//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains the declaration of the Instruction class, which is the
 
// base class for all of the LLVM instructions.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_INSTRUCTION_H
 
#define LLVM_IR_INSTRUCTION_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/Bitfields.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/ilist_node.h"
 
#include "llvm/IR/DebugLoc.h"
 
#include "llvm/IR/SymbolTableListTraits.h"
 
#include "llvm/IR/User.h"
 
#include "llvm/IR/Value.h"
 
#include "llvm/Support/AtomicOrdering.h"
 
#include <cstdint>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class BasicBlock;
 
class FastMathFlags;
 
class MDNode;
 
class Module;
 
struct AAMDNodes;
 
 
 
template <> struct ilist_alloc_traits<Instruction> {
 
  static inline void deleteNode(Instruction *V);
 
};
 
 
 
class Instruction : public User,
 
                    public ilist_node_with_parent<Instruction, BasicBlock> {
 
  BasicBlock *Parent;
 
  DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
 
 
 
  /// Relative order of this instruction in its parent basic block. Used for
 
  /// O(1) local dominance checks between instructions.
 
  mutable unsigned Order = 0;
 
 
 
protected:
 
  // The 15 first bits of `Value::SubclassData` are available for subclasses of
 
  // `Instruction` to use.
 
  using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
 
 
 
  // Template alias so that all Instruction storing alignment use the same
 
  // definiton.
 
  // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
 
  // 2^32. We store them as Log2(Alignment), so we need 6 bits to encode the 33
 
  // possible values.
 
  template <unsigned Offset>
 
  using AlignmentBitfieldElementT =
 
      typename Bitfield::Element<unsigned, Offset, 6,
 
                                 Value::MaxAlignmentExponent>;
 
 
 
  template <unsigned Offset>
 
  using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
 
 
 
  template <unsigned Offset>
 
  using AtomicOrderingBitfieldElementT =
 
      typename Bitfield::Element<AtomicOrdering, Offset, 3,
 
                                 AtomicOrdering::LAST>;
 
 
 
private:
 
  // The last bit is used to store whether the instruction has metadata attached
 
  // or not.
 
  using HasMetadataField = Bitfield::Element<bool, 15, 1>;
 
 
 
protected:
 
  ~Instruction(); // Use deleteValue() to delete a generic Instruction.
 
 
 
public:
 
  Instruction(const Instruction &) = delete;
 
  Instruction &operator=(const Instruction &) = delete;
 
 
 
  /// Specialize the methods defined in Value, as we know that an instruction
 
  /// can only be used by other instructions.
 
  Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
 
  const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
 
 
 
  inline const BasicBlock *getParent() const { return Parent; }
 
  inline       BasicBlock *getParent()       { return Parent; }
 
 
 
  /// Return the module owning the function this instruction belongs to
 
  /// or nullptr it the function does not have a module.
 
  ///
 
  /// Note: this is undefined behavior if the instruction does not have a
 
  /// parent, or the parent basic block does not have a parent function.
 
  const Module *getModule() const;
 
  Module *getModule() {
 
    return const_cast<Module *>(
 
                           static_cast<const Instruction *>(this)->getModule());
 
  }
 
 
 
  /// Return the function this instruction belongs to.
 
  ///
 
  /// Note: it is undefined behavior to call this on an instruction not
 
  /// currently inserted into a function.
 
  const Function *getFunction() const;
 
  Function *getFunction() {
 
    return const_cast<Function *>(
 
                         static_cast<const Instruction *>(this)->getFunction());
 
  }
 
 
 
  /// This method unlinks 'this' from the containing basic block, but does not
 
  /// delete it.
 
  void removeFromParent();
 
 
 
  /// This method unlinks 'this' from the containing basic block and deletes it.
 
  ///
 
  /// \returns an iterator pointing to the element after the erased one
 
  SymbolTableList<Instruction>::iterator eraseFromParent();
 
 
 
  /// Insert an unlinked instruction into a basic block immediately before
 
  /// the specified instruction.
 
  void insertBefore(Instruction *InsertPos);
 
 
 
  /// Insert an unlinked instruction into a basic block immediately after the
 
  /// specified instruction.
 
  void insertAfter(Instruction *InsertPos);
 
 
 
  /// Inserts an unlinked instruction into \p ParentBB at position \p It and
 
  /// returns the iterator of the inserted instruction.
 
