//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
/// @file
 
/// This file contains the declarations for metadata subclasses.
 
/// They represent the different flavors of metadata that live in LLVM.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_METADATA_H
 
#define LLVM_IR_METADATA_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseMapInfo.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/ilist_node.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/IR/Constant.h"
 
#include "llvm/IR/LLVMContext.h"
 
#include "llvm/IR/Value.h"
 
#include "llvm/Support/CBindingWrapping.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <iterator>
 
#include <memory>
 
#include <string>
 
#include <type_traits>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class Module;
 
class ModuleSlotTracker;
 
class raw_ostream;
 
template <typename T> class StringMapEntry;
 
template <typename ValueTy> class StringMapEntryStorage;
 
class Type;
 
 
 
enum LLVMConstants : uint32_t {
 
  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
 
};
 
 
 
/// Magic number in the value profile metadata showing a target has been
 
/// promoted for the instruction and shouldn't be promoted again.
 
const uint64_t NOMORE_ICP_MAGICNUM = -1;
 
 
 
/// Root of the metadata hierarchy.
 
///
 
/// This is a root class for typeless data in the IR.
 
class Metadata {
 
  friend class ReplaceableMetadataImpl;
 
 
 
  /// RTTI.
 
  const unsigned char SubclassID;
 
 
 
protected:
 
  /// Active type of storage.
 
  enum StorageType { Uniqued, Distinct, Temporary };
 
 
 
  /// Storage flag for non-uniqued, otherwise unowned, metadata.
 
  unsigned char Storage : 7;
 
 
 
  unsigned char SubclassData1 : 1;
 
  unsigned short SubclassData16 = 0;
 
  unsigned SubclassData32 = 0;
 
 
 
public:
 
  enum MetadataKind {
 
#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
 
#include "llvm/IR/Metadata.def"
 
  };
 
 
 
protected:
 
  Metadata(unsigned ID, StorageType Storage)
 
      : SubclassID(ID), Storage(Storage), SubclassData1(false) {
 
    static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
 
  }
 
 
 
  ~Metadata() = default;
 
 
 
  /// Default handling of a changed operand, which asserts.
 
  ///
 
  /// If subclasses pass themselves in as owners to a tracking node reference,
 
  /// they must provide an implementation of this method.
 
  void handleChangedOperand(void *, Metadata *) {
 
    llvm_unreachable("Unimplemented in Metadata subclass");
 
  }
 
 
 
public:
 
  unsigned getMetadataID() const { return SubclassID; }
 
 
 
  /// User-friendly dump.
 
  ///
 
  /// If \c M is provided, metadata nodes will be numbered canonically;
 
  /// otherwise, pointer addresses are substituted.
 
  ///
 
  /// Note: this uses an explicit overload instead of default arguments so that
 
  /// the nullptr version is easy to call from a debugger.
 
  ///
 
  /// @{
 
  void dump() const;
 
  void dump(const Module *M) const;
 
  /// @}
 
 
 
  /// Print.
 
  ///
 
  /// Prints definition of \c this.
 
  ///
 
  /// If \c M is provided, metadata nodes will be numbered canonically;
 
  /// otherwise, pointer addresses are substituted.
 
  /// @{
 
  void print(raw_ostream &OS, const Module *M = nullptr,
 
             bool IsForDebug = false) const;
 
  void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
 
             bool IsForDebug = false) const;
 
  /// @}
 
 
 
  /// Print as operand.
 
  ///
 
  /// Prints reference of \c this.
 
  ///
 
  /// If \c M is provided, metadata nodes will be numbered canonically;
 
  /// otherwise, pointer addresses are substituted.
 
  /// @{
 
  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
 
  void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
 
                      const Module *M = nullptr) const;
 
  /// @}
 
};
 
 
 
// Create wrappers for C Binding types (see CBindingWrapping.h).
 
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
 
 
 
// Specialized opaque metadata conversions.
 
inline Metadata **unwrap(LLVMMetadataRef *MDs) {
 
  return reinterpret_cast<Metadata**>(MDs);
 
}
 
 
 
#define HANDLE_METADATA(CLASS) class CLASS;
 
#include "llvm/IR/Metadata.def"
 
 
 
// Provide specializations of isa so that we don't need definitions of
 
// subclasses to see if the metadata is a subclass.
 
#define HANDLE_METADATA_LEAF(CLASS)                                            \
 
  template <> struct isa_impl<CLASS, Metadata> {                               \
 
    static inline bool doit(const Metadata &MD) {                              \
 
      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
 
    }                                                                          \
 
  };
 
#include "llvm/IR/Metadata.def"
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
 
  MD.print(OS);
 
  return OS;
 
}
 
 
 
/// Metadata wrapper in the Value hierarchy.
 
///
 
/// A member of the \a Value hierarchy to represent a reference to metadata.
 
/// This allows, e.g., intrinsics to have metadata as operands.
 
///
 
/// Notably, this is the only thing in either hierarchy that is allowed to
 
/// reference \a LocalAsMetadata.
 
class MetadataAsValue : public Value {
 
  friend class ReplaceableMetadataImpl;
 
  friend class LLVMContextImpl;
 
 
 
  Metadata *MD;
 
 
 
  MetadataAsValue(Type *Ty, Metadata *MD);
 
 
 
  /// Drop use of metadata (during teardown).
 
  void dropUse() { MD = nullptr; }
 
 
 
public:
 
  ~MetadataAsValue();
 
 
 
  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
 
  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
 
 
 
  Metadata *getMetadata() const { return MD; }
 
 
 
  static bool classof(const Value *V) {
 
    return V->getValueID() == MetadataAsValueVal;
 
  }
 
 
 
private:
 
  void handleChangedMetadata(Metadata *MD);
 
  void track();
 
  void untrack();
 
};
 
 
 
/// API for tracking metadata references through RAUW and deletion.
 
///
 
/// Shared API for updating \a Metadata pointers in subclasses that support
 
/// RAUW.
 
///
 
/// This API is not meant to be used directly.  See \a TrackingMDRef for a
 
/// user-friendly tracking reference.
 
class MetadataTracking {
 
public:
 
  /// Track the reference to metadata.
 
  ///
 
  /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
 
  /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
 
  /// deleted, \c MD will be set to \c nullptr.
 
  ///
 
  /// If tracking isn't supported, \c *MD will not change.
 
  ///
 
  /// \return true iff tracking is supported by \c MD.
 
  static bool track(Metadata *&MD) {
 
    return track(&MD, *MD, static_cast<Metadata *>(nullptr));
 
  }
 
 
 
  /// Track the reference to metadata for \a Metadata.
 
  ///
 
  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
 
  /// tell it that its operand changed.  This could trigger \c Owner being
 
  /// re-uniqued.
 
  static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
 
    return track(Ref, MD, &Owner);
 
  }
 
 
 
  /// Track the reference to metadata for \a MetadataAsValue.
 
