLVM_ATTRIBUTE_MINSIZE
 
      std::enable_if_t<std::is_same<PassT, PassManager>::value>
 
      addPass(PassT &&Pass) {
 
    for (auto &P : Pass.Passes)
 
      Passes.push_back(std::move(P));
 
  }
 
 
 
  /// Returns if the pass manager contains any passes.
 
  bool isEmpty() const { return Passes.empty(); }
 
 
 
  static bool isRequired() { return true; }
 
 
 
protected:
 
  using PassConceptT =
 
      detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
 
 
 
  std::vector<std::unique_ptr<PassConceptT>> Passes;
 
};
 
 
 
extern template class PassManager<Module>;
 
 
 
/// Convenience typedef for a pass manager over modules.
 
using ModulePassManager = PassManager<Module>;
 
 
 
extern template class PassManager<Function>;
 
 
 
/// Convenience typedef for a pass manager over functions.
 
using FunctionPassManager = PassManager<Function>;
 
 
 
/// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
 
/// managers. Goes before AnalysisManager definition to provide its
 
/// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
 
/// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
 
/// header.
 
class PassInstrumentationAnalysis
 
    : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
 
  friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
 
  static AnalysisKey Key;
 
 
 
  PassInstrumentationCallbacks *Callbacks;
 
 
 
public:
 
  /// PassInstrumentationCallbacks object is shared, owned by something else,
 
  /// not this analysis.
 
  PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
 
      : Callbacks(Callbacks) {}
 
 
 
  using Result = PassInstrumentation;
 
 
 
  template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
 
  Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
 
    return PassInstrumentation(Callbacks);
 
  }
 
};
 
 
 
/// A container for analyses that lazily runs them and caches their
 
/// results.
 
///
 
/// This class can manage analyses for any IR unit where the address of the IR
 
/// unit sufficies as its identity.
 
template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
 
public:
 
  class Invalidator;
 
 
 
private:
 
  // Now that we've defined our invalidator, we can define the concept types.
 
  using ResultConceptT =
 
      detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
 
  using PassConceptT =
 
      detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
 
                                  ExtraArgTs...>;
 
 
 
  /// List of analysis pass IDs and associated concept pointers.
 
  ///
 
  /// Requires iterators to be valid across appending new entries and arbitrary
 
  /// erases. Provides the analysis ID to enable finding iterators to a given
 
  /// entry in maps below, and provides the storage for the actual result
 
  /// concept.
 
  using AnalysisResultListT =
 
      std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
 
 
 
  /// Map type from IRUnitT pointer to our custom list type.
 
  using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
 
 
 
  /// Map type from a pair of analysis ID and IRUnitT pointer to an
 
  /// iterator into a particular result list (which is where the actual analysis
 
  /// result is stored).
 
  using AnalysisResultMapT =
 
      DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
 
               typename AnalysisResultListT::iterator>;
 
 
 
public:
 
  /// API to communicate dependencies between analyses during invalidation.
 
  ///
 
  /// When an analysis result embeds handles to other analysis results, it
 
  /// needs to be invalidated both when its own information isn't preserved and
 
  /// when any of its embedded analysis results end up invalidated. We pass an
 
  /// \c Invalidator object as an argument to \c invalidate() in order to let
 
  /// the analysis results themselves define the dependency graph on the fly.
 
  /// This lets us avoid building an explicit representation of the
 
  /// dependencies between analysis results.
 
  class Invalidator {
 
  public:
 
    /// Trigger the invalidation of some other analysis pass if not already
 
    /// handled and return whether it was in fact invalidated.
 
    ///
 
    /// This is expected to be called from within a given analysis result's \c
 
    /// invalidate method to trigger a depth-first walk of all inter-analysis
 
    /// dependencies. The same \p IR unit and \p PA passed to that result's \c
 
    /// invalidate method should in turn be provided to this routine.
 
    ///
 
    /// The first time this is called for a given analysis pass, it will call
 
    /// the corresponding result's \c invalidate method.  Subsequent calls will
 
    /// use a cache of the results of that initial call.  It is an error to form
 
    /// cyclic dependencies between analysis results.
 