  SymbolTableList<Instruction>::iterator
 
  insertInto(BasicBlock *ParentBB, SymbolTableList<Instruction>::iterator It);
 
 
 
  /// Unlink this instruction from its current basic block and insert it into
 
  /// the basic block that MovePos lives in, right before MovePos.
 
  void moveBefore(Instruction *MovePos);
 
 
 
  /// Unlink this instruction and insert into BB before I.
 
  ///
 
  /// \pre I is a valid iterator into BB.
 
  void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
 
 
 
  /// Unlink this instruction from its current basic block and insert it into
 
  /// the basic block that MovePos lives in, right after MovePos.
 
  void moveAfter(Instruction *MovePos);
 
 
 
  /// Given an instruction Other in the same basic block as this instruction,
 
  /// return true if this instruction comes before Other. In this worst case,
 
  /// this takes linear time in the number of instructions in the block. The
 
  /// results are cached, so in common cases when the block remains unmodified,
 
  /// it takes constant time.
 
  bool comesBefore(const Instruction *Other) const;
 
 
 
  /// Get the first insertion point at which the result of this instruction
 
  /// is defined. This is *not* the directly following instruction in a number
 
  /// of cases, e.g. phi nodes or terminators that return values. This function
 
  /// may return null if the insertion after the definition is not possible,
 
  /// e.g. due to a catchswitch terminator.
 
  Instruction *getInsertionPointAfterDef();
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Subclass classification.
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// Returns a member of one of the enums like Instruction::Add.
 
  unsigned getOpcode() const { return getValueID() - InstructionVal; }
 
 
 
  const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
 
  bool isTerminator() const { return isTerminator(getOpcode()); }
 
  bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
 
  bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
 
  bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
 
  bool isShift() const { return isShift(getOpcode()); }
 
  bool isCast() const { return isCast(getOpcode()); }
 
  bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
 
  bool isExceptionalTerminator() const {
 
    return isExceptionalTerminator(getOpcode());
 
  }
 
 
 
  /// It checks if this instruction is the only user of at least one of
 
  /// its operands.
 
  bool isOnlyUserOfAnyOperand();
 
 
 
  static const char* getOpcodeName(unsigned OpCode);
 
 
 
  static inline bool isTerminator(unsigned OpCode) {
 
    return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
 
  }
 
 
 
  static inline bool isUnaryOp(unsigned Opcode) {
 
    return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
 
  }
 
  static inline bool isBinaryOp(unsigned Opcode) {
 
    return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
 
  }
 
 
 
  static inline bool isIntDivRem(unsigned Opcode) {
 
    return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
 
  }
 
 
 
  /// Determine if the Opcode is one of the shift instructions.
 
  static inline bool isShift(unsigned Opcode) {
 
    return Opcode >= Shl && Opcode <= AShr;
 
  }
 
 
 
  /// Return true if this is a logical shift left or a logical shift right.
 
  inline bool isLogicalShift() const {
 
    return getOpcode() == Shl || getOpcode() == LShr;
 
  }
 
 
 
  /// Return true if this is an arithmetic shift right.
 
  inline bool isArithmeticShift() const {
 
    return getOpcode() == AShr;
 
  }
 
 
 
  /// Determine if the Opcode is and/or/xor.
 
  static inline bool isBitwiseLogicOp(unsigned Opcode) {
 
    return Opcode == And || Opcode == Or || Opcode == Xor;
 
  }
 
 
 
  /// Return true if this is and/or/xor.
 
  inline bool isBitwiseLogicOp() const {
 
    return isBitwiseLogicOp(getOpcode());
 
  }
 
 
 
  /// Determine if the OpCode is one of the CastInst instructions.
 
  static inline bool isCast(unsigned OpCode) {
 
    return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
 
  }
 
 
 
  /// Determine if the OpCode is one of the FuncletPadInst instructions.
 
  static inline bool isFuncletPad(unsigned OpCode) {
 
    return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
 
  }
 
 
 
  /// Returns true if the OpCode is a terminator related to exception handling.
 
  static inline bool isExceptionalTerminator(unsigned OpCode) {
 
    switch (OpCode) {
 
    case Instruction::CatchSwitch:
 
    case Instruction::CatchRet:
 
    case Instruction::CleanupRet:
 
    case Instruction::Invoke:
 
    case Instruction::Resume:
 
      return true;
 
    default:
 
      return false;
 
