//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Instruction class, which is the
// base class for all of the LLVM instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INSTRUCTION_H
#define LLVM_IR_INSTRUCTION_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Bitfields.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AtomicOrdering.h"
#include <cstdint>
#include <utility>
namespace llvm {
class BasicBlock;
class FastMathFlags;
class MDNode;
class Module;
struct AAMDNodes;
template <> struct ilist_alloc_traits<Instruction> {
static inline void deleteNode(Instruction *V);
};
class Instruction : public User,
public ilist_node_with_parent<Instruction, BasicBlock> {
BasicBlock *Parent;
DebugLoc DbgLoc; // 'dbg' Metadata cache.
/// Relative order of this instruction in its parent basic block. Used for
/// O(1) local dominance checks between instructions.
mutable unsigned Order = 0;
protected:
// The 15 first bits of `Value::SubclassData` are available for subclasses of
// `Instruction` to use.
using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
// Template alias so that all Instruction storing alignment use the same
// definiton.
// Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
// 2^32. We store them as Log2(Alignment), so we need 6 bits to encode the 33
// possible values.
template <unsigned Offset>
using AlignmentBitfieldElementT =
typename Bitfield::Element<unsigned, Offset, 6,
Value::MaxAlignmentExponent>;
template <unsigned Offset>
using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
template <unsigned Offset>
using AtomicOrderingBitfieldElementT =
typename Bitfield::Element<AtomicOrdering, Offset, 3,
AtomicOrdering::LAST>;
private:
// The last bit is used to store whether the instruction has metadata attached
// or not.
using HasMetadataField = Bitfield::Element<bool, 15, 1>;
protected:
~Instruction(); // Use deleteValue() to delete a generic Instruction.
public:
Instruction(const Instruction &) = delete;
Instruction &operator=(const Instruction &) = delete;
/// Specialize the methods defined in Value, as we know that an instruction
/// can only be used by other instructions.
Instruction *user_back() { return cast<Instruction>(*user_begin());}
const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
inline const BasicBlock *getParent() const { return Parent; }
inline BasicBlock *getParent() { return Parent; }
/// Return the module owning the function this instruction belongs to
/// or nullptr it the function does not have a module.
///
/// Note: this is undefined behavior if the instruction does not have a
/// parent, or the parent basic block does not have a parent function.
const Module *getModule() const;
Module *getModule() {
return const_cast<Module *>(
static_cast<const Instruction *>(this)->getModule());
}
/// Return the function this instruction belongs to.
///
/// Note: it is undefined behavior to call this on an instruction not
/// currently inserted into a function.
const Function *getFunction() const;
Function *getFunction() {
return const_cast<Function *>(
static_cast<const Instruction *>(this)->getFunction());
}
/// This method unlinks 'this' from the containing basic block, but does not
/// delete it.
void removeFromParent();
/// This method unlinks 'this' from the containing basic block and deletes it.
///
/// \returns an iterator pointing to the element after the erased one
SymbolTableList<Instruction>::iterator eraseFromParent();
/// Insert an unlinked instruction into a basic block immediately before
/// the specified instruction.
void insertBefore(Instruction *InsertPos);
/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void insertAfter(Instruction *InsertPos);
/// Inserts an unlinked instruction into \p ParentBB at position \p It and
/// returns the iterator of the inserted instruction.
SymbolTableList<Instruction>::iterator
insertInto(BasicBlock *ParentBB, SymbolTableList<Instruction>::iterator It);
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that MovePos lives in, right before MovePos.
void moveBefore(Instruction *MovePos);
/// Unlink this instruction and insert into BB before I.
///
/// \pre I is a valid iterator into BB.
void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that MovePos lives in, right after MovePos.
void moveAfter(Instruction *MovePos);
/// Given an instruction Other in the same basic block as this instruction,
/// return true if this instruction comes before Other. In this worst case,
/// this takes linear time in the number of instructions in the block. The
/// results are cached, so in common cases when the block remains unmodified,
/// it takes constant time.
bool comesBefore(const Instruction *Other) const;
/// Get the first insertion point at which the result of this instruction
/// is defined. This is *not* the directly following instruction in a number
/// of cases, e.g. phi nodes or terminators that return values. This function
/// may return null if the insertion after the definition is not possible,
/// e.g. due to a catchswitch terminator.
Instruction *getInsertionPointAfterDef();
//===--------------------------------------------------------------------===//
// Subclass classification.