    ///
 
    /// This returns true if the given analysis's result is invalid. Any
 
    /// dependecies on it will become invalid as a result.
 
    template <typename PassT>
 
    bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
 
      using ResultModelT =
 
          detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
 
                                      PreservedAnalyses, Invalidator>;
 
 
 
      return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
 
    }
 
 
 
    /// A type-erased variant of the above invalidate method with the same core
 
    /// API other than passing an analysis ID rather than an analysis type
 
    /// parameter.
 
    ///
 
    /// This is sadly less efficient than the above routine, which leverages
 
    /// the type parameter to avoid the type erasure overhead.
 
    bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
 
      return invalidateImpl<>(ID, IR, PA);
 
    }
 
 
 
  private:
 
    friend class AnalysisManager;
 
 
 
    template <typename ResultT = ResultConceptT>
 
    bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
 
                        const PreservedAnalyses &PA) {
 
      // If we've already visited this pass, return true if it was invalidated
 
      // and false otherwise.
 
      auto IMapI = IsResultInvalidated.find(ID);
 
      if (IMapI != IsResultInvalidated.end())
 
        return IMapI->second;
 
 
 
      // Otherwise look up the result object.
 
      auto RI = Results.find({ID, &IR});
 
      assert(RI != Results.end() &&
 
             "Trying to invalidate a dependent result that isn't in the "
 
             "manager's cache is always an error, likely due to a stale result "
 
             "handle!");
 
 
 
      auto &Result = static_cast<ResultT &>(*RI->second->second);
 
 
 
      // Insert into the map whether the result should be invalidated and return
 
      // that. Note that we cannot reuse IMapI and must do a fresh insert here,
 
      // as calling invalidate could (recursively) insert things into the map,
 
      // making any iterator or reference invalid.
 
      bool Inserted;
 
      std::tie(IMapI, Inserted) =
 
          IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
 
      (void)Inserted;
 
      assert(Inserted && "Should not have already inserted this ID, likely "
 
                         "indicates a dependency cycle!");
 
      return IMapI->second;
 
    }
 
 
 
    Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
 
                const AnalysisResultMapT &Results)
 
        : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
 
 
 
    SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
 
    const AnalysisResultMapT &Results;
 
  };
 
 
 
  /// Construct an empty analysis manager.
 
  AnalysisManager();
 
  AnalysisManager(AnalysisManager &&);
 
  AnalysisManager &operator=(AnalysisManager &&);
 
 
 
  /// Returns true if the analysis manager has an empty results cache.
 
  bool empty() const {
 
    assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
 
           "The storage and index of analysis results disagree on how many "
 
           "there are!");
 
    return AnalysisResults.empty();
 
  }
 
 
 
  /// Clear any cached analysis results for a single unit of IR.
 
  ///
 
  /// This doesn't invalidate, but instead simply deletes, the relevant results.
 
  /// It is useful when the IR is being removed and we want to clear out all the
 
  /// memory pinned for it.
 
  void clear(IRUnitT &IR, llvm::StringRef Name);
 
 
 
  /// Clear all analysis results cached by this AnalysisManager.
 
  ///
 
  /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
 
  /// deletes them.  This lets you clean up the AnalysisManager when the set of
 
  /// IR units itself has potentially changed, and thus we can't even look up a
 
  /// a result and invalidate/clear it directly.
 
  void clear() {
 
    AnalysisResults.clear();
 
    AnalysisResultLists.clear();
 
  }
 
 
 
  /// Get the result of an analysis pass for a given IR unit.
 
  ///
 
  /// Runs the analysis if a cached result is not available.
 
  template <typename PassT>
 
  typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
 
    assert(AnalysisPasses.count(PassT::ID()) &&
 
           "This analysis pass was not registered prior to being queried");
 
    ResultConceptT &ResultConcept =
 
        getResultImpl(PassT::ID(), IR, ExtraArgs...);
 
 
 
    using ResultModelT =
 
        detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
 
                                    PreservedAnalyses, Invalidator>;
 
 
 
    return static_cast<ResultModelT &>(ResultConcept).Result;
 
  }
 
 
 
  /// Get the cached result of an analysis pass for a given IR unit.
 
  ///
 
  /// This method never runs the analysis.
 