    }
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Metadata manipulation.
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// Return true if this instruction has any metadata attached to it.
 
  bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
 
 
 
  /// Return true if this instruction has metadata attached to it other than a
 
  /// debug location.
 
  bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
 
 
 
  /// Return true if this instruction has the given type of metadata attached.
 
  bool hasMetadata(unsigned KindID) const {
 
    return getMetadata(KindID) != nullptr;
 
  }
 
 
 
  /// Return true if this instruction has the given type of metadata attached.
 
  bool hasMetadata(StringRef Kind) const {
 
    return getMetadata(Kind) != nullptr;
 
  }
 
 
 
  /// Get the metadata of given kind attached to this Instruction.
 
  /// If the metadata is not found then return null.
 
  MDNode *getMetadata(unsigned KindID) const {
 
    if (!hasMetadata()) return nullptr;
 
    return getMetadataImpl(KindID);
 
  }
 
 
 
  /// Get the metadata of given kind attached to this Instruction.
 
  /// If the metadata is not found then return null.
 
  MDNode *getMetadata(StringRef Kind) const {
 
    if (!hasMetadata()) return nullptr;
 
    return getMetadataImpl(Kind);
 
  }
 
 
 
  /// Get all metadata attached to this Instruction. The first element of each
 
  /// pair returned is the KindID, the second element is the metadata value.
 
  /// This list is returned sorted by the KindID.
 
  void
 
  getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
 
    if (hasMetadata())
 
      getAllMetadataImpl(MDs);
 
  }
 
 
 
  /// This does the same thing as getAllMetadata, except that it filters out the
 
  /// debug location.
 
  void getAllMetadataOtherThanDebugLoc(
 
      SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
 
    Value::getAllMetadata(MDs);
 
  }
 
 
 
  /// Set the metadata of the specified kind to the specified node. This updates
 
  /// or replaces metadata if already present, or removes it if Node is null.
 
  void setMetadata(unsigned KindID, MDNode *Node);
 
  void setMetadata(StringRef Kind, MDNode *Node);
 
 
 
  /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
 
  /// specifies the list of meta data that needs to be copied. If \p WL is
 
  /// empty, all meta data will be copied.
 
  void copyMetadata(const Instruction &SrcInst,
 
                    ArrayRef<unsigned> WL = ArrayRef<unsigned>());
 
 
 
  /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
 
  /// has three operands (including name string), swap the order of the
 
  /// metadata.
 
  void swapProfMetadata();
 
 
 
  /// Drop all unknown metadata except for debug locations.
 
  /// @{
 
  /// Passes are required to drop metadata they don't understand. This is a
 
  /// convenience method for passes to do so.
 
  /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of
 
  /// this API if the Instruction being modified is a call.
 
  void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
 
  void dropUnknownNonDebugMetadata() {
 
    return dropUnknownNonDebugMetadata(std::nullopt);
 
  }
 
  void dropUnknownNonDebugMetadata(unsigned ID1) {
 
    return dropUnknownNonDebugMetadata(ArrayRef(ID1));
 
  }
 
  void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
 
    unsigned IDs[] = {ID1, ID2};
 
    return dropUnknownNonDebugMetadata(IDs);
 
  }
 
  /// @}
 
 
 
  /// Adds an !annotation metadata node with \p Annotation to this instruction.
 
  /// If this instruction already has !annotation metadata, append \p Annotation
 
  /// to the existing node.
 
  void addAnnotationMetadata(StringRef Annotation);
 
 
 
  /// Returns the AA metadata for this instruction.
 
  AAMDNodes getAAMetadata() const;
 
 
 
  /// Sets the AA metadata on this instruction from the AAMDNodes structure.
 
  void setAAMetadata(const AAMDNodes &N);
 
 
 
  /// Retrieve total raw weight values of a branch.
 
  /// Returns true on success with profile total weights filled in.
 