//===--------------------------------------------------------------------===//
/// Returns a member of one of the enums like Instruction::Add.
unsigned getOpcode() const { return getValueID() - InstructionVal; }
const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
bool isTerminator() const { return isTerminator(getOpcode()); }
bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
bool isShift() const { return isShift(getOpcode()); }
bool isCast() const { return isCast(getOpcode()); }
bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
bool isExceptionalTerminator() const {
return isExceptionalTerminator(getOpcode());
}
/// It checks if this instruction is the only user of at least one of
/// its operands.
bool isOnlyUserOfAnyOperand();
static const char* getOpcodeName(unsigned OpCode);
static inline bool isTerminator(unsigned OpCode) {
return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
}
static inline bool isUnaryOp(unsigned Opcode) {
return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
}
static inline bool isBinaryOp(unsigned Opcode) {
return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
}
static inline bool isIntDivRem(unsigned Opcode) {
return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
}
/// Determine if the Opcode is one of the shift instructions.
static inline bool isShift(unsigned Opcode) {
return Opcode >= Shl && Opcode <= AShr;
}
/// Return true if this is a logical shift left or a logical shift right.
inline bool isLogicalShift() const {
return getOpcode() == Shl || getOpcode() == LShr;
}
/// Return true if this is an arithmetic shift right.
inline bool isArithmeticShift() const {
return getOpcode() == AShr;
}
/// Determine if the Opcode is and/or/xor.
static inline bool isBitwiseLogicOp(unsigned Opcode) {
return Opcode == And || Opcode == Or || Opcode == Xor;
}
/// Return true if this is and/or/xor.
inline bool isBitwiseLogicOp() const {
return isBitwiseLogicOp(getOpcode());
}
/// Determine if the OpCode is one of the CastInst instructions.
static inline bool isCast(unsigned OpCode) {
return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
}
/// Determine if the OpCode is one of the FuncletPadInst instructions.
static inline bool isFuncletPad(unsigned OpCode) {
return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
}
/// Returns true if the OpCode is a terminator related to exception handling.
static inline bool isExceptionalTerminator(unsigned OpCode) {
switch (OpCode) {
case Instruction::CatchSwitch:
case Instruction::CatchRet:
case Instruction::CleanupRet:
case Instruction::Invoke:
case Instruction::Resume:
return true;
default:
return false;
}
}
//===--------------------------------------------------------------------===//
// Metadata manipulation.
//===--------------------------------------------------------------------===//
/// Return true if this instruction has any metadata attached to it.
bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
/// Return true if this instruction has metadata attached to it other than a
/// debug location.
bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
/// Return true if this instruction has the given type of metadata attached.
bool hasMetadata(unsigned KindID) const {
return getMetadata(KindID) != nullptr;
}
/// Return true if this instruction has the given type of metadata attached.
bool hasMetadata(StringRef Kind) const {
return getMetadata(Kind) != nullptr;
}
/// Get the metadata of given kind attached to this Instruction.
/// If the metadata is not found then return null.
MDNode *getMetadata(unsigned KindID) const {
if (!hasMetadata()) return nullptr;
return getMetadataImpl(KindID);
}
/// Get the metadata of given kind attached to this Instruction.
/// If the metadata is not found then return null.
MDNode *getMetadata(StringRef Kind) const {
if (!hasMetadata()) return nullptr;
return getMetadataImpl(Kind);
}
/// Get all metadata attached to this Instruction. The first element of each
/// pair returned is the KindID, the second element is the metadata value.
/// This list is returned sorted by the KindID.
void
getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
if (hasMetadata())
getAllMetadataImpl(MDs);
}
/// This does the same thing as getAllMetadata, except that it filters out the
/// debug location.
void getAllMetadataOtherThanDebugLoc(
SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
Value::getAllMetadata(MDs);
}
/// Set the metadata of the specified kind to the specified node. This updates
/// or replaces metadata if already present, or removes it if Node is null.
void setMetadata(unsigned KindID, MDNode *Node);
void setMetadata(StringRef Kind, MDNode *Node);
/// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
/// specifies the list of meta data that needs to be copied. If \p WL is
/// empty, all meta data will be copied.
void copyMetadata(const Instruction &SrcInst,
ArrayRef<unsigned> WL = ArrayRef<unsigned>());
/// If the instruction has "branch_weights" MD_prof metadata and the MDNode
/// has three operands (including name string), swap the order of the
/// metadata.
void swapProfMetadata();
/// Drop all unknown metadata except for debug locations.