  ///
 
  /// \returns null if there is no cached result.
 
  template <typename PassT>
 
  typename PassT::Result *getCachedResult(IRUnitT &IR) const {
 
    assert(AnalysisPasses.count(PassT::ID()) &&
 
           "This analysis pass was not registered prior to being queried");
 
 
 
    ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
 
    if (!ResultConcept)
 
      return nullptr;
 
 
 
    using ResultModelT =
 
        detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
 
                                    PreservedAnalyses, Invalidator>;
 
 
 
    return &static_cast<ResultModelT *>(ResultConcept)->Result;
 
  }
 
 
 
  /// Verify that the given Result cannot be invalidated, assert otherwise.
 
  template <typename PassT>
 
  void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
 
    PreservedAnalyses PA = PreservedAnalyses::none();
 
    SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
 
    Invalidator Inv(IsResultInvalidated, AnalysisResults);
 
    assert(!Result->invalidate(IR, PA, Inv) &&
 
           "Cached result cannot be invalidated");
 
  }
 
 
 
  /// Register an analysis pass with the manager.
 
  ///
 
  /// The parameter is a callable whose result is an analysis pass. This allows
 
  /// passing in a lambda to construct the analysis.
 
  ///
 
  /// The analysis type to register is the type returned by calling the \c
 
  /// PassBuilder argument. If that type has already been registered, then the
 
  /// argument will not be called and this function will return false.
 
  /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
 
  /// and this function returns true.
 
  ///
 
  /// (Note: Although the return value of this function indicates whether or not
 
  /// an analysis was previously registered, there intentionally isn't a way to
 
  /// query this directly.  Instead, you should just register all the analyses
 
  /// you might want and let this class run them lazily.  This idiom lets us
 
  /// minimize the number of times we have to look up analyses in our
 
  /// hashtable.)
 
  template <typename PassBuilderT>
 
  bool registerPass(PassBuilderT &&PassBuilder) {
 
    using PassT = decltype(PassBuilder());
 
    using PassModelT =
 
        detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
 
                                  Invalidator, ExtraArgTs...>;
 
 
 
    auto &PassPtr = AnalysisPasses[PassT::ID()];
 
    if (PassPtr)
 
      // Already registered this pass type!
 
      return false;
 
 
 
    // Construct a new model around the instance returned by the builder.
 
    PassPtr.reset(new PassModelT(PassBuilder()));
 
    return true;
 
  }
 
 
 
  /// Invalidate cached analyses for an IR unit.
 
  ///
 
  /// Walk through all of the analyses pertaining to this unit of IR and
 
  /// invalidate them, unless they are preserved by the PreservedAnalyses set.
 
  void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
 
 
 
private:
 
  /// Look up a registered analysis pass.
 
  PassConceptT &lookUpPass(AnalysisKey *ID) {
 
    typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
 
    assert(PI != AnalysisPasses.end() &&
 
           "Analysis passes must be registered prior to being queried!");
 
    return *PI->second;
 
  }
 
 
 
  /// Look up a registered analysis pass.
 
  const PassConceptT &lookUpPass(AnalysisKey *ID) const {
 
    typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
 
    assert(PI != AnalysisPasses.end() &&
 
           "Analysis passes must be registered prior to being queried!");
 
    return *PI->second;
 
  }
 
 
 
  /// Get an analysis result, running the pass if necessary.
 
  ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
 
                                ExtraArgTs... ExtraArgs);
 
 
 
  /// Get a cached analysis result or return null.
 
  ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
 
    typename AnalysisResultMapT::const_iterator RI =
 
        AnalysisResults.find({ID, &IR});
 
    return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
 
  }
 
 
 
  /// Map type from analysis pass ID to pass concept pointer.
 
  using AnalysisPassMapT =
 
      DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
 
 
 
  /// Collection of analysis passes, indexed by ID.
 
  AnalysisPassMapT AnalysisPasses;
 
 
 
  /// Map from IR unit to a list of analysis results.
 
  ///
 
  /// Provides linear time removal of all analysis results for a IR unit and
 
  /// the ultimate storage for a particular cached analysis result.
 
  AnalysisResultListMapT AnalysisResultLists;
 
 
 
  /// Map from an analysis ID and IR unit to a particular cached
 
  /// analysis result.
 