  /// Returns false if no metadata was found.
 
  bool extractProfTotalWeight(uint64_t &TotalVal) const;
 
 
 
  /// Set the debug location information for this instruction.
 
  void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
 
 
 
  /// Return the debug location for this node as a DebugLoc.
 
  const DebugLoc &getDebugLoc() const { return DbgLoc; }
 
 
 
  /// Set or clear the nuw flag on this instruction, which must be an operator
 
  /// which supports this flag. See LangRef.html for the meaning of this flag.
 
  void setHasNoUnsignedWrap(bool b = true);
 
 
 
  /// Set or clear the nsw flag on this instruction, which must be an operator
 
  /// which supports this flag. See LangRef.html for the meaning of this flag.
 
  void setHasNoSignedWrap(bool b = true);
 
 
 
  /// Set or clear the exact flag on this instruction, which must be an operator
 
  /// which supports this flag. See LangRef.html for the meaning of this flag.
 
  void setIsExact(bool b = true);
 
 
 
  /// Determine whether the no unsigned wrap flag is set.
 
  bool hasNoUnsignedWrap() const LLVM_READONLY;
 
 
 
  /// Determine whether the no signed wrap flag is set.
 
  bool hasNoSignedWrap() const LLVM_READONLY;
 
 
 
  /// Return true if this operator has flags which may cause this instruction
 
  /// to evaluate to poison despite having non-poison inputs.
 
  bool hasPoisonGeneratingFlags() const LLVM_READONLY;
 
 
 
  /// Drops flags that may cause this instruction to evaluate to poison despite
 
  /// having non-poison inputs.
 
  void dropPoisonGeneratingFlags();
 
 
 
  /// Return true if this instruction has poison-generating metadata.
 
  bool hasPoisonGeneratingMetadata() const LLVM_READONLY;
 
 
 
  /// Drops metadata that may generate poison.
 
  void dropPoisonGeneratingMetadata();
 
 
 
  /// Return true if this instruction has poison-generating flags or metadata.
 
  bool hasPoisonGeneratingFlagsOrMetadata() const {
 
    return hasPoisonGeneratingFlags() || hasPoisonGeneratingMetadata();
 
  }
 
 
 
  /// Drops flags and metadata that may generate poison.
 
  void dropPoisonGeneratingFlagsAndMetadata() {
 
    dropPoisonGeneratingFlags();
 
    dropPoisonGeneratingMetadata();
 
  }
 
 
 
  /// This function drops non-debug unknown metadata (through
 
  /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and 
 
  /// return attributes that can cause undefined behaviour. Both of these should
 
  /// be done by passes which move instructions in IR.
 
  void
 
  dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {});
 
 
 
  /// Determine whether the exact flag is set.
 
  bool isExact() const LLVM_READONLY;
 
 
 
  /// Set or clear all fast-math-flags on this instruction, which must be an
 
  /// operator which supports this flag. See LangRef.html for the meaning of
 
  /// this flag.
 
  void setFast(bool B);
 
 
 
  /// Set or clear the reassociation flag on this instruction, which must be
 
  /// an operator which supports this flag. See LangRef.html for the meaning of
 
  /// this flag.
 
  void setHasAllowReassoc(bool B);
 
 
 
  /// Set or clear the no-nans flag on this instruction, which must be an
 
  /// operator which supports this flag. See LangRef.html for the meaning of
 
  /// this flag.
 
  void setHasNoNaNs(bool B);
 
 
 
  /// Set or clear the no-infs flag on this instruction, which must be an
 
  /// operator which supports this flag. See LangRef.html for the meaning of
 
  /// this flag.
 
  void setHasNoInfs(bool B);
 
 
 
  /// Set or clear the no-signed-zeros flag on this instruction, which must be
 
  /// an operator which supports this flag. See LangRef.html for the meaning of
 
  /// this flag.
 
  void setHasNoSignedZeros(bool B);
 
 
 
  /// Set or clear the allow-reciprocal flag on this instruction, which must be
 
  /// an operator which supports this flag. See LangRef.html for the meaning of
 
  /// this flag.
 
  void setHasAllowReciprocal(bool B);
 
 
 
  /// Set or clear the allow-contract flag on this instruction, which must be
 
  /// an operator which supports this flag. See LangRef.html for the meaning of
 
  /// this flag.
 
  void setHasAllowContract(bool B);
 
 
 
  /// Set or clear the approximate-math-functions flag on this instruction,
 
  /// which must be an operator which supports this flag. See LangRef.html for
 
  /// the meaning of this flag.
 
  void setHasApproxFunc(bool B);
 
 
 
  /// Convenience function for setting multiple fast-math flags on this
 
  /// instruction, which must be an operator which supports these flags. See
 
  /// LangRef.html for the meaning of these flags.
 