/// @{
/// Passes are required to drop metadata they don't understand. This is a
/// convenience method for passes to do so.
/// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of
/// this API if the Instruction being modified is a call.
void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
void dropUnknownNonDebugMetadata() {
return dropUnknownNonDebugMetadata(std::nullopt);
}
void dropUnknownNonDebugMetadata(unsigned ID1) {
return dropUnknownNonDebugMetadata(ArrayRef(ID1));
}
void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
unsigned IDs[] = {ID1, ID2};
return dropUnknownNonDebugMetadata(IDs);
}
/// @}
/// Adds an !annotation metadata node with \p Annotation to this instruction.
/// If this instruction already has !annotation metadata, append \p Annotation
/// to the existing node.
void addAnnotationMetadata(StringRef Annotation);
/// Returns the AA metadata for this instruction.
AAMDNodes getAAMetadata() const;
/// Sets the AA metadata on this instruction from the AAMDNodes structure.
void setAAMetadata(const AAMDNodes &N);
/// Retrieve total raw weight values of a branch.
/// Returns true on success with profile total weights filled in.
/// Returns false if no metadata was found.
bool extractProfTotalWeight(uint64_t &TotalVal) const;
/// Set the debug location information for this instruction.
void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
/// Return the debug location for this node as a DebugLoc.
const DebugLoc &getDebugLoc() const { return DbgLoc; }
/// Set or clear the nuw flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setHasNoUnsignedWrap(bool b = true);
/// Set or clear the nsw flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setHasNoSignedWrap(bool b = true);
/// Set or clear the exact flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setIsExact(bool b = true);
/// Determine whether the no unsigned wrap flag is set.
bool hasNoUnsignedWrap() const LLVM_READONLY;
/// Determine whether the no signed wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY;
/// Return true if this operator has flags which may cause this instruction
/// to evaluate to poison despite having non-poison inputs.
bool hasPoisonGeneratingFlags() const LLVM_READONLY;
/// Drops flags that may cause this instruction to evaluate to poison despite
/// having non-poison inputs.
void dropPoisonGeneratingFlags();
/// Return true if this instruction has poison-generating metadata.
bool hasPoisonGeneratingMetadata() const LLVM_READONLY;
/// Drops metadata that may generate poison.
void dropPoisonGeneratingMetadata();
/// Return true if this instruction has poison-generating flags or metadata.
bool hasPoisonGeneratingFlagsOrMetadata() const {
return hasPoisonGeneratingFlags() || hasPoisonGeneratingMetadata();
}
/// Drops flags and metadata that may generate poison.
void dropPoisonGeneratingFlagsAndMetadata() {
dropPoisonGeneratingFlags();
dropPoisonGeneratingMetadata();
}
/// This function drops non-debug unknown metadata (through
/// dropUnknownNonDebugMetadata). For calls, it also drops parameter and
/// return attributes that can cause undefined behaviour. Both of these should
/// be done by passes which move instructions in IR.
void
dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {});
/// Determine whether the exact flag is set.
bool isExact() const LLVM_READONLY;
/// Set or clear all fast-math-flags on this instruction, which must be an
/// operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setFast(bool B);
/// Set or clear the reassociation flag on this instruction, which must be
/// an operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasAllowReassoc(bool B);
/// Set or clear the no-nans flag on this instruction, which must be an
/// operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasNoNaNs(bool B);
/// Set or clear the no-infs flag on this instruction, which must be an
/// operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasNoInfs(bool B);
/// Set or clear the no-signed-zeros flag on this instruction, which must be
/// an operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasNoSignedZeros(bool B);
/// Set or clear the allow-reciprocal flag on this instruction, which must be
/// an operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasAllowReciprocal(bool B);
/// Set or clear the allow-contract flag on this instruction, which must be
/// an operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasAllowContract(bool B);
/// Set or clear the approximate-math-functions flag on this instruction,
/// which must be an operator which supports this flag. See LangRef.html for
/// the meaning of this flag.
void setHasApproxFunc(bool B);
/// Convenience function for setting multiple fast-math flags on this
/// instruction, which must be an operator which supports these flags. See
/// LangRef.html for the meaning of these flags.
void setFastMathFlags(FastMathFlags FMF);
/// Convenience function for transferring all fast-math flag values to this
/// instruction, which must be an operator which supports these flags. See
/// LangRef.html for the meaning of these flags.
void copyFastMathFlags(FastMathFlags FMF);
/// Determine whether all fast-math-flags are set.
