//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the IRBuilder class, which is used as a convenient way
// to create LLVM instructions with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_IRBUILDER_H
#define LLVM_IR_IRBUILDER_H
#include "llvm-c/Types.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantFolder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/FPEnv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstdint>
#include <functional>
#include <optional>
#include <utility>
namespace llvm {
class APInt;
class Use;
/// This provides the default implementation of the IRBuilder
/// 'InsertHelper' method that is called whenever an instruction is created by
/// IRBuilder and needs to be inserted.
///
/// By default, this inserts the instruction at the insertion point.
class IRBuilderDefaultInserter {
public:
virtual ~IRBuilderDefaultInserter();
virtual void InsertHelper(Instruction *I, const Twine &Name,
BasicBlock *BB,
BasicBlock::iterator InsertPt) const {
if (BB)
I->insertInto(BB, InsertPt);
I->setName(Name);
}
};
/// Provides an 'InsertHelper' that calls a user-provided callback after
/// performing the default insertion.
class IRBuilderCallbackInserter : public IRBuilderDefaultInserter {
std::function<void(Instruction *)> Callback;
public:
~IRBuilderCallbackInserter() override;
IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
: Callback(std::move(Callback)) {}
void InsertHelper(Instruction *I, const Twine &Name,
BasicBlock *BB,
BasicBlock::iterator InsertPt) const override {
IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
Callback(I);
}
};
/// Common base class shared among various IRBuilders.
class IRBuilderBase {
/// Pairs of (metadata kind, MDNode *) that should be added to all newly
/// created instructions, like !dbg metadata.
SmallVector<std::pair<unsigned, MDNode *>, 2> MetadataToCopy;
/// Add or update the an entry (Kind, MD) to MetadataToCopy, if \p MD is not
/// null. If \p MD is null, remove the entry with \p Kind.
void AddOrRemoveMetadataToCopy(unsigned Kind, MDNode *MD) {
if (!MD) {
erase_if(MetadataToCopy, [Kind](const std::pair<unsigned, MDNode *> &KV) {
return KV.first == Kind;
});
return;
}
for (auto &KV : MetadataToCopy)
if (KV.first == Kind) {
KV.second = MD;
return;
}
MetadataToCopy.emplace_back(Kind, MD);
}
protected:
BasicBlock *BB;
BasicBlock::iterator InsertPt;
LLVMContext &Context;
const IRBuilderFolder &Folder;
const IRBuilderDefaultInserter &Inserter;
MDNode *DefaultFPMathTag;
FastMathFlags FMF;
bool IsFPConstrained = false;
fp::ExceptionBehavior DefaultConstrainedExcept = fp::ebStrict;
RoundingMode DefaultConstrainedRounding = RoundingMode::Dynamic;
ArrayRef<OperandBundleDef> DefaultOperandBundles;
public:
IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder,
const IRBuilderDefaultInserter &Inserter, MDNode *FPMathTag,
ArrayRef<OperandBundleDef> OpBundles)
: Context(context), Folder(Folder), Inserter(Inserter),
DefaultFPMathTag(FPMathTag), DefaultOperandBundles(OpBundles) {
ClearInsertionPoint();
}
/// Insert and return the specified instruction.
template<typename InstTy>
InstTy *Insert(InstTy *I, const Twine &Name = "") const {
Inserter.InsertHelper(I, Name, BB, InsertPt);
AddMetadataToInst(I);
return I;
}
/// No-op overload to handle constants.
Constant *Insert(Constant *C, const Twine& = "") const {
return C;
}
Value *Insert(Value *V, const Twine &Name = "") const {
if (Instruction *I = dyn_cast<Instruction>(V))
return Insert(I, Name);
assert(isa<Constant>(V));
return V;
}
//===--------------------------------------------------------------------===//
// Builder configuration methods
//===--------------------------------------------------------------------===//
/// Clear the insertion point: created instructions will not be
/// inserted into a block.
void ClearInsertionPoint() {
BB = nullptr;
InsertPt = BasicBlock::iterator();
}
BasicBlock *GetInsertBlock() const { return BB; }
BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
LLVMContext &getContext() const { return Context; }
/// This specifies that created instructions should be appended to the
/// end of the specified block.
void SetInsertPoint(BasicBlock *TheBB) {
BB = TheBB;
InsertPt = BB->end();
}
/// This specifies that created instructions should be inserted before
/// the specified instruction.
void SetInsertPoint(Instruction *I) {
BB = I->getParent();
InsertPt = I->getIterator();
assert(InsertPt != BB->end() && "Can't read debug loc from end()");
SetCurrentDebugLocation(I->getDebugLoc());
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
if (IP != TheBB->end())
SetCurrentDebugLocation(IP->getDebugLoc());
}
/// This specifies that created instructions should inserted at the beginning
/// end of the specified function, but after already existing static alloca
/// instructions that are at the start.
void SetInsertPointPastAllocas(Function *F) {
BB = &F->getEntryBlock();
InsertPt = BB->getFirstNonPHIOrDbgOrAlloca();
}
/// Set location information used by debugging information.
void SetCurrentDebugLocation(DebugLoc L) {
AddOrRemoveMetadataToCopy(LLVMContext::MD_dbg, L.getAsMDNode());
}
/// Collect metadata with IDs \p MetadataKinds from \p Src which should be
/// added to all created instructions. Entries present in MedataDataToCopy but
/// not on \p Src will be dropped from MetadataToCopy.
void CollectMetadataToCopy(Instruction *Src,
ArrayRef<unsigned> MetadataKinds) {
for (unsigned K : MetadataKinds)
AddOrRemoveMetadataToCopy(K, Src->getMetadata(K));
}
/// Get location information used by debugging information.
DebugLoc getCurrentDebugLocation() const;
/// If this builder has a current debug location, set it on the
/// specified instruction.
void SetInstDebugLocation(Instruction *I) const;
/// Add all entries in MetadataToCopy to \p I.
void AddMetadataToInst(Instruction *I) const {
for (const auto &KV : MetadataToCopy)
I->setMetadata(KV.first, KV.second);
}
/// Get the return type of the current function that we're emitting
/// into.
Type *getCurrentFunctionReturnType() const;
/// InsertPoint - A saved insertion point.
class InsertPoint {
BasicBlock *Block = nullptr;
BasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
InsertPoint() = default;
/// Creates a new insertion point at the given location.
InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return (Block != nullptr); }
BasicBlock *getBlock() const { return Block; }
BasicBlock::iterator getPoint() const { return Point; }
};
/// Returns the current insert point.
InsertPoint saveIP() const {
return InsertPoint(GetInsertBlock(), GetInsertPoint());
}
/// Returns the current insert point, clearing it in the process.
InsertPoint saveAndClearIP() {
InsertPoint IP(GetInsertBlock(), GetInsertPoint());
ClearInsertionPoint();
return IP;
}
/// Sets the current insert point to a previously-saved location.
void restoreIP(InsertPoint IP) {
if (IP.isSet())
SetInsertPoint(IP.getBlock(), IP.getPoint());
else
ClearInsertionPoint();
}
/// Get the floating point math metadata being used.
MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
/// Get the flags to be applied to created floating point ops
FastMathFlags getFastMathFlags() const { return FMF; }
FastMathFlags &getFastMathFlags() { return FMF; }
/// Clear the fast-math flags.
void clearFastMathFlags() { FMF.clear(); }
/// Set the floating point math metadata to be used.
void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
/// Set the fast-math flags to be used with generated fp-math operators
void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
/// Enable/Disable use of constrained floating point math. When
/// enabled the CreateF<op>() calls instead create constrained
/// floating point intrinsic calls. Fast math flags are unaffected
/// by this setting.
void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; }
/// Query for the use of constrained floating point math
bool getIsFPConstrained() { return IsFPConstrained; }
/// Set the exception handling to be used with constrained floating point
void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) {
#ifndef NDEBUG
std::optional<StringRef> ExceptStr =
convertExceptionBehaviorToStr(NewExcept);
assert(ExceptStr && "Garbage strict exception behavior!");
#endif
DefaultConstrainedExcept = NewExcept;
}
/// Set the rounding mode handling to be used with constrained floating point
void setDefaultConstrainedRounding(RoundingMode NewRounding) {
#ifndef NDEBUG
std::optional<StringRef> RoundingStr =
convertRoundingModeToStr(NewRounding);
assert(RoundingStr && "Garbage strict rounding mode!");
#endif
DefaultConstrainedRounding = NewRounding;
}
/// Get the exception handling used with constrained floating point
fp::ExceptionBehavior getDefaultConstrainedExcept() {
return DefaultConstrainedExcept;
}
/// Get the rounding mode handling used with constrained floating point
RoundingMode getDefaultConstrainedRounding() {
return DefaultConstrainedRounding;
}
void setConstrainedFPFunctionAttr() {
assert(BB && "Must have a basic block to set any function attributes!");
Function *F = BB->getParent();
if (!F->hasFnAttribute(Attribute::StrictFP)) {
F->addFnAttr(Attribute::StrictFP);
}
}
void setConstrainedFPCallAttr(CallBase *I) {
I->addFnAttr(Attribute::StrictFP);
}
void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) {
DefaultOperandBundles = OpBundles;
}
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
// RAII object that stores the current insertion point and restores it
// when the object is destroyed. This includes the debug location.
class InsertPointGuard {
IRBuilderBase &Builder;
AssertingVH<BasicBlock> Block;
BasicBlock::iterator Point;
DebugLoc DbgLoc;
public:
InsertPointGuard(IRBuilderBase &B)
: Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
DbgLoc(B.getCurrentDebugLocation()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() {
Builder.restoreIP(InsertPoint(Block, Point));
Builder.SetCurrentDebugLocation(DbgLoc);
}
};
// RAII object that stores the current fast math settings and restores
// them when the object is destroyed.
class FastMathFlagGuard {
IRBuilderBase &Builder;
FastMathFlags FMF;
MDNode *FPMathTag;
bool IsFPConstrained;
fp::ExceptionBehavior DefaultConstrainedExcept;
RoundingMode DefaultConstrainedRounding;
public:
FastMathFlagGuard(IRBuilderBase &B)
: Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag),
IsFPConstrained(B.IsFPConstrained),
DefaultConstrainedExcept(B.DefaultConstrainedExcept),
DefaultConstrainedRounding(B.DefaultConstrainedRounding) {}
FastMathFlagGuard(const FastMathFlagGuard &) = delete;
FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
~FastMathFlagGuard() {
Builder.FMF = FMF;
Builder.DefaultFPMathTag = FPMathTag;
Builder.IsFPConstrained = IsFPConstrained;
Builder.DefaultConstrainedExcept = DefaultConstrainedExcept;
Builder.DefaultConstrainedRounding = DefaultConstrainedRounding;
}
};
// RAII object that stores the current default operand bundles and restores
// them when the object is destroyed.
class OperandBundlesGuard {
IRBuilderBase &Builder;
ArrayRef<OperandBundleDef> DefaultOperandBundles;
public:
OperandBundlesGuard(IRBuilderBase &B)
: Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {}
OperandBundlesGuard(const OperandBundlesGuard &) = delete;
OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete;
~OperandBundlesGuard() {
Builder.DefaultOperandBundles = DefaultOperandBundles;
}
};
//===--------------------------------------------------------------------===//
// Miscellaneous creation methods.
//===--------------------------------------------------------------------===//
/// Make a new global variable with initializer type i8*
///
/// Make a new global variable with an initializer that has array of i8 type
/// filled in with the null terminated string value specified. The new global
/// variable will be marked mergable with any others of the same contents. If
/// Name is specified, it is the name of the global variable created.
///
/// If no module is given via \p M, it is take from the insertion point basic
/// block.
GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
unsigned AddressSpace = 0,
Module *M = nullptr);
/// Get a constant value representing either true or false.
ConstantInt *getInt1(bool V) {
return ConstantInt::get(getInt1Ty(), V);
}
/// Get the constant value for i1 true.
ConstantInt *getTrue() {
return ConstantInt::getTrue(Context);
}
/// Get the constant value for i1 false.
ConstantInt *getFalse() {
return ConstantInt::getFalse(Context);
}
/// Get a constant 8-bit value.
ConstantInt *getInt8(uint8_t C) {
return ConstantInt::get(getInt8Ty(), C);
}
/// Get a constant 16-bit value.
ConstantInt *getInt16(uint16_t C) {
return ConstantInt::get(getInt16Ty(), C);
}
/// Get a constant 32-bit value.
ConstantInt *getInt32(uint32_t C) {
return ConstantInt::get(getInt32Ty(), C);
}
/// Get a constant 64-bit value.
ConstantInt *getInt64(uint64_t C) {
return ConstantInt::get(getInt64Ty(), C);
}
/// Get a constant N-bit value, zero extended or truncated from
/// a 64-bit value.
ConstantInt *getIntN(unsigned N, uint64_t C) {
return ConstantInt::get(getIntNTy(N), C);
}
/// Get a constant integer value.
ConstantInt *getInt(const APInt &AI) {
return ConstantInt::get(Context, AI);
}
//===--------------------------------------------------------------------===//
// Type creation methods
//===--------------------------------------------------------------------===//
/// Fetch the type representing a single bit
IntegerType *getInt1Ty() {
return Type::getInt1Ty(Context);
}
/// Fetch the type representing an 8-bit integer.
IntegerType *getInt8Ty() {
return Type::getInt8Ty(Context);
}
/// Fetch the type representing a 16-bit integer.
IntegerType *getInt16Ty() {
return Type::getInt16Ty(Context);
}
/// Fetch the type representing a 32-bit integer.
IntegerType *getInt32Ty() {
return Type::getInt32Ty(Context);
}
/// Fetch the type representing a 64-bit integer.
IntegerType *getInt64Ty() {
return Type::getInt64Ty(Context);
}
/// Fetch the type representing a 128-bit integer.
IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
/// Fetch the type representing an N-bit integer.
IntegerType *getIntNTy(unsigned N) {
return Type::getIntNTy(Context, N);
}
/// Fetch the type representing a 16-bit floating point value.
Type *getHalfTy() {
return Type::getHalfTy(Context);
}
/// Fetch the type representing a 16-bit brain floating point value.
Type *getBFloatTy() {
return Type::getBFloatTy(Context);
}
/// Fetch the type representing a 32-bit floating point value.
Type *getFloatTy() {
return Type::getFloatTy(Context);
}
/// Fetch the type representing a 64-bit floating point value.
Type *getDoubleTy() {
return Type::getDoubleTy(Context);
}
/// Fetch the type representing void.
Type *getVoidTy() {
return Type::getVoidTy(Context);
}
/// Fetch the type representing a pointer.
PointerType *getPtrTy(unsigned AddrSpace = 0) {
return PointerType::get(Context, AddrSpace);
}
/// Fetch the type representing a pointer to an 8-bit integer value.
PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
return Type::getInt8PtrTy(Context, AddrSpace);
}
/// Fetch the type of an integer with size at least as big as that of a
/// pointer in the given address space.
IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
return DL.getIntPtrType(Context, AddrSpace);
}
//===--------------------------------------------------------------------===//
// Intrinsic creation methods
//===--------------------------------------------------------------------===//
/// Create and insert a memset to the specified pointer and the
/// specified value.
///
/// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
/// specified, it will be added to the instruction. Likewise with alias.scope
/// and noalias tags.
CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size,
MaybeAlign Align, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr) {
return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
TBAATag, ScopeTag, NoAliasTag);
}
CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align,
bool isVolatile = false, MDNode *TBAATag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
CallInst *CreateMemSetInline(Value *Dst, MaybeAlign DstAlign, Value *Val,
Value *Size, bool IsVolatile = false,
MDNode *TBAATag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
/// Create and insert an element unordered-atomic memset of the region of
/// memory starting at the given pointer to the given value.