  void setFastMathFlags(FastMathFlags FMF);
 
 
 
  /// Convenience function for transferring all fast-math flag values to this
 
  /// instruction, which must be an operator which supports these flags. See
 
  /// LangRef.html for the meaning of these flags.
 
  void copyFastMathFlags(FastMathFlags FMF);
 
 
 
  /// Determine whether all fast-math-flags are set.
 
  bool isFast() const LLVM_READONLY;
 
 
 
  /// Determine whether the allow-reassociation flag is set.
 
  bool hasAllowReassoc() const LLVM_READONLY;
 
 
 
  /// Determine whether the no-NaNs flag is set.
 
  bool hasNoNaNs() const LLVM_READONLY;
 
 
 
  /// Determine whether the no-infs flag is set.
 
  bool hasNoInfs() const LLVM_READONLY;
 
 
 
  /// Determine whether the no-signed-zeros flag is set.
 
  bool hasNoSignedZeros() const LLVM_READONLY;
 
 
 
  /// Determine whether the allow-reciprocal flag is set.
 
  bool hasAllowReciprocal() const LLVM_READONLY;
 
 
 
  /// Determine whether the allow-contract flag is set.
 
  bool hasAllowContract() const LLVM_READONLY;
 
 
 
  /// Determine whether the approximate-math-functions flag is set.
 
  bool hasApproxFunc() const LLVM_READONLY;
 
 
 
  /// Convenience function for getting all the fast-math flags, which must be an
 
  /// operator which supports these flags. See LangRef.html for the meaning of
 
  /// these flags.
 
  FastMathFlags getFastMathFlags() const LLVM_READONLY;
 
 
 
  /// Copy I's fast-math flags
 
  void copyFastMathFlags(const Instruction *I);
 
 
 
  /// Convenience method to copy supported exact, fast-math, and (optionally)
 
  /// wrapping flags from V to this instruction.
 
  void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
 
 
 
  /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
 
  /// V and this instruction.
 
  void andIRFlags(const Value *V);
 
 
 
  /// Merge 2 debug locations and apply it to the Instruction. If the
 
  /// instruction is a CallIns, we need to traverse the inline chain to find
 
  /// the common scope. This is not efficient for N-way merging as each time
 
  /// you merge 2 iterations, you need to rebuild the hashmap to find the
 
  /// common scope. However, we still choose this API because:
 
  ///  1) Simplicity: it takes 2 locations instead of a list of locations.
 
  ///  2) In worst case, it increases the complexity from O(N*I) to
 
  ///     O(2*N*I), where N is # of Instructions to merge, and I is the
 
  ///     maximum level of inline stack. So it is still linear.
 
  ///  3) Merging of call instructions should be extremely rare in real
 
  ///     applications, thus the N-way merging should be in code path.
 
  /// The DebugLoc attached to this instruction will be overwritten by the
 
  /// merged DebugLoc.
 
  void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
 
 
 
  /// Updates the debug location given that the instruction has been hoisted
 
  /// from a block to a predecessor of that block.
 
  /// Note: it is undefined behavior to call this on an instruction not
 
  /// currently inserted into a function.
 
  void updateLocationAfterHoist();
 
 
 
  /// Drop the instruction's debug location. This does not guarantee removal
 
  /// of the !dbg source location attachment, as it must set a line 0 location
 
  /// with scope information attached on call instructions. To guarantee
 
  /// removal of the !dbg attachment, use the \ref setDebugLoc() API.
 
  /// Note: it is undefined behavior to call this on an instruction not
 
  /// currently inserted into a function.
 
  void dropLocation();
 
 
 
  /// Merge the DIAssignID metadata from this instruction and those attached to
 
  /// instructions in \p SourceInstructions. This process performs a RAUW on
 
  /// the MetadataAsValue uses of the merged DIAssignID nodes. Not every
 
  /// instruction in \p SourceInstructions needs to have DIAssignID
 
  /// metadata. If none of them do then nothing happens. If this instruction
 
  /// does not have a DIAssignID attachment but at least one in \p
 
  /// SourceInstructions does then the merged one will be attached to
 
  /// it. However, instructions without attachments in \p SourceInstructions
 
  /// are not modified.
 
  void mergeDIAssignID(ArrayRef<const Instruction *> SourceInstructions);
 
 
 
private:
 
  // These are all implemented in Metadata.cpp.
 