bool isFast() const LLVM_READONLY;
/// Determine whether the allow-reassociation flag is set.
bool hasAllowReassoc() const LLVM_READONLY;
/// Determine whether the no-NaNs flag is set.
bool hasNoNaNs() const LLVM_READONLY;
/// Determine whether the no-infs flag is set.
bool hasNoInfs() const LLVM_READONLY;
/// Determine whether the no-signed-zeros flag is set.
bool hasNoSignedZeros() const LLVM_READONLY;
/// Determine whether the allow-reciprocal flag is set.
bool hasAllowReciprocal() const LLVM_READONLY;
/// Determine whether the allow-contract flag is set.
bool hasAllowContract() const LLVM_READONLY;
/// Determine whether the approximate-math-functions flag is set.
bool hasApproxFunc() const LLVM_READONLY;
/// Convenience function for getting all the fast-math flags, which must be an
/// operator which supports these flags. See LangRef.html for the meaning of
/// these flags.
FastMathFlags getFastMathFlags() const LLVM_READONLY;
/// Copy I's fast-math flags
void copyFastMathFlags(const Instruction *I);
/// Convenience method to copy supported exact, fast-math, and (optionally)
/// wrapping flags from V to this instruction.
void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
/// Logical 'and' of any supported wrapping, exact, and fast-math flags of
/// V and this instruction.
void andIRFlags(const Value *V);
/// Merge 2 debug locations and apply it to the Instruction. If the
/// instruction is a CallIns, we need to traverse the inline chain to find
/// the common scope. This is not efficient for N-way merging as each time
/// you merge 2 iterations, you need to rebuild the hashmap to find the
/// common scope. However, we still choose this API because:
/// 1) Simplicity: it takes 2 locations instead of a list of locations.
/// 2) In worst case, it increases the complexity from O(N*I) to
/// O(2*N*I), where N is # of Instructions to merge, and I is the
/// maximum level of inline stack. So it is still linear.
/// 3) Merging of call instructions should be extremely rare in real
/// applications, thus the N-way merging should be in code path.
/// The DebugLoc attached to this instruction will be overwritten by the
/// merged DebugLoc.
void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
/// Updates the debug location given that the instruction has been hoisted
/// from a block to a predecessor of that block.
/// Note: it is undefined behavior to call this on an instruction not
/// currently inserted into a function.
void updateLocationAfterHoist();
/// Drop the instruction's debug location. This does not guarantee removal
/// of the !dbg source location attachment, as it must set a line 0 location
/// with scope information attached on call instructions. To guarantee
/// removal of the !dbg attachment, use the \ref setDebugLoc() API.
/// Note: it is undefined behavior to call this on an instruction not
/// currently inserted into a function.
void dropLocation();
/// Merge the DIAssignID metadata from this instruction and those attached to
/// instructions in \p SourceInstructions. This process performs a RAUW on
/// the MetadataAsValue uses of the merged DIAssignID nodes. Not every
/// instruction in \p SourceInstructions needs to have DIAssignID
/// metadata. If none of them do then nothing happens. If this instruction
/// does not have a DIAssignID attachment but at least one in \p
/// SourceInstructions does then the merged one will be attached to
/// it. However, instructions without attachments in \p SourceInstructions
/// are not modified.
void mergeDIAssignID(ArrayRef<const Instruction *> SourceInstructions);
private:
// These are all implemented in Metadata.cpp.
MDNode *getMetadataImpl(unsigned KindID) const;
MDNode *getMetadataImpl(StringRef Kind) const;
void
getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
/// Update the LLVMContext ID-to-Instruction(s) mapping. If \p ID is nullptr
/// then clear the mapping for this instruction.
void updateDIAssignIDMapping(DIAssignID *ID);
public:
//===--------------------------------------------------------------------===//
// Predicates and helper methods.
//===--------------------------------------------------------------------===//
/// Return true if the instruction is associative:
///
/// Associative operators satisfy: x op (y op z) === (x op y) op z
///
/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
///
bool isAssociative() const LLVM_READONLY;
static bool isAssociative(unsigned Opcode) {
return Opcode == And || Opcode == Or || Opcode == Xor ||
Opcode == Add || Opcode == Mul;
}
/// Return true if the instruction is commutative:
///
/// Commutative operators satisfy: (x op y) === (y op x)
///
/// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
/// applied to any type.