  AnalysisResultMapT AnalysisResults;
 
};
 
 
 
extern template class AnalysisManager<Module>;
 
 
 
/// Convenience typedef for the Module analysis manager.
 
using ModuleAnalysisManager = AnalysisManager<Module>;
 
 
 
extern template class AnalysisManager<Function>;
 
 
 
/// Convenience typedef for the Function analysis manager.
 
using FunctionAnalysisManager = AnalysisManager<Function>;
 
 
 
/// An analysis over an "outer" IR unit that provides access to an
 
/// analysis manager over an "inner" IR unit.  The inner unit must be contained
 
/// in the outer unit.
 
///
 
/// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
 
/// an analysis over Modules (the "outer" unit) that provides access to a
 
/// Function analysis manager.  The FunctionAnalysisManager is the "inner"
 
/// manager being proxied, and Functions are the "inner" unit.  The inner/outer
 
/// relationship is valid because each Function is contained in one Module.
 
///
 
/// If you're (transitively) within a pass manager for an IR unit U that
 
/// contains IR unit V, you should never use an analysis manager over V, except
 
/// via one of these proxies.
 
///
 
/// Note that the proxy's result is a move-only RAII object.  The validity of
 
/// the analyses in the inner analysis manager is tied to its lifetime.
 
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
 
class InnerAnalysisManagerProxy
 
    : public AnalysisInfoMixin<
 
          InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
 
public:
 
  class Result {
 
  public:
 
    explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
 
 
 
    Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
 
      // We have to null out the analysis manager in the moved-from state
 
      // because we are taking ownership of the responsibilty to clear the
 
      // analysis state.
 
      Arg.InnerAM = nullptr;
 
    }
 
 
 
    ~Result() {
 
      // InnerAM is cleared in a moved from state where there is nothing to do.
 
      if (!InnerAM)
 
        return;
 
 
 
      // Clear out the analysis manager if we're being destroyed -- it means we
 
      // didn't even see an invalidate call when we got invalidated.
 
      InnerAM->clear();
 
    }
 
 
 
    Result &operator=(Result &&RHS) {
 
      InnerAM = RHS.InnerAM;
 
      // We have to null out the analysis manager in the moved-from state
 
      // because we are taking ownership of the responsibilty to clear the
 
      // analysis state.
 
      RHS.InnerAM = nullptr;
 
      return *this;
 
    }
 
 
 
    /// Accessor for the analysis manager.
 
    AnalysisManagerT &getManager() { return *InnerAM; }
 
 
 
    /// Handler for invalidation of the outer IR unit, \c IRUnitT.
 
    ///
 
    /// If the proxy analysis itself is not preserved, we assume that the set of
 
    /// inner IR objects contained in IRUnit may have changed.  In this case,
 
    /// we have to call \c clear() on the inner analysis manager, as it may now
 
    /// have stale pointers to its inner IR objects.
 
    ///
 
    /// Regardless of whether the proxy analysis is marked as preserved, all of
 
    /// the analyses in the inner analysis manager are potentially invalidated
 
    /// based on the set of preserved analyses.
 
    bool invalidate(
 
        IRUnitT &IR, const PreservedAnalyses &PA,
 
        typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
 
 
 
  private:
 
    AnalysisManagerT *InnerAM;
 
  };
 
 
 
  explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
 
      : InnerAM(&InnerAM) {}
 
 
 
  /// Run the analysis pass and create our proxy result object.
 
  ///
 
  /// This doesn't do any interesting work; it is primarily used to insert our
 
  /// proxy result object into the outer analysis cache so that we can proxy
 
  /// invalidation to the inner analysis manager.
 
  Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
 
             ExtraArgTs...) {
 
    return Result(*InnerAM);
 
  }
 
 
 
private:
 
  friend AnalysisInfoMixin<
 
      InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
 
 
 
  static AnalysisKey Key;
 
 
 
  AnalysisManagerT *InnerAM;
 
};
 
 
 
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
 
AnalysisKey
 
    InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
 
 
 
/// Provide the \c FunctionAnalysisManager to \c Module proxy.
 
using FunctionAnalysisManagerModuleProxy =
 
    InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
 
 
 
/// Specialization of the invalidate method for the \c
 
/// FunctionAnalysisManagerModuleProxy's result.
 
template <>
 
bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
 
    Module &M, const PreservedAnalyses &PA,
 
    ModuleAnalysisManager::Invalidator &Inv);
 
 
 
// Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
 
// template.
 
extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
 
                                                Module>;
 
 
 
/// An analysis over an "inner" IR unit that provides access to an
 
/// analysis manager over a "outer" IR unit.  The inner unit must be contained
 
/// in the outer unit.
 