  ///
 
  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
 
  /// tell it that its operand changed.  This could trigger \c Owner being
 
  /// re-uniqued.
 
  static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
 
    return track(Ref, MD, &Owner);
 
  }
 
 
 
  /// Stop tracking a reference to metadata.
 
  ///
 
  /// Stops \c *MD from tracking \c MD.
 
  static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
 
  static void untrack(void *Ref, Metadata &MD);
 
 
 
  /// Move tracking from one reference to another.
 
  ///
 
  /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
 
  /// except that ownership callbacks are maintained.
 
  ///
 
  /// Note: it is an error if \c *MD does not equal \c New.
 
  ///
 
  /// \return true iff tracking is supported by \c MD.
 
  static bool retrack(Metadata *&MD, Metadata *&New) {
 
    return retrack(&MD, *MD, &New);
 
  }
 
  static bool retrack(void *Ref, Metadata &MD, void *New);
 
 
 
  /// Check whether metadata is replaceable.
 
  static bool isReplaceable(const Metadata &MD);
 
 
 
  using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
 
 
 
private:
 
  /// Track a reference to metadata for an owner.
 
  ///
 
  /// Generalized version of tracking.
 
  static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
 
};
 
 
 
/// Shared implementation of use-lists for replaceable metadata.
 
///
 
/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
 
/// use-lists and associated API for the two that support it (\a ValueAsMetadata
 
/// and \a TempMDNode).
 
class ReplaceableMetadataImpl {
 
  friend class MetadataTracking;
 
 
 
public:
 
  using OwnerTy = MetadataTracking::OwnerTy;
 
 
 
private:
 
  LLVMContext &Context;
 
  uint64_t NextIndex = 0;
 
  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
 
 
 
public:
 
  ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
 
 
 
  ~ReplaceableMetadataImpl() {
 
    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
 
  }
 
 
 
  LLVMContext &getContext() const { return Context; }
 
 
 
  /// Replace all uses of this with MD.
 
  ///
 
  /// Replace all uses of this with \c MD, which is allowed to be null.
 
  void replaceAllUsesWith(Metadata *MD);
 
   /// Replace all uses of the constant with Undef in debug info metadata
 
  static void SalvageDebugInfo(const Constant &C); 
 
  /// Returns the list of all DIArgList users of this.
 
  SmallVector<Metadata *> getAllArgListUsers();
 
 
 
  /// Resolve all uses of this.
 
  ///
 
  /// Resolve all uses of this, turning off RAUW permanently.  If \c
 
  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
 
  /// is resolved.
 
  void resolveAllUses(bool ResolveUsers = true);
 
 
 
private:
 
  void addRef(void *Ref, OwnerTy Owner);
 
  void dropRef(void *Ref);
 
  void moveRef(void *Ref, void *New, const Metadata &MD);
 
 
 
  /// Lazily construct RAUW support on MD.
 
  ///
 
  /// If this is an unresolved MDNode, RAUW support will be created on-demand.
 
  /// ValueAsMetadata always has RAUW support.
 
  static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
 
 
 
  /// Get RAUW support on MD, if it exists.
 
  static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
 
 
 
  /// Check whether this node will support RAUW.
 
  ///
 
  /// Returns \c true unless getOrCreate() would return null.
 
  static bool isReplaceable(const Metadata &MD);
 
};
 
 
 
/// Value wrapper in the Metadata hierarchy.
 
///
 
/// This is a custom value handle that allows other metadata to refer to
 
/// classes in the Value hierarchy.
 
///
 
/// Because of full uniquing support, each value is only wrapped by a single \a
 
/// ValueAsMetadata object, so the lookup maps are far more efficient than
 
/// those using ValueHandleBase.
 
class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
 
  friend class ReplaceableMetadataImpl;
 
  friend class LLVMContextImpl;
 
 
 
  Value *V;
 
 
 
  /// Drop users without RAUW (during teardown).
 
  void dropUsers() {
 
    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
 
  }
 
 
 
protected:
 
  ValueAsMetadata(unsigned ID, Value *V)
 
      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
 
    assert(V && "Expected valid value");
 
  }
 
 
 
  ~ValueAsMetadata() = default;
 
 
 
public:
 
  static ValueAsMetadata *get(Value *V);
 
 
 
  static ConstantAsMetadata *getConstant(Value *C) {
 
    return cast<ConstantAsMetadata>(get(C));
 
  }
 
 
 
  static LocalAsMetadata *getLocal(Value *Local) {
 
    return cast<LocalAsMetadata>(get(Local));
 
  }
 
 
 
  static ValueAsMetadata *getIfExists(Value *V);
 
 
 
  static ConstantAsMetadata *getConstantIfExists(Value *C) {
 
    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
 
  }
 
 
 
  static LocalAsMetadata *getLocalIfExists(Value *Local) {
 
    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
 
  }
 
 
 
  Value *getValue() const { return V; }
 
  Type *getType() const { return V->getType(); }
 
  LLVMContext &getContext() const { return V->getContext(); }
 
 
 
  SmallVector<Metadata *> getAllArgListUsers() {
 
    return ReplaceableMetadataImpl::getAllArgListUsers();
 
  }
 
 
 
  static void handleDeletion(Value *V);
 
  static void handleRAUW(Value *From, Value *To);
 
 
 
protected:
 
  /// Handle collisions after \a Value::replaceAllUsesWith().
 
  ///
 
  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
 
  /// \a Value gets RAUW'ed and the target already exists, this is used to
 
  /// merge the two metadata nodes.
 
  void replaceAllUsesWith(Metadata *MD) {
 
    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
 
  }
 
 
 
public:
 
  static bool classof(const Metadata *MD) {
 
    return MD->getMetadataID() == LocalAsMetadataKind ||
 
           MD->getMetadataID() == ConstantAsMetadataKind;
 
  }
 
};
 
 
 
class ConstantAsMetadata : public ValueAsMetadata {
 
  friend class ValueAsMetadata;
 
 
 
  ConstantAsMetadata(Constant *C)
 
      : ValueAsMetadata(ConstantAsMetadataKind, C) {}
 
 
 
public:
 
  static ConstantAsMetadata *get(Constant *C) {
 
    return ValueAsMetadata::getConstant(C);
 
  }
 
 
 
  static ConstantAsMetadata *getIfExists(Constant *C) {
 
    return ValueAsMetadata::getConstantIfExists(C);
 
  }
 
 
 
  Constant *getValue() const {
 
    return cast<Constant>(ValueAsMetadata::getValue());
 
  }
 
 
 
  static bool classof(const Metadata *MD) {
 
    return MD->getMetadataID() == ConstantAsMetadataKind;
 
  }
 
};
 
 
 
class LocalAsMetadata : public ValueAsMetadata {
 
  friend class ValueAsMetadata;
 
 
 
  LocalAsMetadata(Value *Local)
 
      : ValueAsMetadata(LocalAsMetadataKind, Local) {
 
    assert(!isa<Constant>(Local) && "Expected local value");
 
  }
 
 
 
public:
 
  static LocalAsMetadata *get(Value *Local) {
 
    return ValueAsMetadata::getLocal(Local);
 
  }
 
 
 
  static LocalAsMetadata *getIfExists(Value *Local) {
 
    return ValueAsMetadata::getLocalIfExists(Local);
 
  }
 
 
 
  static bool classof(const Metadata *MD) {
 
    return MD->getMetadataID() == LocalAsMetadataKind;
 
  }
 
};
 
 
 
/// Transitional API for extracting constants from Metadata.
 