  MDNode *getMetadataImpl(unsigned KindID) const;
 
  MDNode *getMetadataImpl(StringRef Kind) const;
 
  void
 
  getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
 
 
 
  /// Update the LLVMContext ID-to-Instruction(s) mapping. If \p ID is nullptr
 
  /// then clear the mapping for this instruction.
 
  void updateDIAssignIDMapping(DIAssignID *ID);
 
 
 
public:
 
  //===--------------------------------------------------------------------===//
 
  // Predicates and helper methods.
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// Return true if the instruction is associative:
 
  ///
 
  ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
 
  ///
 
  /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
 
  ///
 
  bool isAssociative() const LLVM_READONLY;
 
  static bool isAssociative(unsigned Opcode) {
 
    return Opcode == And || Opcode == Or || Opcode == Xor ||
 
           Opcode == Add || Opcode == Mul;
 
  }
 
 
 
  /// Return true if the instruction is commutative:
 
  ///
 
  ///   Commutative operators satisfy: (x op y) === (y op x)
 
  ///
 
  /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
 
  /// applied to any type.
 
  ///
 
  bool isCommutative() const LLVM_READONLY;
 
  static bool isCommutative(unsigned Opcode) {
 
    switch (Opcode) {
 
    case Add: case FAdd:
 
    case Mul: case FMul:
 
    case And: case Or: case Xor:
 
      return true;
 
    default:
 
      return false;
 
  }
 
  }
 
 
 
  /// Return true if the instruction is idempotent:
 
  ///
 
  ///   Idempotent operators satisfy:  x op x === x
 
  ///
 
  /// In LLVM, the And and Or operators are idempotent.
 
  ///
 
  bool isIdempotent() const { return isIdempotent(getOpcode()); }
 
  static bool isIdempotent(unsigned Opcode) {
 
    return Opcode == And || Opcode == Or;
 
  }
 
 
 
  /// Return true if the instruction is nilpotent:
 
  ///
 
  ///   Nilpotent operators satisfy:  x op x === Id,
 
  ///
 
  ///   where Id is the identity for the operator, i.e. a constant such that
 
  ///     x op Id === x and Id op x === x for all x.
 
  ///
 
  /// In LLVM, the Xor operator is nilpotent.
 
  ///
 
  bool isNilpotent() const { return isNilpotent(getOpcode()); }
 
  static bool isNilpotent(unsigned Opcode) {
 
    return Opcode == Xor;
 
  }
 
 
 
  /// Return true if this instruction may modify memory.
 
  bool mayWriteToMemory() const LLVM_READONLY;
 
 
 
  /// Return true if this instruction may read memory.
 
  bool mayReadFromMemory() const LLVM_READONLY;
 
 
 
  /// Return true if this instruction may read or write memory.
 
  bool mayReadOrWriteMemory() const {
 
    return mayReadFromMemory() || mayWriteToMemory();
 
  }
 
 
 
  /// Return true if this instruction has an AtomicOrdering of unordered or
 
  /// higher.
 
  bool isAtomic() const LLVM_READONLY;
 
 
 
  /// Return true if this atomic instruction loads from memory.
 
  bool hasAtomicLoad() const LLVM_READONLY;
 
 
 
  /// Return true if this atomic instruction stores to memory.
 
  bool hasAtomicStore() const LLVM_READONLY;
 
 
 
  /// Return true if this instruction has a volatile memory access.
 
  bool isVolatile() const LLVM_READONLY;
 
 
 
  /// Return true if this instruction may throw an exception.
 
  bool mayThrow() const LLVM_READONLY;
 
 
 
  /// Return true if this instruction behaves like a memory fence: it can load
 
  /// or store to memory location without being given a memory location.
 
  bool isFenceLike() const {
 
    switch (getOpcode()) {
 
    default:
 
      return false;
 
    // This list should be kept in sync with the list in mayWriteToMemory for
 
    // all opcodes which don't have a memory location.
 
    case Instruction::Fence:
 
    case Instruction::CatchPad:
 
    case Instruction::CatchRet:
 
    case Instruction::Call:
 
    case Instruction::Invoke:
 
      return true;
 
    }
 
  }
 
 
 
  /// Return true if the instruction may have side effects.
 
  ///
 
  /// Side effects are:
 
  ///  * Writing to memory.
 