///
 
/// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
 
/// analysis over Functions (the "inner" unit) which provides access to a Module
 
/// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
 
/// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
 
/// is valid because each Function is contained in one Module.
 
///
 
/// This proxy only exposes the const interface of the outer analysis manager,
 
/// to indicate that you cannot cause an outer analysis to run from within an
 
/// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
 
/// due to keeping potential future concurrency in mind. To give an example,
 
/// running a module analysis before any function passes may give a different
 
/// result than running it in a function pass. Both may be valid, but it would
 
/// produce non-deterministic results. GlobalsAA is a good analysis example,
 
/// because the cached information has the mod/ref info for all memory for each
 
/// function at the time the analysis was computed. The information is still
 
/// valid after a function transformation, but it may be *different* if
 
/// recomputed after that transform. GlobalsAA is never invalidated.
 
 
 
///
 
/// This proxy doesn't manage invalidation in any way -- that is handled by the
 
/// recursive return path of each layer of the pass manager.  A consequence of
 
/// this is the outer analyses may be stale.  We invalidate the outer analyses
 
/// only when we're done running passes over the inner IR units.
 
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
 
class OuterAnalysisManagerProxy
 
    : public AnalysisInfoMixin<
 
          OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
 
public:
 
  /// Result proxy object for \c OuterAnalysisManagerProxy.
 
  class Result {
 
  public:
 
    explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
 
 
 
    /// Get a cached analysis. If the analysis can be invalidated, this will
 
    /// assert.
 
    template <typename PassT, typename IRUnitTParam>
 
    typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
 
      typename PassT::Result *Res =
 
          OuterAM->template getCachedResult<PassT>(IR);
 
      if (Res)
 
        OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
 
      return Res;
 
    }
 
 
 
    /// Method provided for unit testing, not intended for general use.
 
    template <typename PassT, typename IRUnitTParam>
 
    bool cachedResultExists(IRUnitTParam &IR) const {
 
      typename PassT::Result *Res =
 
          OuterAM->template getCachedResult<PassT>(IR);
 
      return Res != nullptr;
 
    }
 
 
 
    /// When invalidation occurs, remove any registered invalidation events.
 
    bool invalidate(
 
        IRUnitT &IRUnit, const PreservedAnalyses &PA,
 
        typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
 
      // Loop over the set of registered outer invalidation mappings and if any
 
      // of them map to an analysis that is now invalid, clear it out.
 
      SmallVector<AnalysisKey *, 4> DeadKeys;
 
      for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
 
        AnalysisKey *OuterID = KeyValuePair.first;
 
        auto &InnerIDs = KeyValuePair.second;
 
        llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
 
          return Inv.invalidate(InnerID, IRUnit, PA);
 
        });
 
        if (InnerIDs.empty())
 
          DeadKeys.push_back(OuterID);
 
      }
 
 
 
      for (auto *OuterID : DeadKeys)
 
        OuterAnalysisInvalidationMap.erase(OuterID);
 
 
 
      // The proxy itself remains valid regardless of anything else.
 
      return false;
 
    }
 
 
 
    /// Register a deferred invalidation event for when the outer analysis
 
    /// manager processes its invalidations.
 
    template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
 
    void registerOuterAnalysisInvalidation() {
 
      AnalysisKey *OuterID = OuterAnalysisT::ID();
 
      AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
 
 
 
      auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
 
      // Note, this is a linear scan. If we end up with large numbers of
 
      // analyses that all trigger invalidation on the same outer analysis,
 
      // this entire system should be changed to some other deterministic
 
      // data structure such as a `SetVector` of a pair of pointers.
 
      if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
 
        InvalidatedIDList.push_back(InvalidatedID);
 
    }
 
 
 
    /// Access the map from outer analyses to deferred invalidation requiring
 
    /// analyses.
 
    const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
 
    getOuterInvalidations() const {
 
      return OuterAnalysisInvalidationMap;
 
    }
 
 
 
  private:
 
    const AnalysisManagerT *OuterAM;
 
 
 
    /// A map from an outer analysis ID to the set of this IR-unit's analyses
 
    /// which need to be invalidated.
 
    SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
 
        OuterAnalysisInvalidationMap;
 
  };
 
 
 
  OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
 
      : OuterAM(&OuterAM) {}
 
 
 
  /// Run the analysis pass and create our proxy result object.
 
  /// Nothing to see here, it just forwards the \c OuterAM reference into the
 
  /// result.
 
  Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
 
             ExtraArgTs...) {
 
    return Result(*OuterAM);
 
  }
 
 
 
private:
 
  friend AnalysisInfoMixin<
 
      OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
 
 
 
  static AnalysisKey Key;
 
 
 
  const AnalysisManagerT *OuterAM;
 
};
 
 
 
template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
 
AnalysisKey
 
    OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
 
 
 
extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
 
                                                Function>;
 
/// Provide the \c ModuleAnalysisManager to \c Function proxy.
 
using ModuleAnalysisManagerFunctionProxy =
 
    OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
 
 
 
/// Trivial adaptor that maps from a module to its functions.
 
///
 
/// Designed to allow composition of a FunctionPass(Manager) and
 
/// a ModulePassManager, by running the FunctionPass(Manager) over every
 
/// function in the module.
 
///
 
/// Function passes run within this adaptor can rely on having exclusive access
 
/// to the function they are run over. They should not read or modify any other
 
/// functions! Other threads or systems may be manipulating other functions in
 
/// the module, and so their state should never be relied on.
 
/// FIXME: Make the above true for all of LLVM's actual passes, some still
 
/// violate this principle.
 
///
 
/// Function passes can also read the module containing the function, but they
 
/// should not modify that module outside of the use lists of various globals.
 
/// For example, a function pass is not permitted to add functions to the
 
/// module.
 
/// FIXME: Make the above true for all of LLVM's actual passes, some still
 
/// violate this principle.
 
///
 
/// Note that although function passes can access module analyses, module
 
/// analyses are not invalidated while the function passes are running, so they
 
/// may be stale.  Function analyses will not be stale.
 
class ModuleToFunctionPassAdaptor
 
    : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
 
public:
 
  using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
 
 
 
  explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
 
                                       bool EagerlyInvalidate)
 
      : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
 
 
 
  /// Runs the function pass across every function in the module.
 
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
 
  void printPipeline(raw_ostream &OS,
 
                     function_ref<StringRef(StringRef)> MapClassName2PassName);
 
 
 
  static bool isRequired() { return true; }
 
 
 
private:
 
  std::unique_ptr<PassConceptT> Pass;
 
  bool EagerlyInvalidate;
 
};
 
 
 
/// A function to deduce a function pass type and wrap it in the
 
/// templated adaptor.
 
template <typename FunctionPassT>
 
ModuleToFunctionPassAdaptor
 
createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
 
                                  bool EagerlyInvalidate = false) {
 
  using PassModelT =
 
      detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
 
                        FunctionAnalysisManager>;
 
  // Do not use make_unique, it causes too many template instantiations,
 
  // causing terrible compile times.
 
  return ModuleToFunctionPassAdaptor(
 
      std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
 
          new PassModelT(std::forward<FunctionPassT>(Pass))),
 
      EagerlyInvalidate);
 
}
 
 
 
/// A utility pass template to force an analysis result to be available.
 
///
 
/// If there are extra arguments at the pass's run level there may also be
 
/// extra arguments to the analysis manager's \c getResult routine. We can't
 
/// guess how to effectively map the arguments from one to the other, and so
 
/// this specialization just ignores them.
 
///
 
/// Specific patterns of run-method extra arguments and analysis manager extra
 
/// arguments will have to be defined as appropriate specializations.
 
template <typename AnalysisT, typename IRUnitT,
 
          typename AnalysisManagerT = AnalysisManager<IRUnitT>,
 
          typename... ExtraArgTs>
 
struct RequireAnalysisPass
 
    : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
 
                                        ExtraArgTs...>> {
 
  /// Run this pass over some unit of IR.
 