///
 
/// This namespace contains transitional functions for metadata that points to
 
/// \a Constants.
 
///
 
/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
 
/// operands could refer to any \a Value.  There's was a lot of code like this:
 
///
 
/// \code
 
///     MDNode *N = ...;
 
///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
 
/// \endcode
 
///
 
/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
 
/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
 
/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
 
/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
 
/// requires subtle control flow changes.
 
///
 
/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
 
/// so that metadata can refer to numbers without traversing a bridge to the \a
 
/// Value hierarchy.  In this final state, the code above would look like this:
 
///
 
/// \code
 
///     MDNode *N = ...;
 
///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
 
/// \endcode
 
///
 
/// The API in this namespace supports the transition.  \a MDInt doesn't exist
 
/// yet, and even once it does, changing each metadata schema to use it is its
 
/// own mini-project.  In the meantime this API prevents us from introducing
 
/// complex and bug-prone control flow that will disappear in the end.  In
 
/// particular, the above code looks like this:
 
///
 
/// \code
 
///     MDNode *N = ...;
 
///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
 
/// \endcode
 
///
 
/// The full set of provided functions includes:
 
///
 
///   mdconst::hasa                <=> isa
 
///   mdconst::extract             <=> cast
 
///   mdconst::extract_or_null     <=> cast_or_null
 
///   mdconst::dyn_extract         <=> dyn_cast
 
///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
 
///
 
/// The target of the cast must be a subclass of \a Constant.
 
namespace mdconst {
 
 
 
namespace detail {
 
 
 
template <class T> T &make();
 
template <class T, class Result> struct HasDereference {
 
  using Yes = char[1];
 
  using No = char[2];
 
  template <size_t N> struct SFINAE {};
 
 
 
  template <class U, class V>
 
  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
 
  template <class U, class V> static No &hasDereference(...);
 
 
 
  static const bool value =
 
      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
 
};
 
template <class V, class M> struct IsValidPointer {
 
  static const bool value = std::is_base_of<Constant, V>::value &&
 
                            HasDereference<M, const Metadata &>::value;
 
};
 
template <class V, class M> struct IsValidReference {
 
  static const bool value = std::is_base_of<Constant, V>::value &&
 
                            std::is_convertible<M, const Metadata &>::value;
 
};
 
 
 
} // end namespace detail
 
 
 
/// Check whether Metadata has a Value.
 
///
 
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
 
/// type \c X.
 
template <class X, class Y>
 
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
 
hasa(Y &&MD) {
 
  assert(MD && "Null pointer sent into hasa");
 
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
 
    return isa<X>(V->getValue());
 
  return false;
 
}
 
template <class X, class Y>
 
inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
 
hasa(Y &MD) {
 
  return hasa(&MD);
 
}
 
 
 
/// Extract a Value from Metadata.
 
///
 
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
 
template <class X, class Y>
 
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
 
extract(Y &&MD) {
 
  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
 
}
 
template <class X, class Y>
 
inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
 
extract(Y &MD) {
 
  return extract(&MD);
 
}
 
 
 
/// Extract a Value from Metadata, allowing null.
 
///
 
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
 
/// from \c MD, allowing \c MD to be null.
 
template <class X, class Y>
 
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
 
extract_or_null(Y &&MD) {
 
  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
 
    return cast<X>(V->getValue());
 
  return nullptr;
 
}
 
 
 
/// Extract a Value from Metadata, if any.
 
///
 
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
 
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
 
/// Value it does contain is of the wrong subclass.
 
template <class X, class Y>
 
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
 
dyn_extract(Y &&MD) {
 
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
 
    return dyn_cast<X>(V->getValue());
 
  return nullptr;
 
}
 
 
 
/// Extract a Value from Metadata, if any, allowing null.
 
///
 
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
 
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
 
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
 
template <class X, class Y>
 
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
 
dyn_extract_or_null(Y &&MD) {
 
  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
 
    return dyn_cast<X>(V->getValue());
 
  return nullptr;
 
}
 
 
 
} // end namespace mdconst
 
 
 
//===----------------------------------------------------------------------===//
 
/// A single uniqued string.
 
///
 
/// These are used to efficiently contain a byte sequence for metadata.
 
/// MDString is always unnamed.
 
class MDString : public Metadata {
 
  friend class StringMapEntryStorage<MDString>;
 
 
 
  StringMapEntry<MDString> *Entry = nullptr;
 
 
 
  MDString() : Metadata(MDStringKind, Uniqued) {}
 
 
 
public:
 
  MDString(const MDString &) = delete;
 
  MDString &operator=(MDString &&) = delete;
 
  MDString &operator=(const MDString &) = delete;
 
 
 
  static MDString *get(LLVMContext &Context, StringRef Str);
 
  static MDString *get(LLVMContext &Context, const char *Str) {
 
    return get(Context, Str ? StringRef(Str) : StringRef());
 
  }
 
 
 
  StringRef getString() const;
 
 
 
  unsigned getLength() const { return (unsigned)getString().size(); }
 
 
 
  using iterator = StringRef::iterator;
 
 
 
  /// Pointer to the first byte of the string.
 
  iterator begin() const { return getString().begin(); }
 
 
 
  /// Pointer to one byte past the end of the string.
 
  iterator end() const { return getString().end(); }
 
 
 
  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
 
  const unsigned char *bytes_end() const { return getString().bytes_end(); }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast.
 
  static bool classof(const Metadata *MD) {
 
    return MD->getMetadataID() == MDStringKind;
 
  }
 
};
 
 
 
/// A collection of metadata nodes that might be associated with a
 
/// memory access used by the alias-analysis infrastructure.
 
struct AAMDNodes {
 
  explicit AAMDNodes() = default;
 
  explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
 
      : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
 
 
 
  bool operator==(const AAMDNodes &A) const {
 
    return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
 
           NoAlias == A.NoAlias;
 
  }
 
 
 
  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
 
 
 
  explicit operator bool() const {
 
    return TBAA || TBAAStruct || Scope || NoAlias;
 
  }
 
 
 
  /// The tag for type-based alias analysis.
 