///
/// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
/// specified, it will be added to the instruction. Likewise with alias.scope
/// and noalias tags.
CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
uint64_t Size, Align Alignment,
uint32_t ElementSize,
MDNode *TBAATag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr) {
return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
Align(Alignment), ElementSize,
TBAATag, ScopeTag, NoAliasTag);
}
CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
Value *Size, Align Alignment,
uint32_t ElementSize,
MDNode *TBAATag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
/// Create and insert a memcpy between the specified pointers.
///
/// If the pointers aren't i8*, they will be converted. If a TBAA tag is
/// specified, it will be added to the instruction. Likewise with alias.scope
/// and noalias tags.
CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
MaybeAlign SrcAlign, uint64_t Size,
bool isVolatile = false, MDNode *TBAATag = nullptr,
MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr) {
return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
isVolatile, TBAATag, TBAAStructTag, ScopeTag,
NoAliasTag);
}
CallInst *CreateMemTransferInst(
Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
MaybeAlign SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
MaybeAlign SrcAlign, Value *Size,
bool isVolatile = false, MDNode *TBAATag = nullptr,
MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr) {
return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src,
SrcAlign, Size, isVolatile, TBAATag,
TBAAStructTag, ScopeTag, NoAliasTag);
}
CallInst *
CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src,
MaybeAlign SrcAlign, Value *Size, bool IsVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
/// Create and insert an element unordered-atomic memcpy between the
/// specified pointers.
///
/// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
///
/// If the pointers aren't i8*, they will be converted. If a TBAA tag is
/// specified, it will be added to the instruction. Likewise with alias.scope
/// and noalias tags.
CallInst *CreateElementUnorderedAtomicMemCpy(
Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
uint32_t ElementSize, MDNode *TBAATag = nullptr,
MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
MaybeAlign SrcAlign, uint64_t Size,
bool isVolatile = false, MDNode *TBAATag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr) {
return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
isVolatile, TBAATag, ScopeTag, NoAliasTag);
}
CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
MaybeAlign SrcAlign, Value *Size,
bool isVolatile = false, MDNode *TBAATag = nullptr,
MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
/// \brief Create and insert an element unordered-atomic memmove between the
/// specified pointers.
///
/// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
/// respectively.
///
/// If the pointers aren't i8*, they will be converted. If a TBAA tag is
/// specified, it will be added to the instruction. Likewise with alias.scope
/// and noalias tags.
CallInst *CreateElementUnorderedAtomicMemMove(
Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
uint32_t ElementSize, MDNode *TBAATag = nullptr,
MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
MDNode *NoAliasTag = nullptr);
private:
CallInst *getReductionIntrinsic(Intrinsic::ID ID, Value *Src);
public:
/// Create a sequential vector fadd reduction intrinsic of the source vector.
/// The first parameter is a scalar accumulator value. An unordered reduction
/// can be created by adding the reassoc fast-math flag to the resulting
/// sequential reduction.
CallInst *CreateFAddReduce(Value *Acc, Value *Src);
/// Create a sequential vector fmul reduction intrinsic of the source vector.
/// The first parameter is a scalar accumulator value. An unordered reduction
/// can be created by adding the reassoc fast-math flag to the resulting
/// sequential reduction.
CallInst *CreateFMulReduce(Value *Acc, Value *Src);
/// Create a vector int add reduction intrinsic of the source vector.
CallInst *CreateAddReduce(Value *Src);
/// Create a vector int mul reduction intrinsic of the source vector.
CallInst *CreateMulReduce(Value *Src);
/// Create a vector int AND reduction intrinsic of the source vector.
CallInst *CreateAndReduce(Value *Src);
/// Create a vector int OR reduction intrinsic of the source vector.
CallInst *CreateOrReduce(Value *Src);
/// Create a vector int XOR reduction intrinsic of the source vector.
CallInst *CreateXorReduce(Value *Src);
/// Create a vector integer max reduction intrinsic of the source
/// vector.
CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
/// Create a vector integer min reduction intrinsic of the source
/// vector.
CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
/// Create a vector float max reduction intrinsic of the source
/// vector.
CallInst *CreateFPMaxReduce(Value *Src);
/// Create a vector float min reduction intrinsic of the source
/// vector.
CallInst *CreateFPMinReduce(Value *Src);
/// Create a lifetime.start intrinsic.
///
/// If the pointer isn't i8* it will be converted.
CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
/// Create a lifetime.end intrinsic.
///
/// If the pointer isn't i8* it will be converted.
CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
/// Create a call to invariant.start intrinsic.
///
/// If the pointer isn't i8* it will be converted.
CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
/// Create a call to llvm.threadlocal.address intrinsic.
CallInst *CreateThreadLocalAddress(Value *Ptr);
/// Create a call to Masked Load intrinsic
CallInst *CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask,
Value *PassThru = nullptr, const Twine &Name = "");
/// Create a call to Masked Store intrinsic
CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment,
Value *Mask);
/// Create a call to Masked Gather intrinsic
CallInst *CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr,
const Twine &Name = "");
/// Create a call to Masked Scatter intrinsic
CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment,
Value *Mask = nullptr);
/// Create a call to Masked Expand Load intrinsic
CallInst *CreateMaskedExpandLoad(Type *Ty, Value *Ptr, Value *Mask = nullptr,
Value *PassThru = nullptr,
const Twine &Name = "");
/// Create a call to Masked Compress Store intrinsic
CallInst *CreateMaskedCompressStore(Value *Val, Value *Ptr,
Value *Mask = nullptr);
/// Create an assume intrinsic call that allows the optimizer to
/// assume that the provided condition will be true.
///
/// The optional argument \p OpBundles specifies operand bundles that are
/// added to the call instruction.
CallInst *
CreateAssumption(Value *Cond,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt);
/// Create a llvm.experimental.noalias.scope.decl intrinsic call.
Instruction *CreateNoAliasScopeDeclaration(Value *Scope);
Instruction *CreateNoAliasScopeDeclaration(MDNode *ScopeTag) {
return CreateNoAliasScopeDeclaration(
MetadataAsValue::get(Context, ScopeTag));
}
/// Create a call to the experimental.gc.statepoint intrinsic to
/// start a new statepoint sequence.
CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
FunctionCallee ActualCallee,
ArrayRef<Value *> CallArgs,
std::optional<ArrayRef<Value *>> DeoptArgs,
ArrayRef<Value *> GCArgs,
const Twine &Name = "");
/// Create a call to the experimental.gc.statepoint intrinsic to
/// start a new statepoint sequence.
CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
FunctionCallee ActualCallee, uint32_t Flags,
ArrayRef<Value *> CallArgs,
std::optional<ArrayRef<Use>> TransitionArgs,
std::optional<ArrayRef<Use>> DeoptArgs,
ArrayRef<Value *> GCArgs,
const Twine &Name = "");
/// Conveninence function for the common case when CallArgs are filled
/// in using ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
/// .get()'ed to get the Value pointer.
CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
FunctionCallee ActualCallee,
ArrayRef<Use> CallArgs,
std::optional<ArrayRef<Value *>> DeoptArgs,
ArrayRef<Value *> GCArgs,
const Twine &Name = "");
/// Create an invoke to the experimental.gc.statepoint intrinsic to
/// start a new statepoint sequence.
InvokeInst *
CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
FunctionCallee ActualInvokee, BasicBlock *NormalDest,
BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
std::optional<ArrayRef<Value *>> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name = "");
/// Create an invoke to the experimental.gc.statepoint intrinsic to
/// start a new statepoint sequence.
InvokeInst *CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs,
std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
const Twine &Name = "");
// Convenience function for the common case when CallArgs are filled in using
// ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
// get the Value *.
InvokeInst *
CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
FunctionCallee ActualInvokee, BasicBlock *NormalDest,
BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
std::optional<ArrayRef<Value *>> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name = "");
/// Create a call to the experimental.gc.result intrinsic to extract
/// the result from a call wrapped in a statepoint.