  ///
 
  /// This pass can be run over any unit of IR and use any analysis manager
 
  /// provided they satisfy the basic API requirements. When this pass is
 
  /// created, these methods can be instantiated to satisfy whatever the
 
  /// context requires.
 
  PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
 
                        ExtraArgTs &&... Args) {
 
    (void)AM.template getResult<AnalysisT>(Arg,
 
                                           std::forward<ExtraArgTs>(Args)...);
 
 
 
    return PreservedAnalyses::all();
 
  }
 
  void printPipeline(raw_ostream &OS,
 
                     function_ref<StringRef(StringRef)> MapClassName2PassName) {
 
    auto ClassName = AnalysisT::name();
 
    auto PassName = MapClassName2PassName(ClassName);
 
    OS << "require<" << PassName << ">";
 
  }
 
  static bool isRequired() { return true; }
 
};
 
 
 
/// A no-op pass template which simply forces a specific analysis result
 
/// to be invalidated.
 
template <typename AnalysisT>
 
struct InvalidateAnalysisPass
 
    : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
 
  /// Run this pass over some unit of IR.
 
  ///
 
  /// This pass can be run over any unit of IR and use any analysis manager,
 
  /// provided they satisfy the basic API requirements. When this pass is
 
  /// created, these methods can be instantiated to satisfy whatever the
 
  /// context requires.
 
  template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
 
  PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
 
    auto PA = PreservedAnalyses::all();
 
    PA.abandon<AnalysisT>();
 
    return PA;
 
  }
 
  void printPipeline(raw_ostream &OS,
 
                     function_ref<StringRef(StringRef)> MapClassName2PassName) {
 
    auto ClassName = AnalysisT::name();
 
    auto PassName = MapClassName2PassName(ClassName);
 
    OS << "invalidate<" << PassName << ">";
 
  }
 
};
 
 
 
/// A utility pass that does nothing, but preserves no analyses.
 
///
 
/// Because this preserves no analyses, any analysis passes queried after this
 
/// pass runs will recompute fresh results.
 
struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
 
  /// Run this pass over some unit of IR.
 
  template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
 
  PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
 
    return PreservedAnalyses::none();
 
  }
 
};
 
 
 
/// A utility pass template that simply runs another pass multiple times.
 
///
 
/// This can be useful when debugging or testing passes. It also serves as an
 
/// example of how to extend the pass manager in ways beyond composition.
 
template <typename PassT>
 
class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
 
public:
 
  RepeatedPass(int Count, PassT &&P)
 
      : Count(Count), P(std::forward<PassT>(P)) {}
 
 
 
  template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
 
  PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
 
 
 
    // Request PassInstrumentation from analysis manager, will use it to run
 
    // instrumenting callbacks for the passes later.
 
    // Here we use std::tuple wrapper over getResult which helps to extract
 
    // AnalysisManager's arguments out of the whole Args set.
 
    PassInstrumentation PI =
 
        detail::getAnalysisResult<PassInstrumentationAnalysis>(
 
            AM, IR, std::tuple<Ts...>(Args...));
 
 
 
    auto PA = PreservedAnalyses::all();
 
    for (int i = 0; i < Count; ++i) {
 
      // Check the PassInstrumentation's BeforePass callbacks before running the
 
      // pass, skip its execution completely if asked to (callback returns
 
      // false).
 
      if (!PI.runBeforePass<IRUnitT>(P, IR))
 
        continue;
 
      PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...);
 
      PA.intersect(IterPA);
 
      PI.runAfterPass(P, IR, IterPA);
 
    }
 
    return PA;
 
  }
 
 
 
  void printPipeline(raw_ostream &OS,
 
                     function_ref<StringRef(StringRef)> MapClassName2PassName) {
 
    OS << "repeat<" << Count << ">(";
 
    P.printPipeline(OS, MapClassName2PassName);
 
    OS << ")";
 
  }
 
 
 
private:
 
  int Count;
 
  PassT P;
 
};
 
 
 
template <typename PassT>
 
RepeatedPass<PassT> createRepeatedPass(int Count, PassT &&P) {
 
  return RepeatedPass<PassT>(Count, std::forward<PassT>(P));
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_PASSMANAGER_H