  MDNode *TBAA = nullptr;
 
 
 
  /// The tag for type-based alias analysis (tbaa struct).
 
  MDNode *TBAAStruct = nullptr;
 
 
 
  /// The tag for alias scope specification (used with noalias).
 
  MDNode *Scope = nullptr;
 
 
 
  /// The tag specifying the noalias scope.
 
  MDNode *NoAlias = nullptr;
 
 
 
  // Shift tbaa Metadata node to start off bytes later
 
  static MDNode *shiftTBAA(MDNode *M, size_t off);
 
 
 
  // Shift tbaa.struct Metadata node to start off bytes later
 
  static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
 
 
 
  // Extend tbaa Metadata node to apply to a series of bytes of length len.
 
  // A size of -1 denotes an unknown size.
 
  static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
 
 
 
  /// Given two sets of AAMDNodes that apply to the same pointer,
 
  /// give the best AAMDNodes that are compatible with both (i.e. a set of
 
  /// nodes whose allowable aliasing conclusions are a subset of those
 
  /// allowable by both of the inputs). However, for efficiency
 
  /// reasons, do not create any new MDNodes.
 
  AAMDNodes intersect(const AAMDNodes &Other) const {
 
    AAMDNodes Result;
 
    Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
 
    Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
 
    Result.Scope = Other.Scope == Scope ? Scope : nullptr;
 
    Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
 
    return Result;
 
  }
 
 
 
  /// Create a new AAMDNode that describes this AAMDNode after applying a
 
  /// constant offset to the start of the pointer.
 
  AAMDNodes shift(size_t Offset) const {
 
    AAMDNodes Result;
 
    Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
 
    Result.TBAAStruct =
 
        TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
 
    Result.Scope = Scope;
 
    Result.NoAlias = NoAlias;
 
    return Result;
 
  }
 
 
 
  /// Create a new AAMDNode that describes this AAMDNode after extending it to
 
  /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
 
  /// size.
 
  AAMDNodes extendTo(ssize_t Len) const {
 
    AAMDNodes Result;
 
    Result.TBAA = TBAA ? extendToTBAA(TBAA, Len) : nullptr;
 
    // tbaa.struct contains (offset, size, type) triples. Extending the length
 
    // of the tbaa.struct doesn't require changing this (though more information
 
    // could be provided by adding more triples at subsequent lengths).
 
    Result.TBAAStruct = TBAAStruct;
 
    Result.Scope = Scope;
 
    Result.NoAlias = NoAlias;
 
    return Result;
 
  }
 
 
 
  /// Given two sets of AAMDNodes applying to potentially different locations,
 
  /// determine the best AAMDNodes that apply to both.
 
  AAMDNodes merge(const AAMDNodes &Other) const;
 
 
 
  /// Determine the best AAMDNodes after concatenating two different locations
 
  /// together. Different from `merge`, where different locations should
 
  /// overlap each other, `concat` puts non-overlapping locations together.
 
  AAMDNodes concat(const AAMDNodes &Other) const;
 
};
 
 
 
// Specialize DenseMapInfo for AAMDNodes.
 
template<>
 
struct DenseMapInfo<AAMDNodes> {
 
  static inline AAMDNodes getEmptyKey() {
 
    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
 
                     nullptr, nullptr, nullptr);
 
  }
 
 
 
  static inline AAMDNodes getTombstoneKey() {
 
    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
 
                     nullptr, nullptr, nullptr);
 
  }
 
 
 
  static unsigned getHashValue(const AAMDNodes &Val) {
 
    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
 
           DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
 
           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
 
           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
 
  }
 
 
 
  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
 
    return LHS == RHS;
 
  }
 
};
 
 
 
/// Tracking metadata reference owned by Metadata.
 
///
 
/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
 
/// of \a Metadata, which has the option of registering itself for callbacks to
 
/// re-unique itself.
 
///
 
/// In particular, this is used by \a MDNode.
 
class MDOperand {
 
  Metadata *MD = nullptr;
 
 
 
public:
 
  MDOperand() = default;
 
  MDOperand(const MDOperand &) = delete;
 
  MDOperand(MDOperand &&Op) {
 
    MD = Op.MD;
 
    if (MD)
 
      (void)MetadataTracking::retrack(Op.MD, MD);
 
    Op.MD = nullptr;
 
  }
 
  MDOperand &operator=(const MDOperand &) = delete;
 
  MDOperand &operator=(MDOperand &&Op) {
 
    MD = Op.MD;
 
    if (MD)
 
      (void)MetadataTracking::retrack(Op.MD, MD);
 
    Op.MD = nullptr;
 
    return *this;
 
  }
 
  ~MDOperand() { untrack(); }
 
 
 
  Metadata *get() const { return MD; }
 
  operator Metadata *() const { return get(); }
 
  Metadata *operator->() const { return get(); }
 
  Metadata &operator*() const { return *get(); }
 
 
 
  void reset() {
 
    untrack();
 
    MD = nullptr;
 
  }
 
  void reset(Metadata *MD, Metadata *Owner) {
 
    untrack();
 
    this->MD = MD;
 
    track(Owner);
 
  }
 
 
 
private:
 
  void track(Metadata *Owner) {
 
    if (MD) {
 
      if (Owner)
 
        MetadataTracking::track(this, *MD, *Owner);
 
      else
 
        MetadataTracking::track(MD);
 
    }
 
  }
 
 
 
  void untrack() {
 
    assert(static_cast<void *>(this) == &MD && "Expected same address");
 
    if (MD)
 
      MetadataTracking::untrack(MD);
 
  }
 
};
 
 
 
template <> struct simplify_type<MDOperand> {
 
  using SimpleType = Metadata *;
 
 
 
  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
 
};
 
 
 
template <> struct simplify_type<const MDOperand> {
 
  using SimpleType = Metadata *;
 
 
 
  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
 
};
 
 
 
/// Pointer to the context, with optional RAUW support.
 
///
 
/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
 
/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
 
class ContextAndReplaceableUses {
 
  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
 
 
 
public:
 
  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
 
  ContextAndReplaceableUses(
 
      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
 
      : Ptr(ReplaceableUses.release()) {
 
    assert(getReplaceableUses() && "Expected non-null replaceable uses");
 
  }
 
  ContextAndReplaceableUses() = delete;
 
  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
 
  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
 
  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
 
  ContextAndReplaceableUses &
 
  operator=(const ContextAndReplaceableUses &) = delete;
 
  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
 
 
 
  operator LLVMContext &() { return getContext(); }
 
 
 
  /// Whether this contains RAUW support.
 
  bool hasReplaceableUses() const {
 
    return Ptr.is<ReplaceableMetadataImpl *>();
 
  }
 
 
 
  LLVMContext &getContext() const {
 
    if (hasReplaceableUses())
 
      return getReplaceableUses()->getContext();
 
    return *Ptr.get<LLVMContext *>();
 
  }
 
 
 
  ReplaceableMetadataImpl *getReplaceableUses() const {
 
    if (hasReplaceableUses())
 
      return Ptr.get<ReplaceableMetadataImpl *>();
 
    return nullptr;
 
  }
 
 
 
  /// Ensure that this has RAUW support, and then return it.
 
  ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
 
    if (!hasReplaceableUses())
 
      makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
 
    return getReplaceableUses();
 
  }
 
 
 
  /// Assign RAUW support to this.
 
  ///
 
  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
 
  /// not be null).
 
  void
 
  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
 
    assert(ReplaceableUses && "Expected non-null replaceable uses");
 
    assert(&ReplaceableUses->getContext() == &getContext() &&
 
           "Expected same context");
 
    delete getReplaceableUses();
 
    Ptr = ReplaceableUses.release();
 
  }
 
 
 
  /// Drop RAUW support.
 
  ///
 
  /// Cede ownership of RAUW support, returning it.
 
  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
 
    assert(hasReplaceableUses() && "Expected to own replaceable uses");
 
    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
 
        getReplaceableUses());
 
    Ptr = &ReplaceableUses->getContext();
 
    return ReplaceableUses;
 
  }
 
};
 
 
 
struct TempMDNodeDeleter {
 
  inline void operator()(MDNode *Node) const;
 
};
 
 
 
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
 
  using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
 
#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
 
#include "llvm/IR/Metadata.def"
 
 
 
/// Metadata node.
 
///
 
/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
 
/// metadata nodes (with full support for RAUW) can be used to delay uniquing
 
/// until forward references are known.  The basic metadata node is an \a
 
/// MDTuple.
 
///
 
/// There is limited support for RAUW at construction time.  At construction
 
/// time, if any operand is a temporary node (or an unresolved uniqued node,
 
/// which indicates a transitive temporary operand), the node itself will be
 
/// unresolved.  As soon as all operands become resolved, it will drop RAUW
 
/// support permanently.
 
///
 
/// If an unresolved node is part of a cycle, \a resolveCycles() needs
 
/// to be called on some member of the cycle once all temporary nodes have been
 
/// replaced.
 
///
 
/// MDNodes can be large or small, as well as resizable or non-resizable.
 
/// Large MDNodes' operands are allocated in a separate storage vector,
 
/// whereas small MDNodes' operands are co-allocated. Distinct and temporary
 
/// MDnodes are resizable, but only MDTuples support this capability.
 
///
 
/// Clients can add operands to resizable MDNodes using push_back().
 
class MDNode : public Metadata {
 
  friend class ReplaceableMetadataImpl;
 
  friend class LLVMContextImpl;
 
  friend class DIArgList;
 
 
 
  /// The header that is coallocated with an MDNode along with its "small"
 
  /// operands. It is located immediately before the main body of the node.
 
  /// The operands are in turn located immediately before the header.
 
  /// For resizable MDNodes, the space for the storage vector is also allocated
 
  /// immediately before the header, overlapping with the operands.
 
  /// Explicity set alignment because bitfields by default have an
 
  /// alignment of 1 on z/OS.
 
  struct alignas(alignof(size_t)) Header {
 
    bool IsResizable : 1;
 
    bool IsLarge : 1;
 
    size_t SmallSize : 4;
 
    size_t SmallNumOps : 4;
 
    size_t : sizeof(size_t) * CHAR_BIT - 10;
 
 
 
    unsigned NumUnresolved = 0;
 
    using LargeStorageVector = SmallVector<MDOperand, 0>;
 
 
 
    static constexpr size_t NumOpsFitInVector =
 
        sizeof(LargeStorageVector) / sizeof(MDOperand);
 
    static_assert(
 
        NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
 
        "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
 
 
 
    static constexpr size_t MaxSmallSize = 15;
 
 
 
    static constexpr size_t getOpSize(unsigned NumOps) {
 
      return sizeof(MDOperand) * NumOps;
 
    }
 
    /// Returns the number of operands the node has space for based on its
 
    /// allocation characteristics.
 
    static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
 
      return IsLarge ? NumOpsFitInVector
 
                     : std::max(NumOps, NumOpsFitInVector * IsResizable);
 
    }
 
    /// Returns the number of bytes allocated for operands and header.
 
    static size_t getAllocSize(StorageType Storage, size_t NumOps) {
 
      return getOpSize(
 
                 getSmallSize(NumOps, isResizable(Storage), isLarge(NumOps))) +
 
             sizeof(Header);
 
    }
 
 
 
    /// Only temporary and distinct nodes are resizable.
 
    static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
 
    static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
 
 
 
    size_t getAllocSize() const {
 
      return getOpSize(SmallSize) + sizeof(Header);
 
    }
 
    void *getAllocation() {
 
      return reinterpret_cast<char *>(this + 1) -
 
             alignTo(getAllocSize(), alignof(uint64_t));
 
    }
 
 
 
    void *getLargePtr() const {
 
      static_assert(alignof(LargeStorageVector) <= alignof(Header),
 
                    "LargeStorageVector too strongly aligned");
 
      return reinterpret_cast<char *>(const_cast<Header *>(this)) -
 
             sizeof(LargeStorageVector);
 
    }
 
 
 
    void *getSmallPtr();
 
 
 
    LargeStorageVector &getLarge() {
 
      assert(IsLarge);
 
      return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
 
    }
 
 
 
    const LargeStorageVector &getLarge() const {
 
      assert(IsLarge);
 
      return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
 
    }
 
 
 
    void resizeSmall(size_t NumOps);
 
    void resizeSmallToLarge(size_t NumOps);
 
    void resize(size_t NumOps);
 
 
 
    explicit Header(size_t NumOps, StorageType Storage);
 
    ~Header();
 
 
 
    MutableArrayRef<MDOperand> operands() {
 
      if (IsLarge)
 
        return getLarge();
 
      return MutableArrayRef(
 
          reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
 
    }
 
 
 
    ArrayRef<MDOperand> operands() const {
 
      if (IsLarge)
 
        return getLarge();
 
      return ArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
 
                      SmallNumOps);
 
    }
 
 
 
    unsigned getNumOperands() const {
 
      if (!IsLarge)
 
        return SmallNumOps;
 
      return getLarge().size();
 
    }
 
  };
 
 
 
  Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
 
 
 
  const Header &getHeader() const {
 
    return *(reinterpret_cast<const Header *>(this) - 1);
 
  }
 
 
 
  ContextAndReplaceableUses Context;
 
 
 
protected:
 
  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
 
         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = std::nullopt);
 
  ~MDNode() = default;
 
 
 
  void *operator new(size_t Size, size_t NumOps, StorageType Storage);
 
  void operator delete(void *Mem);
 
 
 
  /// Required by std, but never called.
 