///
bool isCommutative() const LLVM_READONLY;
static bool isCommutative(unsigned Opcode) {
switch (Opcode) {
case Add: case FAdd:
case Mul: case FMul:
case And: case Or: case Xor:
return true;
default:
return false;
}
}
/// Return true if the instruction is idempotent:
///
/// Idempotent operators satisfy: x op x === x
///
/// In LLVM, the And and Or operators are idempotent.
///
bool isIdempotent() const { return isIdempotent(getOpcode()); }
static bool isIdempotent(unsigned Opcode) {
return Opcode == And || Opcode == Or;
}
/// Return true if the instruction is nilpotent:
///
/// Nilpotent operators satisfy: x op x === Id,
///
/// where Id is the identity for the operator, i.e. a constant such that
/// x op Id === x and Id op x === x for all x.
///
/// In LLVM, the Xor operator is nilpotent.
///
bool isNilpotent() const { return isNilpotent(getOpcode()); }
static bool isNilpotent(unsigned Opcode) {
return Opcode == Xor;
}
/// Return true if this instruction may modify memory.
bool mayWriteToMemory() const LLVM_READONLY;
/// Return true if this instruction may read memory.
bool mayReadFromMemory() const LLVM_READONLY;
/// Return true if this instruction may read or write memory.
bool mayReadOrWriteMemory() const {
return mayReadFromMemory() || mayWriteToMemory();
}
/// Return true if this instruction has an AtomicOrdering of unordered or
/// higher.
bool isAtomic() const LLVM_READONLY;
/// Return true if this atomic instruction loads from memory.
bool hasAtomicLoad() const LLVM_READONLY;
/// Return true if this atomic instruction stores to memory.
bool hasAtomicStore() const LLVM_READONLY;
/// Return true if this instruction has a volatile memory access.
bool isVolatile() const LLVM_READONLY;
/// Return true if this instruction may throw an exception.
bool mayThrow() const LLVM_READONLY;
/// Return true if this instruction behaves like a memory fence: it can load
/// or store to memory location without being given a memory location.
bool isFenceLike() const {
switch (getOpcode()) {
default:
return false;
// This list should be kept in sync with the list in mayWriteToMemory for
// all opcodes which don't have a memory location.
case Instruction::Fence:
case Instruction::CatchPad:
case Instruction::CatchRet:
case Instruction::Call:
case Instruction::Invoke:
return true;
}
}
/// Return true if the instruction may have side effects.
///
/// Side effects are:
/// * Writing to memory.
/// * Unwinding.
/// * Not returning (e.g. an infinite loop).
///
/// Note that this does not consider malloc and alloca to have side
/// effects because the newly allocated memory is completely invisible to
/// instructions which don't use the returned value. For cases where this
/// matters, isSafeToSpeculativelyExecute may be more appropriate.
bool mayHaveSideEffects() const LLVM_READONLY;
/// Return true if the instruction can be removed if the result is unused.
///
/// When constant folding some instructions cannot be removed even if their
/// results are unused. Specifically terminator instructions and calls that
/// may have side effects cannot be removed without semantically changing the
/// generated program.
bool isSafeToRemove() const LLVM_READONLY;
/// Return true if the instruction will return (unwinding is considered as
/// a form of returning control flow here).
bool willReturn() const LLVM_READONLY;
/// Return true if the instruction is a variety of EH-block.
bool isEHPad() const {
switch (getOpcode()) {
case Instruction::CatchSwitch:
case Instruction::CatchPad:
case Instruction::CleanupPad:
case Instruction::LandingPad:
return true;
default:
return false;
}
}
/// Return true if the instruction is a llvm.lifetime.start or
/// llvm.lifetime.end marker.
bool isLifetimeStartOrEnd() const LLVM_READONLY;
/// Return true if the instruction is a llvm.launder.invariant.group or
/// llvm.strip.invariant.group.
bool isLaunderOrStripInvariantGroup() const LLVM_READONLY;
/// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
bool isDebugOrPseudoInst() const LLVM_READONLY;
/// Return a pointer to the next non-debug instruction in the same basic
/// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
/// operations if \c SkipPseudoOp is true.
const Instruction *
getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
return const_cast<Instruction *>(
static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
SkipPseudoOp));
}
/// Return a pointer to the previous non-debug instruction in the same basic
/// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
/// operations if \c SkipPseudoOp is true.