  ///  * Unwinding.
 
  ///  * Not returning (e.g. an infinite loop).
 
  ///
 
  /// Note that this does not consider malloc and alloca to have side
 
  /// effects because the newly allocated memory is completely invisible to
 
  /// instructions which don't use the returned value.  For cases where this
 
  /// matters, isSafeToSpeculativelyExecute may be more appropriate.
 
  bool mayHaveSideEffects() const LLVM_READONLY;
 
 
 
  /// Return true if the instruction can be removed if the result is unused.
 
  ///
 
  /// When constant folding some instructions cannot be removed even if their
 
  /// results are unused. Specifically terminator instructions and calls that
 
  /// may have side effects cannot be removed without semantically changing the
 
  /// generated program.
 
  bool isSafeToRemove() const LLVM_READONLY;
 
 
 
  /// Return true if the instruction will return (unwinding is considered as
 
  /// a form of returning control flow here).
 
  bool willReturn() const LLVM_READONLY;
 
 
 
  /// Return true if the instruction is a variety of EH-block.
 
  bool isEHPad() const {
 
    switch (getOpcode()) {
 
    case Instruction::CatchSwitch:
 
    case Instruction::CatchPad:
 
    case Instruction::CleanupPad:
 
    case Instruction::LandingPad:
 
      return true;
 
    default:
 
      return false;
 
    }
 
  }
 
 
 
  /// Return true if the instruction is a llvm.lifetime.start or
 
  /// llvm.lifetime.end marker.
 
  bool isLifetimeStartOrEnd() const LLVM_READONLY;
 
 
 
  /// Return true if the instruction is a llvm.launder.invariant.group or
 
  /// llvm.strip.invariant.group.
 
  bool isLaunderOrStripInvariantGroup() const LLVM_READONLY;
 
 
 
  /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
 
  bool isDebugOrPseudoInst() const LLVM_READONLY;
 
 
 
  /// Return a pointer to the next non-debug instruction in the same basic
 
  /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
 
  /// operations if \c SkipPseudoOp is true.
 
  const Instruction *
 
  getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
 
  Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
 
    return const_cast<Instruction *>(
 
        static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
 
            SkipPseudoOp));
 
  }
 
 
 
  /// Return a pointer to the previous non-debug instruction in the same basic
 
  /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
 
  /// operations if \c SkipPseudoOp is true.
 
  const Instruction *
 
  getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
 
  Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
 
    return const_cast<Instruction *>(
 
        static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
 
            SkipPseudoOp));
 
  }
 
 
 
  /// Create a copy of 'this' instruction that is identical in all ways except
 
  /// the following:
 
  ///   * The instruction has no parent
 
  ///   * The instruction has no name
 
  ///
 
  Instruction *clone() const;
 
 
 
  /// Return true if the specified instruction is exactly identical to the
 
  /// current one. This means that all operands match and any extra information
 
  /// (e.g. load is volatile) agree.
 
  bool isIdenticalTo(const Instruction *I) const LLVM_READONLY;
 
 
 
  /// This is like isIdenticalTo, except that it ignores the
 
  /// SubclassOptionalData flags, which may specify conditions under which the
 
  /// instruction's result is undefined.
 
  bool isIdenticalToWhenDefined(const Instruction *I) const LLVM_READONLY;
 
 
 
  /// When checking for operation equivalence (using isSameOperationAs) it is
 
  /// sometimes useful to ignore certain attributes.
 
  enum OperationEquivalenceFlags {
 
    /// Check for equivalence ignoring load/store alignment.
 
    CompareIgnoringAlignment = 1<<0,
 
    /// Check for equivalence treating a type and a vector of that type
 
    /// as equivalent.
 
    CompareUsingScalarTypes = 1<<1
 
  };
 
 
 
  /// This function determines if the specified instruction executes the same
 
  /// operation as the current one. This means that the opcodes, type, operand
 
  /// types and any other factors affecting the operation must be the same. This
 
  /// is similar to isIdenticalTo except the operands themselves don't have to
 
  /// be identical.
 
  /// @returns true if the specified instruction is the same operation as
 
  /// the current one.
 