  void operator delete(void *, unsigned) {
 
    llvm_unreachable("Constructor throws?");
 
  }
 
 
 
  /// Required by std, but never called.
 
  void operator delete(void *, unsigned, bool) {
 
    llvm_unreachable("Constructor throws?");
 
  }
 
 
 
  void dropAllReferences();
 
 
 
  MDOperand *mutable_begin() { return getHeader().operands().begin(); }
 
  MDOperand *mutable_end() { return getHeader().operands().end(); }
 
 
 
  using mutable_op_range = iterator_range<MDOperand *>;
 
 
 
  mutable_op_range mutable_operands() {
 
    return mutable_op_range(mutable_begin(), mutable_end());
 
  }
 
 
 
public:
 
  MDNode(const MDNode &) = delete;
 
  void operator=(const MDNode &) = delete;
 
  void *operator new(size_t) = delete;
 
 
 
  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
 
  static inline MDTuple *getIfExists(LLVMContext &Context,
 
                                     ArrayRef<Metadata *> MDs);
 
  static inline MDTuple *getDistinct(LLVMContext &Context,
 
                                     ArrayRef<Metadata *> MDs);
 
  static inline TempMDTuple getTemporary(LLVMContext &Context,
 
                                         ArrayRef<Metadata *> MDs);
 
 
 
  /// Create a (temporary) clone of this.
 
  TempMDNode clone() const;
 
 
 
  /// Deallocate a node created by getTemporary.
 
  ///
 
  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
 
  /// references will be reset.
 
  static void deleteTemporary(MDNode *N);
 
 
 
  LLVMContext &getContext() const { return Context.getContext(); }
 
 
 
  /// Replace a specific operand.
 
  void replaceOperandWith(unsigned I, Metadata *New);
 
 
 
  /// Check if node is fully resolved.
 
  ///
 
  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
 
  /// this always returns \c true.
 
  ///
 
  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
 
  /// support (because all operands are resolved).
 
  ///
 
  /// As forward declarations are resolved, their containers should get
 
  /// resolved automatically.  However, if this (or one of its operands) is
 
  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
 
  bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
 
 
 
  bool isUniqued() const { return Storage == Uniqued; }
 
  bool isDistinct() const { return Storage == Distinct; }
 
  bool isTemporary() const { return Storage == Temporary; }
 
 
 
  /// RAUW a temporary.
 
  ///
 
  /// \pre \a isTemporary() must be \c true.
 
  void replaceAllUsesWith(Metadata *MD) {
 
    assert(isTemporary() && "Expected temporary node");
 
    if (Context.hasReplaceableUses())
 
      Context.getReplaceableUses()->replaceAllUsesWith(MD);
 
  }
 
 
 
  /// Resolve cycles.
 
  ///
 
  /// Once all forward declarations have been resolved, force cycles to be
 
  /// resolved.
 
  ///
 
  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
 
  void resolveCycles();
 
 
 
  /// Resolve a unique, unresolved node.
 
  void resolve();
 
 
 
  /// Replace a temporary node with a permanent one.
 
  ///
 
  /// Try to create a uniqued version of \c N -- in place, if possible -- and
 
  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
 
  template <class T>
 
  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
 
  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
 
    return cast<T>(N.release()->replaceWithPermanentImpl());
 
  }
 
 
 
  /// Replace a temporary node with a uniqued one.
 
  ///
 
  /// Create a uniqued version of \c N -- in place, if possible -- and return
 
  /// it.  Takes ownership of the temporary node.
 
  ///
 
  /// \pre N does not self-reference.
 
  template <class T>
 
  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
 
  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
 
    return cast<T>(N.release()->replaceWithUniquedImpl());
 
  }
 
 
 
  /// Replace a temporary node with a distinct one.
 
  ///
 
  /// Create a distinct version of \c N -- in place, if possible -- and return
 
  /// it.  Takes ownership of the temporary node.
 
  template <class T>
 
  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
 
  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
 
    return cast<T>(N.release()->replaceWithDistinctImpl());
 
  }
 
 
 
  /// Print in tree shape.
 
  ///
 
  /// Prints definition of \c this in tree shape.
 
  ///
 
  /// If \c M is provided, metadata nodes will be numbered canonically;
 
  /// otherwise, pointer addresses are substituted.
 
  /// @{
 
  void printTree(raw_ostream &OS, const Module *M = nullptr) const;
 
  void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
 
                 const Module *M = nullptr) const;
 
  /// @}
 
 
 
  /// User-friendly dump in tree shape.
 
  ///
 
  /// If \c M is provided, metadata nodes will be numbered canonically;
 
  /// otherwise, pointer addresses are substituted.
 
  ///
 
  /// Note: this uses an explicit overload instead of default arguments so that
 
  /// the nullptr version is easy to call from a debugger.
 
  ///
 
  /// @{
 
  void dumpTree() const;
 
  void dumpTree(const Module *M) const;
 
  /// @}
 
 
 
private:
 
  MDNode *replaceWithPermanentImpl();
 
  MDNode *replaceWithUniquedImpl();
 
  MDNode *replaceWithDistinctImpl();
 
 
 
protected:
 
  /// Set an operand.
 
  ///
 
  /// Sets the operand directly, without worrying about uniquing.
 
  void setOperand(unsigned I, Metadata *New);
 
 
 
  unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
 
 
 
  void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
 
  void storeDistinctInContext();
 
  template <class T, class StoreT>
 
  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
 
  template <class T> static T *storeImpl(T *N, StorageType Storage);
 
 
 
  /// Resize the node to hold \a NumOps operands.
 
  ///
 
  /// \pre \a isTemporary() or \a isDistinct()
 
  /// \pre MetadataID == MDTupleKind
 
  void resize(size_t NumOps) {
 
    assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
 
    assert(getMetadataID() == MDTupleKind &&
 
           "Resizing is not supported for this node kind");
 
    getHeader().resize(NumOps);
 
  }
 
 
 
private:
 
  void handleChangedOperand(void *Ref, Metadata *New);
 
 
 
  /// Drop RAUW support, if any.
 
  void dropReplaceableUses();
 
 
 
  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
 
  void decrementUnresolvedOperandCount();
 
  void countUnresolvedOperands();
 
 
 
  /// Mutate this to be "uniqued".
 
  ///
 
  /// Mutate this so that \a isUniqued().
 
  /// \pre \a isTemporary().
 
  /// \pre already added to uniquing set.
 
  void makeUniqued();
 
 
 
  /// Mutate this to be "distinct".
 
  ///
 
  /// Mutate this so that \a isDistinct().
 