CallInst *CreateGCResult(Instruction *Statepoint,
Type *ResultType,
const Twine &Name = "");
/// Create a call to the experimental.gc.relocate intrinsics to
/// project the relocated value of one pointer from the statepoint.
CallInst *CreateGCRelocate(Instruction *Statepoint,
int BaseOffset,
int DerivedOffset,
Type *ResultType,
const Twine &Name = "");
/// Create a call to the experimental.gc.pointer.base intrinsic to get the
/// base pointer for the specified derived pointer.
CallInst *CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name = "");
/// Create a call to the experimental.gc.get.pointer.offset intrinsic to get
/// the offset of the specified derived pointer from its base.
CallInst *CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name = "");
/// Create a call to llvm.vscale, multiplied by \p Scaling. The type of VScale
/// will be the same type as that of \p Scaling.
Value *CreateVScale(Constant *Scaling, const Twine &Name = "");
/// Creates a vector of type \p DstType with the linear sequence <0, 1, ...>
Value *CreateStepVector(Type *DstType, const Twine &Name = "");
/// Create a call to intrinsic \p ID with 1 operand which is mangled on its
/// type.
CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
Instruction *FMFSource = nullptr,
const Twine &Name = "");
/// Create a call to intrinsic \p ID with 2 operands which is mangled on the
/// first type.
CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
Instruction *FMFSource = nullptr,
const Twine &Name = "");
/// Create a call to intrinsic \p ID with \p Args, mangled using \p Types. If
/// \p FMFSource is provided, copy fast-math-flags from that instruction to
/// the intrinsic.
CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
ArrayRef<Value *> Args,
Instruction *FMFSource = nullptr,
const Twine &Name = "");
/// Create a call to intrinsic \p ID with \p RetTy and \p Args. If
/// \p FMFSource is provided, copy fast-math-flags from that instruction to
/// the intrinsic.
CallInst *CreateIntrinsic(Type *RetTy, Intrinsic::ID ID,
ArrayRef<Value *> Args,
Instruction *FMFSource = nullptr,
const Twine &Name = "");
/// Create call to the minnum intrinsic.
CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
}
/// Create call to the maxnum intrinsic.
CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
}
/// Create call to the minimum intrinsic.
CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
}
/// Create call to the maximum intrinsic.
CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
}
/// Create call to the copysign intrinsic.
CallInst *CreateCopySign(Value *LHS, Value *RHS,
Instruction *FMFSource = nullptr,
const Twine &Name = "") {
return CreateBinaryIntrinsic(Intrinsic::copysign, LHS, RHS, FMFSource,
Name);
}
/// Create a call to the arithmetic_fence intrinsic.
CallInst *CreateArithmeticFence(Value *Val, Type *DstType,
const Twine &Name = "") {
return CreateIntrinsic(Intrinsic::arithmetic_fence, DstType, Val, nullptr,
Name);
}
/// Create a call to the vector.extract intrinsic.
CallInst *CreateExtractVector(Type *DstType, Value *SrcVec, Value *Idx,
const Twine &Name = "") {
return CreateIntrinsic(Intrinsic::vector_extract,
{DstType, SrcVec->getType()}, {SrcVec, Idx}, nullptr,
Name);
}
/// Create a call to the vector.insert intrinsic.
CallInst *CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec,
Value *Idx, const Twine &Name = "") {
return CreateIntrinsic(Intrinsic::vector_insert,
{DstType, SubVec->getType()}, {SrcVec, SubVec, Idx},
nullptr, Name);
}
private:
/// Create a call to a masked intrinsic with given Id.
CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
ArrayRef<Type *> OverloadedTypes,
const Twine &Name = "");
Value *getCastedInt8PtrValue(Value *Ptr);
//===--------------------------------------------------------------------===//
// Instruction creation methods: Terminators
//===--------------------------------------------------------------------===//
private:
/// Helper to add branch weight and unpredictable metadata onto an
/// instruction.
/// \returns The annotated instruction.
template <typename InstTy>
InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
if (Weights)
I->setMetadata(LLVMContext::MD_prof, Weights);
if (Unpredictable)
I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
return I;
}
public:
/// Create a 'ret void' instruction.
ReturnInst *CreateRetVoid() {
return Insert(ReturnInst::Create(Context));
}
/// Create a 'ret <val>' instruction.
ReturnInst *CreateRet(Value *V) {
return Insert(ReturnInst::Create(Context, V));
}
/// Create a sequence of N insertvalue instructions,
/// with one Value from the retVals array each, that build a aggregate
/// return value one value at a time, and a ret instruction to return
/// the resulting aggregate value.
///
/// This is a convenience function for code that uses aggregate return values
/// as a vehicle for having multiple return values.
ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
Value *V = PoisonValue::get(getCurrentFunctionReturnType());
for (unsigned i = 0; i != N; ++i)
V = CreateInsertValue(V, retVals[i], i, "mrv");
return Insert(ReturnInst::Create(Context, V));
}
/// Create an unconditional 'br label X' instruction.
BranchInst *CreateBr(BasicBlock *Dest) {
return Insert(BranchInst::Create(Dest));
}
/// Create a conditional 'br Cond, TrueDest, FalseDest'
/// instruction.
BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
MDNode *BranchWeights = nullptr,
MDNode *Unpredictable = nullptr) {
return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
BranchWeights, Unpredictable));
}
/// Create a conditional 'br Cond, TrueDest, FalseDest'
/// instruction. Copy branch meta data if available.
BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
Instruction *MDSrc) {
BranchInst *Br = BranchInst::Create(True, False, Cond);
if (MDSrc) {
unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
Br->copyMetadata(*MDSrc, WL);
}
return Insert(Br);
}
/// Create a switch instruction with the specified value, default dest,
/// and with a hint for the number of cases that will be added (for efficient
/// allocation).
SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
MDNode *BranchWeights = nullptr,
MDNode *Unpredictable = nullptr) {
return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
BranchWeights, Unpredictable));
}
/// Create an indirect branch instruction with the specified address
/// operand, with an optional hint for the number of destinations that will be
/// added (for efficient allocation).
IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
return Insert(IndirectBrInst::Create(Addr, NumDests));
}
/// Create an invoke instruction.
InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
BasicBlock *NormalDest, BasicBlock *UnwindDest,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> OpBundles,
const Twine &Name = "") {
InvokeInst *II =
InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles);
if (IsFPConstrained)
setConstrainedFPCallAttr(II);
return Insert(II, Name);
}
InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
BasicBlock *NormalDest, BasicBlock *UnwindDest,
ArrayRef<Value *> Args = std::nullopt,
const Twine &Name = "") {
InvokeInst *II =
InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args);
if (IsFPConstrained)
setConstrainedFPCallAttr(II);
return Insert(II, Name);
}
InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
BasicBlock *UnwindDest, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> OpBundles,
const Twine &Name = "") {
return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
NormalDest, UnwindDest, Args, OpBundles, Name);
}
InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
BasicBlock *UnwindDest,
ArrayRef<Value *> Args = std::nullopt,
const Twine &Name = "") {
return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
NormalDest, UnwindDest, Args, Name);
}
/// \brief Create a callbr instruction.
CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args = std::nullopt,
const Twine &Name = "") {
return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
Args), Name);
}
CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> OpBundles,
const Twine &Name = "") {
return Insert(
CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
OpBundles), Name);
}
CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args = std::nullopt,
const Twine &Name = "") {
return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
DefaultDest, IndirectDests, Args, Name);
}
CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> OpBundles,
const Twine &Name = "") {
return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
DefaultDest, IndirectDests, Args, Name);
}
ResumeInst *CreateResume(Value *Exn) {
return Insert(ResumeInst::Create(Exn));
}
CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
BasicBlock *UnwindBB = nullptr) {
return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
}
CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
unsigned NumHandlers,
const Twine &Name = "") {
return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
Name);
}
CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
const Twine &Name = "") {
return Insert(CatchPadInst::Create(ParentPad, Args), Name);
}
CleanupPadInst *CreateCleanupPad(Value *ParentPad,
ArrayRef<Value *> Args = std::nullopt,
const Twine &Name = "") {
return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
}
CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
return Insert(CatchReturnInst::Create(CatchPad, BB));
}
UnreachableInst *CreateUnreachable() {
return Insert(new UnreachableInst(Context));
}
//===--------------------------------------------------------------------===//
// Instruction creation methods: Binary Operators
//===--------------------------------------------------------------------===//
private:
BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
Value *LHS, Value *RHS,
const Twine &Name,
bool HasNUW, bool HasNSW) {
BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
if (HasNUW) BO->setHasNoUnsignedWrap();
if (HasNSW) BO->setHasNoSignedWrap();
return BO;
}
Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
FastMathFlags FMF) const {
if (!FPMD)
FPMD = DefaultFPMathTag;
if (FPMD)
I->setMetadata(LLVMContext::MD_fpmath, FPMD);
I->setFastMathFlags(FMF);
return I;
}
Value *getConstrainedFPRounding(std::optional<RoundingMode> Rounding) {
RoundingMode UseRounding = DefaultConstrainedRounding;
if (Rounding)
UseRounding = *Rounding;
std::optional<StringRef> RoundingStr =
convertRoundingModeToStr(UseRounding);
assert(RoundingStr && "Garbage strict rounding mode!");
auto *RoundingMDS = MDString::get(Context, *RoundingStr);
return MetadataAsValue::get(Context, RoundingMDS);
}
Value *getConstrainedFPExcept(std::optional<fp::ExceptionBehavior> Except) {
std::optional<StringRef> ExceptStr = convertExceptionBehaviorToStr(
Except.value_or(DefaultConstrainedExcept));
assert(ExceptStr && "Garbage strict exception behavior!");
auto *ExceptMDS = MDString::get(Context, *ExceptStr);
return MetadataAsValue::get(Context, ExceptMDS);
}
Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) {
assert(CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE &&
Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!");
StringRef PredicateStr = CmpInst::getPredicateName(Predicate);
auto *PredicateMDS = MDString::get(Context, PredicateStr);
return MetadataAsValue::get(Context, PredicateMDS);
}
public:
Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
bool HasNUW = false, bool HasNSW = false) {
if (Value *V =
Folder.FoldNoWrapBinOp(Instruction::Add, LHS, RHS, HasNUW, HasNSW))
return V;
return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name, HasNUW,
HasNSW);
}
Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateAdd(LHS, RHS, Name, false, true);
}
Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateAdd(LHS, RHS, Name, true, false);
}
Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
bool HasNUW = false, bool HasNSW = false) {
if (Value *V =
Folder.FoldNoWrapBinOp(Instruction::Sub, LHS, RHS, HasNUW, HasNSW))
return V;
return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name, HasNUW,
HasNSW);
}
Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateSub(LHS, RHS, Name, false, true);
}
Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateSub(LHS, RHS, Name, true, false);
}
Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
bool HasNUW = false, bool HasNSW = false) {
if (Value *V =
Folder.FoldNoWrapBinOp(Instruction::Mul, LHS, RHS, HasNUW, HasNSW))
return V;
return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name, HasNUW,
HasNSW);
}
Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateMul(LHS, RHS, Name, false, true);
}
Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateMul(LHS, RHS, Name, true, false);
}
Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
bool isExact = false) {
if (Value *V = Folder.FoldExactBinOp(Instruction::UDiv, LHS, RHS, isExact))
return V;
if (!isExact)
return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
}
Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateUDiv(LHS, RHS, Name, true);
}
Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
bool isExact = false) {
if (Value *V = Folder.FoldExactBinOp(Instruction::SDiv, LHS, RHS, isExact))
return V;
if (!isExact)
return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
}
Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateSDiv(LHS, RHS, Name, true);
}
Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
if (Value *V = Folder.FoldBinOp(Instruction::URem, LHS, RHS))
return V;
return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
}
Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
if (Value *V = Folder.FoldBinOp(Instruction::SRem, LHS, RHS))
return V;
return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
}
Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
bool HasNUW = false, bool HasNSW = false) {
if (Value *V =
Folder.FoldNoWrapBinOp(Instruction::Shl, LHS, RHS, HasNUW, HasNSW))
return V;
return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
HasNUW, HasNSW);
}
Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
bool HasNUW = false, bool HasNSW = false) {
return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
HasNUW, HasNSW);
}
Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
bool HasNUW = false, bool HasNSW = false) {
return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
HasNUW, HasNSW);
}
Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
bool isExact = false) {
if (Value *V = Folder.FoldExactBinOp(Instruction::LShr, LHS, RHS, isExact))
return V;
if (!isExact)
return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
}
Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
bool isExact = false) {
return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
}
Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
bool isExact = false) {
return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
}
Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
bool isExact = false) {
if (Value *V = Folder.FoldExactBinOp(Instruction::AShr, LHS, RHS, isExact))
return V;
if (!isExact)
return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
}
Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
bool isExact = false) {
return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
}
Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
bool isExact = false) {
return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
}
Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
if (auto *V = Folder.FoldBinOp(Instruction::And, LHS, RHS))
return V;
return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
}
Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
}
Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
}
Value *CreateAnd(ArrayRef<Value*> Ops) {
assert(!Ops.empty());
Value *Accum = Ops[0];
for (unsigned i = 1; i < Ops.size(); i++)
Accum = CreateAnd(Accum, Ops[i]);
return Accum;
}
Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
if (auto *V = Folder.FoldBinOp(Instruction::Or, LHS, RHS))
return V;
return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
}
Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
}
Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
}
Value *CreateOr(ArrayRef<Value*> Ops) {
assert(!Ops.empty());
Value *Accum = Ops[0];
for (unsigned i = 1; i < Ops.size(); i++)
Accum = CreateOr(Accum, Ops[i]);
return Accum;
}
Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
if (Value *V = Folder.FoldBinOp(Instruction::Xor, LHS, RHS))
return V;
return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
}
Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
}
Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
}
Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
MDNode *FPMD = nullptr) {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
L, R, nullptr, Name, FPMD);
if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
return Insert(I, Name);
}
/// Copy fast-math-flags from an instruction rather than using the builder's
/// default FMF.
Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
L, R, FMFSource, Name);
FastMathFlags FMF = FMFSource->getFastMathFlags();
if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr, FMF);
return Insert(I, Name);
}
Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
MDNode *FPMD = nullptr) {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
L, R, nullptr, Name, FPMD);
if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
return Insert(I, Name);
}
/// Copy fast-math-flags from an instruction rather than using the builder's
/// default FMF.
Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
L, R, FMFSource, Name);
FastMathFlags FMF = FMFSource->getFastMathFlags();
if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr, FMF);
return Insert(I, Name);
}
Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
MDNode *FPMD = nullptr) {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
L, R, nullptr, Name, FPMD);
if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
return Insert(I, Name);
}
/// Copy fast-math-flags from an instruction rather than using the builder's
/// default FMF.
Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
L, R, FMFSource, Name);
FastMathFlags FMF = FMFSource->getFastMathFlags();
if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr, FMF);
return Insert(I, Name);
}
Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
MDNode *FPMD = nullptr) {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
L, R, nullptr, Name, FPMD);
if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
return Insert(I, Name);
}
/// Copy fast-math-flags from an instruction rather than using the builder's
/// default FMF.
Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
L, R, FMFSource, Name);
FastMathFlags FMF = FMFSource->getFastMathFlags();
if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF))
return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr, FMF);
return Insert(I, Name);
}
Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
MDNode *FPMD = nullptr) {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
L, R, nullptr, Name, FPMD);
if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
return Insert(I, Name);
}
/// Copy fast-math-flags from an instruction rather than using the builder's
/// default FMF.
Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
L, R, FMFSource, Name);
FastMathFlags FMF = FMFSource->getFastMathFlags();
if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V;
Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr, FMF);
return Insert(I, Name);
}
Value *CreateBinOp(Instruction::BinaryOps Opc,
Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
if (Value *V = Folder.FoldBinOp(Opc, LHS, RHS)) return V;
Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
if (isa<FPMathOperator>(BinOp))
setFPAttrs(BinOp, FPMathTag, FMF);
return Insert(BinOp, Name);
}
Value *CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name = "") {
assert(Cond2->getType()->isIntOrIntVectorTy(1));
return CreateSelect(Cond1, Cond2,
ConstantInt::getNullValue(Cond2->getType()), Name);
}
Value *CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name = "") {
assert(Cond2->getType()->isIntOrIntVectorTy(1));
return CreateSelect(Cond1, ConstantInt::getAllOnesValue(Cond2->getType()),
Cond2, Name);
}
Value *CreateLogicalOp(Instruction::BinaryOps Opc, Value *Cond1, Value *Cond2,
const Twine &Name = "") {
switch (Opc) {
case Instruction::And:
return CreateLogicalAnd(Cond1, Cond2, Name);
case Instruction::Or:
return CreateLogicalOr(Cond1, Cond2, Name);
default:
break;
}
llvm_unreachable("Not a logical operation.");
}
// NOTE: this is sequential, non-commutative, ordered reduction!
Value *CreateLogicalOr(ArrayRef<Value *> Ops) {
assert(!Ops.empty());
Value *Accum = Ops[0];
for (unsigned i = 1; i < Ops.size(); i++)
Accum = CreateLogicalOr(Accum, Ops[i]);
return Accum;
}
CallInst *CreateConstrainedFPBinOp(
Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr,
const Twine &Name = "", MDNode *FPMathTag = nullptr,
std::optional<RoundingMode> Rounding = std::nullopt,
std::optional<fp::ExceptionBehavior> Except = std::nullopt);
Value *CreateNeg(Value *V, const Twine &Name = "", bool HasNUW = false,
bool HasNSW = false) {
return CreateSub(Constant::getNullValue(V->getType()), V, Name, HasNUW,
HasNSW);
}
Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
return CreateNeg(V, Name, false, true);
}
Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
return CreateNeg(V, Name, true, false);
}
Value *CreateFNeg(Value *V, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF))
return Res;
return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF),
Name);
}
/// Copy fast-math-flags from an instruction rather than using the builder's
/// default FMF.
Value *CreateFNegFMF(Value *V, Instruction *FMFSource,
const Twine &Name = "") {
FastMathFlags FMF = FMFSource->getFastMathFlags();
if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF))
return Res;
return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr, FMF),
Name);
}
Value *CreateNot(Value *V, const Twine &Name = "") {
return CreateXor(V, Constant::getAllOnesValue(V->getType()), Name);
}
Value *CreateUnOp(Instruction::UnaryOps Opc,
Value *V, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
if (Value *Res = Folder.FoldUnOpFMF(Opc, V, FMF))
return Res;
Instruction *UnOp = UnaryOperator::Create(Opc, V);
if (isa<FPMathOperator>(UnOp))
setFPAttrs(UnOp, FPMathTag, FMF);
return Insert(UnOp, Name);
}
/// Create either a UnaryOperator or BinaryOperator depending on \p Opc.
/// Correct number of operands must be passed accordingly.
Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
const Twine &Name = "", MDNode *FPMathTag = nullptr);
//===--------------------------------------------------------------------===//
// Instruction creation methods: Memory Instructions
//===--------------------------------------------------------------------===//
AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
Value *ArraySize = nullptr, const Twine &Name = "") {
const DataLayout &DL = BB->getModule()->getDataLayout();
Align AllocaAlign = DL.getPrefTypeAlign(Ty);
return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
}
AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
const Twine &Name = "") {
const DataLayout &DL = BB->getModule()->getDataLayout();
Align AllocaAlign = DL.getPrefTypeAlign(Ty);
unsigned AddrSpace = DL.getAllocaAddrSpace();
return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
}
/// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of
/// converting the string to 'bool' for the isVolatile parameter.
LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) {
return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
}
LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
}
LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile,
const Twine &Name = "") {
return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name);
}
StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile);
}
LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
const char *Name) {
return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
}
LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
const Twine &Name = "") {
return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
}
LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
bool isVolatile, const Twine &Name = "") {
if (!Align) {
const DataLayout &DL = BB->getModule()->getDataLayout();
Align = DL.getABITypeAlign(Ty);
}
return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name);
}
StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align,
bool isVolatile = false) {
if (!Align) {
const DataLayout &DL = BB->getModule()->getDataLayout();
Align = DL.getABITypeAlign(Val->getType());
}
return Insert(new StoreInst(Val, Ptr, isVolatile, *Align));
}
FenceInst *CreateFence(AtomicOrdering Ordering,
SyncScope::ID SSID = SyncScope::System,
const Twine &Name = "") {
return Insert(new FenceInst(Context, Ordering, SSID), Name);
}
AtomicCmpXchgInst *
CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, MaybeAlign Align,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID = SyncScope::System) {
if (!Align) {
const DataLayout &DL = BB->getModule()->getDataLayout();
Align = llvm::Align(DL.getTypeStoreSize(New->getType()));
}
return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, *Align, SuccessOrdering,
FailureOrdering, SSID));
}
AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr,
Value *Val, MaybeAlign Align,
AtomicOrdering Ordering,
SyncScope::ID SSID = SyncScope::System) {
if (!Align) {
const DataLayout &DL = BB->getModule()->getDataLayout();
Align = llvm::Align(DL.getTypeStoreSize(Val->getType()));
}
return Insert(new AtomicRMWInst(Op, Ptr, Val, *Align, Ordering, SSID));
}
Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
const Twine &Name = "", bool IsInBounds = false) {
if (auto *V = Folder.FoldGEP(Ty, Ptr, IdxList, IsInBounds))
return V;
return Insert(IsInBounds
? GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList)
: GetElementPtrInst::Create(Ty, Ptr, IdxList),
Name);
}
Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
const Twine &Name = "") {
return CreateGEP(Ty, Ptr, IdxList, Name, /* IsInBounds */ true);
}
Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
const Twine &Name = "") {
Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
return V;
return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
}
Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
const Twine &Name = "") {
Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
return V;
return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
}
Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
const Twine &Name = "") {
Value *Idxs[] = {
ConstantInt::get(Type::getInt32Ty(Context), Idx0),
ConstantInt::get(Type::getInt32Ty(Context), Idx1)
};
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
return V;
return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
}
Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
unsigned Idx1, const Twine &Name = "") {
Value *Idxs[] = {
ConstantInt::get(Type::getInt32Ty(Context), Idx0),
ConstantInt::get(Type::getInt32Ty(Context), Idx1)
};
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
return V;
return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
}
Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
const Twine &Name = "") {
Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
return V;
return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
}
Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
const Twine &Name = "") {
Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
return V;
return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
}
Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1,
const Twine &Name = "") {
Value *Idxs[] = {
ConstantInt::get(Type::getInt64Ty(Context), Idx0),
ConstantInt::get(Type::getInt64Ty(Context), Idx1)
};
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
return V;
return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
}
Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0,
uint64_t Idx1, const Twine &Name = "") {
Value *Idxs[] = {
ConstantInt::get(Type::getInt64Ty(Context), Idx0),
ConstantInt::get(Type::getInt64Ty(Context), Idx1)
};
if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
return V;
return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
}
Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
const Twine &Name = "") {
return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
}
/// Same as CreateGlobalString, but return a pointer with "i8*" type
/// instead of a pointer to array of i8.
///
/// If no module is given via \p M, it is take from the insertion point basic
/// block.
Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
unsigned AddressSpace = 0,
Module *M = nullptr) {
GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M);
Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
Constant *Indices[] = {Zero, Zero};
return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
Indices);
}
//===--------------------------------------------------------------------===//
// Instruction creation methods: Cast/Conversion Operators
//===--------------------------------------------------------------------===//
Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
return CreateCast(Instruction::Trunc, V, DestTy, Name);
}
Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
return CreateCast(Instruction::ZExt, V, DestTy, Name);
}
Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
return CreateCast(Instruction::SExt, V, DestTy, Name);
}
/// Create a ZExt or Trunc from the integer value V to DestTy. Return
/// the value untouched if the type of V is already DestTy.
Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
const Twine &Name = "") {
assert(V->getType()->isIntOrIntVectorTy() &&
DestTy->isIntOrIntVectorTy() &&
"Can only zero extend/truncate integers!");
Type *VTy = V->getType();
if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
return CreateZExt(V, DestTy, Name);
if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
return CreateTrunc(V, DestTy, Name);
return V;
}
/// Create a SExt or Trunc from the integer value V to DestTy. Return
/// the value untouched if the type of V is already DestTy.
Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
const Twine &Name = "") {
assert(V->getType()->isIntOrIntVectorTy() &&
DestTy->isIntOrIntVectorTy() &&
"Can only sign extend/truncate integers!");
Type *VTy = V->getType();
if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
return CreateSExt(V, DestTy, Name);
if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
return CreateTrunc(V, DestTy, Name);
return V;
}
Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui,
V, DestTy, nullptr, Name);
return CreateCast(Instruction::FPToUI, V, DestTy, Name);
}
Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi,
V, DestTy, nullptr, Name);
return CreateCast(Instruction::FPToSI, V, DestTy, Name);
}
Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
if (IsFPConstrained)
return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp,
V, DestTy, nullptr, Name);
return CreateCast(Instruction::UIToFP, V, DestTy, Name);
}
Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
if (IsFPConstrained)
return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp,
V, DestTy, nullptr, Name);
return CreateCast(Instruction::SIToFP, V, DestTy, Name);
}
Value *CreateFPTrunc(Value *V, Type *DestTy,
const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPCast(
Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr,
Name);
return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
}
Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
if (IsFPConstrained)
return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext,
V, DestTy, nullptr, Name);
return CreateCast(Instruction::FPExt, V, DestTy, Name);
}
Value *CreatePtrToInt(Value *V, Type *DestTy,
const Twine &Name = "") {
return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
}
Value *CreateIntToPtr(Value *V, Type *DestTy,
const Twine &Name = "") {
return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
}
Value *CreateBitCast(Value *V, Type *DestTy,
const Twine &Name = "") {
return CreateCast(Instruction::BitCast, V, DestTy, Name);
}
Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
const Twine &Name = "") {
return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
}
Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V))
return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
}
Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V))
return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
}
Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V))
return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
}
Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V))
return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
return Insert(CastInst::Create(Op, V, DestTy), Name);
}
Value *CreatePointerCast(Value *V, Type *DestTy,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V))
return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
}
Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V)) {
return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
Name);
}
return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
Name);
}
Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V))
return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
}
Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
return CreatePtrToInt(V, DestTy, Name);
if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
return CreateIntToPtr(V, DestTy, Name);
return CreateBitCast(V, DestTy, Name);
}
Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
if (V->getType() == DestTy)
return V;
if (auto *VC = dyn_cast<Constant>(V))
return Insert(Folder.CreateFPCast(VC, DestTy), Name);
return Insert(CastInst::CreateFPCast(V, DestTy), Name);
}
CallInst *CreateConstrainedFPCast(
Intrinsic::ID ID, Value *V, Type *DestTy,
Instruction *FMFSource = nullptr, const Twine &Name = "",
MDNode *FPMathTag = nullptr,
std::optional<RoundingMode> Rounding = std::nullopt,
std::optional<fp::ExceptionBehavior> Except = std::nullopt);
// Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
// compile time error, instead of converting the string to bool for the
// isSigned parameter.
Value *CreateIntCast(Value *, Type *, const char *) = delete;
//===--------------------------------------------------------------------===//
// Instruction creation methods: Compare Instructions
//===--------------------------------------------------------------------===//
Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
}
Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
}
Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
}
Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
}
Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
}
Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
}
Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
}
Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
}
Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
}
Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
}
Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
}
Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
MDNode *FPMathTag = nullptr) {
return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
}
Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
const Twine &Name = "") {
if (auto *V = Folder.FoldICmp(P, LHS, RHS))
return V;
return Insert(new ICmpInst(P, LHS, RHS), Name);
}
// Create a quiet floating-point comparison (i.e. one that raises an FP
// exception only in the case where an input is a signaling NaN).
// Note that this differs from CreateFCmpS only if IsFPConstrained is true.
Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
const Twine &Name = "", MDNode *FPMathTag = nullptr) {
return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false);
}
Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
const Twine &Name = "", MDNode *FPMathTag = nullptr) {
return CmpInst::isFPPredicate(Pred)
? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag)
: CreateICmp(Pred, LHS, RHS, Name);
}
// Create a signaling floating-point comparison (i.e. one that raises an FP
// exception whenever an input is any NaN, signaling or quiet).
// Note that this differs from CreateFCmp only if IsFPConstrained is true.
Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS,
const Twine &Name = "", MDNode *FPMathTag = nullptr) {
return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true);
}
private:
// Helper routine to create either a signaling or a quiet FP comparison.
Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS,
const Twine &Name, MDNode *FPMathTag,
bool IsSignaling);
public:
CallInst *CreateConstrainedFPCmp(
Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
const Twine &Name = "",
std::optional<fp::ExceptionBehavior> Except = std::nullopt);
//===--------------------------------------------------------------------===//
// Instruction creation methods: Other Instructions
//===--------------------------------------------------------------------===//
PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
const Twine &Name = "") {
PHINode *Phi = PHINode::Create(Ty, NumReservedValues);
if (isa<FPMathOperator>(Phi))
setFPAttrs(Phi, nullptr /* MDNode* */, FMF);
return Insert(Phi, Name);
}
private:
CallInst *createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
const Twine &Name = "",
Instruction *FMFSource = nullptr,
ArrayRef<OperandBundleDef> OpBundles = {});
public:
CallInst *CreateCall(FunctionType *FTy, Value *Callee,
ArrayRef<Value *> Args = std::nullopt,
const Twine &Name = "", MDNode *FPMathTag = nullptr) {
CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
if (IsFPConstrained)
setConstrainedFPCallAttr(CI);
if (isa<FPMathOperator>(CI))
setFPAttrs(CI, FPMathTag, FMF);
return Insert(CI, Name);
}
CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> OpBundles,
const Twine &Name = "", MDNode *FPMathTag = nullptr) {
CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles);
if (IsFPConstrained)
setConstrainedFPCallAttr(CI);
if (isa<FPMathOperator>(CI))
setFPAttrs(CI, FPMathTag, FMF);
return Insert(CI, Name);
}
CallInst *CreateCall(FunctionCallee Callee,
ArrayRef<Value *> Args = std::nullopt,
const Twine &Name = "", MDNode *FPMathTag = nullptr) {
return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name,
FPMathTag);
}
CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> OpBundles,
const Twine &Name = "", MDNode *FPMathTag = nullptr) {
return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args,
OpBundles, Name, FPMathTag);
}
CallInst *CreateConstrainedFPCall(
Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "",
std::optional<RoundingMode> Rounding = std::nullopt,
std::optional<fp::ExceptionBehavior> Except = std::nullopt);
Value *CreateSelect(Value *C, Value *True, Value *False,
const Twine &Name = "", Instruction *MDFrom = nullptr);
VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
return Insert(new VAArgInst(List, Ty), Name);
}
Value *CreateExtractElement(Value *Vec, Value *Idx,
const Twine &Name = "") {
if (Value *V = Folder.FoldExtractElement(Vec, Idx))
return V;
return Insert(ExtractElementInst::Create(Vec, Idx), Name);
}
Value *CreateExtractElement(Value *Vec, uint64_t Idx,
const Twine &Name = "") {
return CreateExtractElement(Vec, getInt64(Idx), Name);
}
Value *CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx,
const Twine &Name = "") {
return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
}
Value *CreateInsertElement(Type *VecTy, Value *NewElt, uint64_t Idx,
const Twine &Name = "") {
return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
}
Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
const Twine &Name = "") {
if (Value *V = Folder.FoldInsertElement(Vec, NewElt, Idx))
return V;
return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
}
Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
const Twine &Name = "") {
return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
}
Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
const Twine &Name = "") {
SmallVector<int, 16> IntMask;
ShuffleVectorInst::getShuffleMask(cast<Constant>(Mask), IntMask);
return CreateShuffleVector(V1, V2, IntMask, Name);
}
/// See class ShuffleVectorInst for a description of the mask representation.
Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask,
const Twine &Name = "") {
if (Value *V = Folder.FoldShuffleVector(V1, V2, Mask))
return V;
return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
}
/// Create a unary shuffle. The second vector operand of the IR instruction
/// is poison.
Value *CreateShuffleVector(Value *V, ArrayRef<int> Mask,
const Twine &Name = "") {
return CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask, Name);
}
Value *CreateExtractValue(Value *Agg, ArrayRef<unsigned> Idxs,
const Twine &Name = "") {
if (auto *V = Folder.FoldExtractValue(Agg, Idxs))
return V;
return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
}
Value *CreateInsertValue(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
const Twine &Name = "") {
if (auto *V = Folder.FoldInsertValue(Agg, Val, Idxs))
return V;
return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
}
LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
const Twine &Name = "") {
return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
}
Value *CreateFreeze(Value *V, const Twine &Name = "") {
return Insert(new FreezeInst(V), Name);
}
//===--------------------------------------------------------------------===//
// Utility creation methods
//===--------------------------------------------------------------------===//
/// Return a boolean value testing if \p Arg == 0.
Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
return CreateICmpEQ(Arg, ConstantInt::getNullValue(Arg->getType()), Name);
}
/// Return a boolean value testing if \p Arg != 0.
Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
return CreateICmpNE(Arg, ConstantInt::getNullValue(Arg->getType()), Name);
}
/// Return a boolean value testing if \p Arg < 0.
Value *CreateIsNeg(Value *Arg, const Twine &Name = "") {
return CreateICmpSLT(Arg, ConstantInt::getNullValue(Arg->getType()), Name);
}
/// Return a boolean value testing if \p Arg > -1.
Value *CreateIsNotNeg(Value *Arg, const Twine &Name = "") {
return CreateICmpSGT(Arg, ConstantInt::getAllOnesValue(Arg->getType()),
Name);
}
/// Return the i64 difference between two pointer values, dividing out
/// the size of the pointed-to objects.
///
/// This is intended to implement C-style pointer subtraction. As such, the
/// pointers must be appropriately aligned for their element types and
/// pointing into the same object.
Value *CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS,
const Twine &Name = "");
/// Create a launder.invariant.group intrinsic call. If Ptr type is
/// different from pointer to i8, it's casted to pointer to i8 in the same
/// address space before call and casted back to Ptr type after call.
Value *CreateLaunderInvariantGroup(Value *Ptr);
/// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
/// different from pointer to i8, it's casted to pointer to i8 in the same
/// address space before call and casted back to Ptr type after call.
Value *CreateStripInvariantGroup(Value *Ptr);
/// Return a vector value that contains the vector V reversed
Value *CreateVectorReverse(Value *V, const Twine &Name = "");
/// Return a vector splice intrinsic if using scalable vectors, otherwise
/// return a shufflevector. If the immediate is positive, a vector is
/// extracted from concat(V1, V2), starting at Imm. If the immediate
/// is negative, we extract -Imm elements from V1 and the remaining
/// elements from V2. Imm is a signed integer in the range
/// -VL <= Imm < VL (where VL is the runtime vector length of the
/// source/result vector)
Value *CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
const Twine &Name = "");
/// Return a vector value that contains \arg V broadcasted to \p
/// NumElts elements.
Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "");
/// Return a vector value that contains \arg V broadcasted to \p
/// EC elements.
Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = "");
/// Return a value that has been extracted from a larger integer type.
Value *CreateExtractInteger(const DataLayout &DL, Value *From,
IntegerType *ExtractedTy, uint64_t Offset,
const Twine &Name);
Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base,
unsigned Dimension, unsigned LastIndex,
MDNode *DbgInfo);
Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex,
MDNode *DbgInfo);
Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base,
unsigned Index, unsigned FieldIndex,
MDNode *DbgInfo);
private:
/// Helper function that creates an assume intrinsic call that
/// represents an alignment assumption on the provided pointer \p PtrValue
/// with offset \p OffsetValue and alignment value \p AlignValue.
CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
Value *PtrValue, Value *AlignValue,
Value *OffsetValue);
public:
/// Create an assume intrinsic call that represents an alignment
/// assumption on the provided pointer.
///
/// An optional offset can be provided, and if it is provided, the offset
/// must be subtracted from the provided pointer to get the pointer with the
/// specified alignment.
CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
unsigned Alignment,
Value *OffsetValue = nullptr);
/// Create an assume intrinsic call that represents an alignment
/// assumption on the provided pointer.
///
/// An optional offset can be provided, and if it is provided, the offset
/// must be subtracted from the provided pointer to get the pointer with the
/// specified alignment.
///
/// This overload handles the condition where the Alignment is dependent
/// on an existing value rather than a static value.
CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
Value *Alignment,
Value *OffsetValue = nullptr);
};
/// This provides a uniform API for creating instructions and inserting
/// them into a basic block: either at the end of a BasicBlock, or at a specific
/// iterator location in a block.
///
/// Note that the builder does not expose the full generality of LLVM
/// instructions. For access to extra instruction properties, use the mutators
/// (e.g. setVolatile) on the instructions after they have been
/// created. Convenience state exists to specify fast-math flags and fp-math
/// tags.
///
/// The first template argument specifies a class to use for creating constants.
/// This defaults to creating minimally folded constants. The second template
/// argument allows clients to specify custom insertion hooks that are called on
/// every newly created insertion.
template <typename FolderTy = ConstantFolder,
typename InserterTy = IRBuilderDefaultInserter>
class IRBuilder : public IRBuilderBase {
private:
FolderTy Folder;
InserterTy Inserter;
public:
IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(),
MDNode *FPMathTag = nullptr,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
: IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles),
Folder(Folder), Inserter(Inserter) {}
explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
: IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {}
explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder,
MDNode *FPMathTag = nullptr,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
: IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
FPMathTag, OpBundles),
Folder(Folder) {
SetInsertPoint(TheBB);
}
explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
: IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
FPMathTag, OpBundles) {
SetInsertPoint(TheBB);
}
explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
: IRBuilderBase(IP->getContext(), this->Folder, this->Inserter, FPMathTag,
OpBundles) {
SetInsertPoint(IP);
}
IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder,
MDNode *FPMathTag = nullptr,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
: IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
FPMathTag, OpBundles),
Folder(Folder) {
SetInsertPoint(TheBB, IP);
}
IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
MDNode *FPMathTag = nullptr,
ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
: IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
FPMathTag, OpBundles) {
SetInsertPoint(TheBB, IP);
}
/// Avoid copying the full IRBuilder. Prefer using InsertPointGuard
/// or FastMathFlagGuard instead.
IRBuilder(const IRBuilder &) = delete;
InserterTy &getInserter() { return Inserter; }
};
template <typename FolderTy, typename InserterTy>
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *,
ArrayRef<OperandBundleDef>) -> IRBuilder<FolderTy, InserterTy>;
IRBuilder(LLVMContext &, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
template <typename FolderTy>
IRBuilder(BasicBlock *, FolderTy, MDNode *, ArrayRef<OperandBundleDef>)
-> IRBuilder<FolderTy>;
IRBuilder(BasicBlock *, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
IRBuilder(Instruction *, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
template <typename FolderTy>
IRBuilder(BasicBlock *, BasicBlock::iterator, FolderTy, MDNode *,
ArrayRef<OperandBundleDef>) -> IRBuilder<FolderTy>;
IRBuilder(BasicBlock *, BasicBlock::iterator, MDNode *,
ArrayRef<OperandBundleDef>) -> IRBuilder<>;
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)
} // end namespace llvm
#endif // LLVM_IR_IRBUILDER_H