const Instruction *
getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
return const_cast<Instruction *>(
static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
SkipPseudoOp));
}
/// Create a copy of 'this' instruction that is identical in all ways except
/// the following:
/// * The instruction has no parent
/// * The instruction has no name
///
Instruction *clone() const;
/// Return true if the specified instruction is exactly identical to the
/// current one. This means that all operands match and any extra information
/// (e.g. load is volatile) agree.
bool isIdenticalTo(const Instruction *I) const LLVM_READONLY;
/// This is like isIdenticalTo, except that it ignores the
/// SubclassOptionalData flags, which may specify conditions under which the
/// instruction's result is undefined.
bool isIdenticalToWhenDefined(const Instruction *I) const LLVM_READONLY;
/// When checking for operation equivalence (using isSameOperationAs) it is
/// sometimes useful to ignore certain attributes.
enum OperationEquivalenceFlags {
/// Check for equivalence ignoring load/store alignment.
CompareIgnoringAlignment = 1<<0,
/// Check for equivalence treating a type and a vector of that type
/// as equivalent.
CompareUsingScalarTypes = 1<<1
};
/// This function determines if the specified instruction executes the same
/// operation as the current one. This means that the opcodes, type, operand
/// types and any other factors affecting the operation must be the same. This
/// is similar to isIdenticalTo except the operands themselves don't have to
/// be identical.
/// @returns true if the specified instruction is the same operation as
/// the current one.
/// Determine if one instruction is the same operation as another.
bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const LLVM_READONLY;
/// Return true if there are any uses of this instruction in blocks other than
/// the specified block. Note that PHI nodes are considered to evaluate their
/// operands in the corresponding predecessor block.
bool isUsedOutsideOfBlock(const BasicBlock *BB) const LLVM_READONLY;
/// Return the number of successors that this instruction has. The instruction
/// must be a terminator.
unsigned getNumSuccessors() const LLVM_READONLY;
/// Return the specified successor. This instruction must be a terminator.
BasicBlock *getSuccessor(unsigned Idx) const LLVM_READONLY;
/// Update the specified successor to point at the provided block. This
/// instruction must be a terminator.
void setSuccessor(unsigned Idx, BasicBlock *BB);
/// Replace specified successor OldBB to point at the provided block.
/// This instruction must be a terminator.
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() >= Value::InstructionVal;
}
//----------------------------------------------------------------------
// Exported enumerations.
//
enum TermOps { // These terminate basic blocks
#define FIRST_TERM_INST(N) TermOpsBegin = N,
#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
#define LAST_TERM_INST(N) TermOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum UnaryOps {
#define FIRST_UNARY_INST(N) UnaryOpsBegin = N,
#define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
#define LAST_UNARY_INST(N) UnaryOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum BinaryOps {
#define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
#define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum MemoryOps {
#define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
#define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum CastOps {
#define FIRST_CAST_INST(N) CastOpsBegin = N,
#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
#define LAST_CAST_INST(N) CastOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum FuncletPadOps {
#define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
#define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum OtherOps {
#define FIRST_OTHER_INST(N) OtherOpsBegin = N,
#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
#define LAST_OTHER_INST(N) OtherOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
private:
friend class SymbolTableListTraits<Instruction>;
friend class BasicBlock; // For renumbering.
// Shadow Value::setValueSubclassData with a private forwarding method so that
// subclasses cannot accidentally use it.
void setValueSubclassData(unsigned short D) {
Value::setValueSubclassData(D);
}
unsigned short getSubclassDataFromValue() const {
return Value::getSubclassDataFromValue();
}
void setParent(BasicBlock *P);
protected:
// Instruction subclasses can stick up to 15 bits of stuff into the
// SubclassData field of instruction with these members.
template <typename BitfieldElement>
typename BitfieldElement::Type getSubclassData() const {
static_assert(
std::is_same<BitfieldElement, HasMetadataField>::value ||
!Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
"Must not overlap with the metadata bit");
return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
}
template <typename BitfieldElement>
void setSubclassData(typename BitfieldElement::Type Value) {
static_assert(
std::is_same<BitfieldElement, HasMetadataField>::value ||
!Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
"Must not overlap with the metadata bit");
auto Storage = getSubclassDataFromValue();
Bitfield::set<BitfieldElement>(Storage, Value);
setValueSubclassData(Storage);
}
Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
Instruction *InsertBefore = nullptr);
Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
BasicBlock *InsertAtEnd);
private:
/// Create a copy of this instruction.
Instruction *cloneImpl() const;
};
inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
V->deleteValue();
}
} // end namespace llvm
#endif // LLVM_IR_INSTRUCTION_H