  /// \pre \a isTemporary().
 
  void makeDistinct();
 
 
 
  void deleteAsSubclass();
 
  MDNode *uniquify();
 
  void eraseFromStore();
 
 
 
  template <class NodeTy> struct HasCachedHash;
 
  template <class NodeTy>
 
  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
 
    N->recalculateHash();
 
  }
 
  template <class NodeTy>
 
  static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
 
  template <class NodeTy>
 
  static void dispatchResetHash(NodeTy *N, std::true_type) {
 
    N->setHash(0);
 
  }
 
  template <class NodeTy>
 
  static void dispatchResetHash(NodeTy *, std::false_type) {}
 
 
 
public:
 
  using op_iterator = const MDOperand *;
 
  using op_range = iterator_range<op_iterator>;
 
 
 
  op_iterator op_begin() const {
 
    return const_cast<MDNode *>(this)->mutable_begin();
 
  }
 
 
 
  op_iterator op_end() const {
 
    return const_cast<MDNode *>(this)->mutable_end();
 
  }
 
 
 
  ArrayRef<MDOperand> operands() const { return getHeader().operands(); }
 
 
 
  const MDOperand &getOperand(unsigned I) const {
 
    assert(I < getNumOperands() && "Out of range");
 
    return getHeader().operands()[I];
 
  }
 
 
 
  /// Return number of MDNode operands.
 
  unsigned getNumOperands() const { return getHeader().getNumOperands(); }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const Metadata *MD) {
 
    switch (MD->getMetadataID()) {
 
    default:
 
      return false;
 
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
 
  case CLASS##Kind:                                                            \
 
    return true;
 
#include "llvm/IR/Metadata.def"
 
    }
 
  }
 
 
 
  /// Check whether MDNode is a vtable access.
 
  bool isTBAAVtableAccess() const;
 
 
 
  /// Methods for metadata merging.
 
  static MDNode *concatenate(MDNode *A, MDNode *B);
 
  static MDNode *intersect(MDNode *A, MDNode *B);
 
  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
 
  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
 
  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
 
  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
 
  static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
 
};
 
 
 
/// Tuple of metadata.
 
///
 
/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
 
/// default based on their operands.
 
class MDTuple : public MDNode {
 
  friend class LLVMContextImpl;
 
  friend class MDNode;
 
 
 
  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
 
          ArrayRef<Metadata *> Vals)
 
      : MDNode(C, MDTupleKind, Storage, Vals) {
 
    setHash(Hash);
 
  }
 
 
 
  ~MDTuple() { dropAllReferences(); }
 
 
 
  void setHash(unsigned Hash) { SubclassData32 = Hash; }
 
  void recalculateHash();
 
 
 
  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
 
                          StorageType Storage, bool ShouldCreate = true);
 
 
 
  TempMDTuple cloneImpl() const {
 
    ArrayRef<MDOperand> Operands = operands();
 
    return getTemporary(getContext(), SmallVector<Metadata *, 4>(
 
                                          Operands.begin(), Operands.end()));
 
  }
 
 
 
public:
 
  /// Get the hash, if any.
 
  unsigned getHash() const { return SubclassData32; }
 
 
 
  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
 
    return getImpl(Context, MDs, Uniqued);
 
  }
 
 
 
  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
 
    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
 
  }
 
 
 
  /// Return a distinct node.
 
  ///
 
  /// Return a distinct node -- i.e., a node that is not uniqued.
 
  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
 
    return getImpl(Context, MDs, Distinct);
 
  }
 
 
 
  /// Return a temporary node.
 
  ///
 
  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
 
  /// not uniqued, may be RAUW'd, and must be manually deleted with
 
  /// deleteTemporary.
 
  static TempMDTuple getTemporary(LLVMContext &Context,
 
                                  ArrayRef<Metadata *> MDs) {
 
    return TempMDTuple(getImpl(Context, MDs, Temporary));
 
  }
 
 
 
  /// Return a (temporary) clone of this.
 
  TempMDTuple clone() const { return cloneImpl(); }
 
 
 
  /// Append an element to the tuple. This will resize the node.
 
  void push_back(Metadata *MD) {
 
    size_t NumOps = getNumOperands();
 
    resize(NumOps + 1);
 
    setOperand(NumOps, MD);
 
  }
 
 
 
  /// Shrink the operands by 1.
 
  void pop_back() { resize(getNumOperands() - 1); }
 
 
 
  static bool classof(const Metadata *MD) {
 
    return MD->getMetadataID() == MDTupleKind;
 
  }
 
};
 
 
 
MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
 
  return MDTuple::get(Context, MDs);
 
}
 
 
 
MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
 
  return MDTuple::getIfExists(Context, MDs);
 
}
 
 
 
MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
 
  return MDTuple::getDistinct(Context, MDs);
 
}
 
 
 
TempMDTuple MDNode::getTemporary(LLVMContext &Context,
 
                                 ArrayRef<Metadata *> MDs) {
 
  return MDTuple::getTemporary(Context, MDs);
 
}
 
 
 
void TempMDNodeDeleter::operator()(MDNode *Node) const {
 
  MDNode::deleteTemporary(Node);
 
}
 
 
 
/// This is a simple wrapper around an MDNode which provides a higher-level
 
/// interface by hiding the details of how alias analysis information is encoded
 
/// in its operands.
 
class AliasScopeNode {
 
  const MDNode *Node = nullptr;
 
 
 
public:
 
  AliasScopeNode() = default;
 
  explicit AliasScopeNode(const MDNode *N) : Node(N) {}
 
 
 
  /// Get the MDNode for this AliasScopeNode.
 
  const MDNode *getNode() const { return Node; }
 
 
 
  /// Get the MDNode for this AliasScopeNode's domain.
 
  const MDNode *getDomain() const {
 
    if (Node->getNumOperands() < 2)
 
      return nullptr;
 
    return dyn_cast_or_null<MDNode>(Node->getOperand(1));
 
  }
 
  StringRef getName() const {
 
    if (Node->getNumOperands() > 2)
 
      if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
 
        return N->getString();
 
    return StringRef();
 
  }
 
};
 
 
 
/// Typed iterator through MDNode operands.
 
///
 
/// An iterator that transforms an \a MDNode::iterator into an iterator over a
 
/// particular Metadata subclass.
 
template <class T> class TypedMDOperandIterator {
 
  MDNode::op_iterator I = nullptr;
 
 
 
public:
 
  using iterator_category = std::input_iterator_tag;
 
  using value_type = T *;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = void;
 
  using reference = T *;
 
 
 
  TypedMDOperandIterator() = default;
 
  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
 
 
 
  T *operator*() const { return cast_or_null<T>(*I); }
 
 
 
  TypedMDOperandIterator &operator++() {
 
    ++I;
 
    return *this;
 
  }
 
 
 
  TypedMDOperandIterator operator++(int) {
 
    TypedMDOperandIterator Temp(*this);
 
    ++I;
 
    return Temp;
 
  }
 
 
 
  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
 
  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
 
};
 
 
 
/// Typed, array-like tuple of metadata.
 