  /// Determine if one instruction is the same operation as another.
 
  bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const LLVM_READONLY;
 
 
 
  /// Return true if there are any uses of this instruction in blocks other than
 
  /// the specified block. Note that PHI nodes are considered to evaluate their
 
  /// operands in the corresponding predecessor block.
 
  bool isUsedOutsideOfBlock(const BasicBlock *BB) const LLVM_READONLY;
 
 
 
  /// Return the number of successors that this instruction has. The instruction
 
  /// must be a terminator.
 
  unsigned getNumSuccessors() const LLVM_READONLY;
 
 
 
  /// Return the specified successor. This instruction must be a terminator.
 
  BasicBlock *getSuccessor(unsigned Idx) const LLVM_READONLY;
 
 
 
  /// Update the specified successor to point at the provided block. This
 
  /// instruction must be a terminator.
 
  void setSuccessor(unsigned Idx, BasicBlock *BB);
 
 
 
  /// Replace specified successor OldBB to point at the provided block.
 
  /// This instruction must be a terminator.
 
  void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const Value *V) {
 
    return V->getValueID() >= Value::InstructionVal;
 
  }
 
 
 
  //----------------------------------------------------------------------
 
  // Exported enumerations.
 
  //
 
  enum TermOps {       // These terminate basic blocks
 
#define  FIRST_TERM_INST(N)             TermOpsBegin = N,
 
#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
 
#define   LAST_TERM_INST(N)             TermOpsEnd = N+1
 
#include "llvm/IR/Instruction.def"
 
  };
 
 
 
  enum UnaryOps {
 
#define  FIRST_UNARY_INST(N)             UnaryOpsBegin = N,
 
#define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
 
#define   LAST_UNARY_INST(N)             UnaryOpsEnd = N+1
 
#include "llvm/IR/Instruction.def"
 
  };
 
 
 
  enum BinaryOps {
 
#define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
 
#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
 
#define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
 
#include "llvm/IR/Instruction.def"
 
  };
 
 
 
  enum MemoryOps {
 
#define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
 
#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
 
#define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
 
#include "llvm/IR/Instruction.def"
 
  };
 
 
 
  enum CastOps {
 
#define  FIRST_CAST_INST(N)             CastOpsBegin = N,
 
#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
 
#define   LAST_CAST_INST(N)             CastOpsEnd = N+1
 
#include "llvm/IR/Instruction.def"
 
  };
 
 
 
  enum FuncletPadOps {
 
#define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
 
#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
 
#define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
 
#include "llvm/IR/Instruction.def"
 
  };
 
 
 
  enum OtherOps {
 
#define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
 
#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
 
#define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
 
#include "llvm/IR/Instruction.def"
 
  };
 
 
 
private:
 
  friend class SymbolTableListTraits<Instruction>;
 
  friend class BasicBlock; // For renumbering.
 
 
 
  // Shadow Value::setValueSubclassData with a private forwarding method so that
 
  // subclasses cannot accidentally use it.
 
  void setValueSubclassData(unsigned short D) {
 
    Value::setValueSubclassData(D);
 
  }
 
 
 
  unsigned short getSubclassDataFromValue() const {
 
    return Value::getSubclassDataFromValue();
 
  }
 
 
 
  void setParent(BasicBlock *P);
 
 
 
protected:
 
  // Instruction subclasses can stick up to 15 bits of stuff into the
 
  // SubclassData field of instruction with these members.
 
 
 
  template <typename BitfieldElement>
 
  typename BitfieldElement::Type getSubclassData() const {
 
    static_assert(
 
        std::is_same<BitfieldElement, HasMetadataField>::value ||
 
            !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
 
        "Must not overlap with the metadata bit");
 
    return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
 
  }
 
 
 
  template <typename BitfieldElement>
 
  void setSubclassData(typename BitfieldElement::Type Value) {
 
    static_assert(
 
        std::is_same<BitfieldElement, HasMetadataField>::value ||
 
            !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
 
        "Must not overlap with the metadata bit");
 
    auto Storage = getSubclassDataFromValue();
 
    Bitfield::set<BitfieldElement>(Storage, Value);
 
    setValueSubclassData(Storage);
 
  }
 
 
 
  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
 
              Instruction *InsertBefore = nullptr);
 
  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
 
              BasicBlock *InsertAtEnd);
 
 
 
private:
 
  /// Create a copy of this instruction.
 
  Instruction *cloneImpl() const;
 
};
 
 
 
inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
 
  V->deleteValue();
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_INSTRUCTION_H