///
 
/// This is a wrapper for \a MDTuple that makes it act like an array holding a
 
/// particular type of metadata.
 
template <class T> class MDTupleTypedArrayWrapper {
 
  const MDTuple *N = nullptr;
 
 
 
public:
 
  MDTupleTypedArrayWrapper() = default;
 
  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
 
 
 
  template <class U>
 
  MDTupleTypedArrayWrapper(
 
      const MDTupleTypedArrayWrapper<U> &Other,
 
      std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
 
      : N(Other.get()) {}
 
 
 
  template <class U>
 
  explicit MDTupleTypedArrayWrapper(
 
      const MDTupleTypedArrayWrapper<U> &Other,
 
      std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
 
      : N(Other.get()) {}
 
 
 
  explicit operator bool() const { return get(); }
 
  explicit operator MDTuple *() const { return get(); }
 
 
 
  MDTuple *get() const { return const_cast<MDTuple *>(N); }
 
  MDTuple *operator->() const { return get(); }
 
  MDTuple &operator*() const { return *get(); }
 
 
 
  // FIXME: Fix callers and remove condition on N.
 
  unsigned size() const { return N ? N->getNumOperands() : 0u; }
 
  bool empty() const { return N ? N->getNumOperands() == 0 : true; }
 
  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
 
 
 
  // FIXME: Fix callers and remove condition on N.
 
  using iterator = TypedMDOperandIterator<T>;
 
 
 
  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
 
  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
 
};
 
 
 
#define HANDLE_METADATA(CLASS)                                                 \
 
  using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
 
#include "llvm/IR/Metadata.def"
 
 
 
/// Placeholder metadata for operands of distinct MDNodes.
 
///
 
/// This is a lightweight placeholder for an operand of a distinct node.  It's
 
/// purpose is to help track forward references when creating a distinct node.
 
/// This allows distinct nodes involved in a cycle to be constructed before
 
/// their operands without requiring a heavyweight temporary node with
 
/// full-blown RAUW support.
 
///
 
/// Each placeholder supports only a single MDNode user.  Clients should pass
 
/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
 
/// should be replaced with.
 
///
 
/// While it would be possible to implement move operators, they would be
 
/// fairly expensive.  Leave them unimplemented to discourage their use
 
/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
 
class DistinctMDOperandPlaceholder : public Metadata {
 
  friend class MetadataTracking;
 
 
 
  Metadata **Use = nullptr;
 
 
 
public:
 
  explicit DistinctMDOperandPlaceholder(unsigned ID)
 
      : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
 
    SubclassData32 = ID;
 
  }
 
 
 
  DistinctMDOperandPlaceholder() = delete;
 
  DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
 
  DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
 
 
 
  ~DistinctMDOperandPlaceholder() {
 
    if (Use)
 
      *Use = nullptr;
 
  }
 
 
 
  unsigned getID() const { return SubclassData32; }
 
 
 
  /// Replace the use of this with MD.
 
  void replaceUseWith(Metadata *MD) {
 
    if (!Use)
 
      return;
 
    *Use = MD;
 
 
 
    if (*Use)
 
      MetadataTracking::track(*Use);
 
 
 
    Metadata *T = cast<Metadata>(this);
 
    MetadataTracking::untrack(T);
 
    assert(!Use && "Use is still being tracked despite being untracked!");
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// A tuple of MDNodes.
 
///
 
/// Despite its name, a NamedMDNode isn't itself an MDNode.
 
///
 
/// NamedMDNodes are named module-level entities that contain lists of MDNodes.
 
///
 
/// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
 
class NamedMDNode : public ilist_node<NamedMDNode> {
 
  friend class LLVMContextImpl;
 
  friend class Module;
 
 
 
  std::string Name;
 
  Module *Parent = nullptr;
 
  void *Operands; // SmallVector<TrackingMDRef, 4>
 
 
 
  void setParent(Module *M) { Parent = M; }
 
 
 
  explicit NamedMDNode(const Twine &N);
 
 
 
  template <class T1, class T2> class op_iterator_impl {
 
    friend class NamedMDNode;
 
 
 
    const NamedMDNode *Node = nullptr;
 
    unsigned Idx = 0;
 
 
 
    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
 
 
 
  public:
 
    using iterator_category = std::bidirectional_iterator_tag;
 
    using value_type = T2;
 
    using difference_type = std::ptrdiff_t;
 
    using pointer = value_type *;
 
    using reference = value_type &;
 
 
 
    op_iterator_impl() = default;
 
 
 
    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
 
    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
 
 
 
    op_iterator_impl &operator++() {
 
      ++Idx;
 
      return *this;
 
    }
 
 
 
    op_iterator_impl operator++(int) {
 
      op_iterator_impl tmp(*this);
 
      operator++();
 
      return tmp;
 
    }
 
 
 
    op_iterator_impl &operator--() {
 
      --Idx;
 
      return *this;
 
    }
 
 
 
    op_iterator_impl operator--(int) {
 
      op_iterator_impl tmp(*this);
 
      operator--();
 
      return tmp;
 
    }
 
 
 
    T1 operator*() const { return Node->getOperand(Idx); }
 
  };
 
 
 
public:
 
  NamedMDNode(const NamedMDNode &) = delete;
 
  ~NamedMDNode();
 
 
 
  /// Drop all references and remove the node from parent module.
 
  void eraseFromParent();
 
 
 
  /// Remove all uses and clear node vector.
 
  void dropAllReferences() { clearOperands(); }
 
  /// Drop all references to this node's operands.
 
  void clearOperands();
 
 
 
  /// Get the module that holds this named metadata collection.
 
  inline Module *getParent() { return Parent; }
 
  inline const Module *getParent() const { return Parent; }
 
 
 
  MDNode *getOperand(unsigned i) const;
 
  unsigned getNumOperands() const;
 
  void addOperand(MDNode *M);
 
  void setOperand(unsigned I, MDNode *New);
 
  StringRef getName() const;
 
  void print(raw_ostream &ROS, bool IsForDebug = false) const;
 
  void print(raw_ostream &ROS, ModuleSlotTracker &MST,
 
             bool IsForDebug = false) const;
 
  void dump() const;
 
 
 
  // ---------------------------------------------------------------------------
 
  // Operand Iterator interface...
 
  //
 
  using op_iterator = op_iterator_impl<MDNode *, MDNode>;
 
 
 
  op_iterator op_begin() { return op_iterator(this, 0); }
 
  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
 
 
 
  using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
 
 
 
  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
 
  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
 
 
 
  inline iterator_range<op_iterator>  operands() {
 
    return make_range(op_begin(), op_end());
 
  }
 
  inline iterator_range<const_op_iterator> operands() const {
 
    return make_range(op_begin(), op_end());
 
  }
 
};
 
 
 
// Create wrappers for C Binding types (see CBindingWrapping.h).
 
DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_METADATA_H