//===- CFG.h ----------------------------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
///
 
/// This file provides various utilities for inspecting and working with the
 
/// control flow graph in LLVM IR. This includes generic facilities for
 
/// iterating successors and predecessors of basic blocks, the successors of
 
/// specific terminator instructions, etc. It also defines specializations of
 
/// GraphTraits that allow Function and BasicBlock graphs to be treated as
 
/// proper graphs for generic algorithms.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_CFG_H
 
#define LLVM_IR_CFG_H
 
 
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/IR/BasicBlock.h"
 
#include "llvm/IR/Function.h"
 
#include "llvm/IR/Value.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
 
 
namespace llvm {
 
 
 
class Instruction;
 
class Use;
 
 
 
//===----------------------------------------------------------------------===//
 
// BasicBlock pred_iterator definition
 
//===----------------------------------------------------------------------===//
 
 
 
template <class Ptr, class USE_iterator> // Predecessor Iterator
 
class PredIterator {
 
public:
 
  using iterator_category = std::forward_iterator_tag;
 
  using value_type = Ptr;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = Ptr *;
 
  using reference = Ptr *;
 
 
 
protected:
 
  using Self = PredIterator<Ptr, USE_iterator>;
 
  USE_iterator It;
 
 
 
  inline void advancePastNonTerminators() {
 
    // Loop to ignore non-terminator uses (for example BlockAddresses).
 
    while (!It.atEnd()) {
 
      if (auto *Inst = dyn_cast<Instruction>(*It))
 
        if (Inst->isTerminator())
 
          break;
 
 
 
      ++It;
 
    }
 
  }
 
 
 
public:
 
  PredIterator() = default;
 
  explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
 
    advancePastNonTerminators();
 
  }
 
  inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
 
 
 
  inline bool operator==(const Self& x) const { return It == x.It; }
 
  inline bool operator!=(const Self& x) const { return !operator==(x); }
 
 
 
  inline reference operator*() const {
 
    assert(!It.atEnd() && "pred_iterator out of range!");
 
    return cast<Instruction>(*It)->getParent();
 
  }
 
  inline pointer *operator->() const { return &operator*(); }
 
 
 
  inline Self& operator++() {   // Preincrement
 
    assert(!It.atEnd() && "pred_iterator out of range!");
 
    ++It; advancePastNonTerminators();
 
    return *this;
 
  }
 
 
 
  inline Self operator++(int) { // Postincrement
 
    Self tmp = *this; ++*this; return tmp;
 
  }
 
 
 
  /// getOperandNo - Return the operand number in the predecessor's
 
  /// terminator of the successor.
 
  unsigned getOperandNo() const {
 
    return It.getOperandNo();
 
  }
 
 
 
  /// getUse - Return the operand Use in the predecessor's terminator
 
  /// of the successor.
 
  Use &getUse() const {
 
    return It.getUse();
 
  }
 
};
 
 
 
using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
 
using const_pred_iterator =
 
    PredIterator<const BasicBlock, Value::const_user_iterator>;
 
using pred_range = iterator_range<pred_iterator>;
 
using const_pred_range = iterator_range<const_pred_iterator>;
 
 
 
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
 
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
 
  return const_pred_iterator(BB);
 
}
 
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
 
inline const_pred_iterator pred_end(const BasicBlock *BB) {
 
  return const_pred_iterator(BB, true);
 
}
 
inline bool pred_empty(const BasicBlock *BB) {
 
  return pred_begin(BB) == pred_end(BB);
 
}
 
/// Get the number of predecessors of \p BB. This is a linear time operation.
 
/// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able.
 
inline unsigned pred_size(const BasicBlock *BB) {
 
  return std::distance(pred_begin(BB), pred_end(BB));
 
}
 
inline pred_range predecessors(BasicBlock *BB) {
 
  return pred_range(pred_begin(BB), pred_end(BB));
 
}
 
inline const_pred_range predecessors(const BasicBlock *BB) {
 
  return const_pred_range(pred_begin(BB), pred_end(BB));
 
}
 
 
 
//===----------------------------------------------------------------------===//
 
// Instruction and BasicBlock succ_iterator helpers
 
//===----------------------------------------------------------------------===//
 
 
 
template <class InstructionT, class BlockT>
 
class SuccIterator
 
    : public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
 
                                  std::random_access_iterator_tag, BlockT, int,
 
                                  BlockT *, BlockT *> {
 
public:
 
  using difference_type = int;
 
  using pointer = BlockT *;
 
  using reference = BlockT *;
 
 
 
private:
 
  InstructionT *Inst;
 
  int Idx;
 
  using Self = SuccIterator<InstructionT, BlockT>;
 
 
 
  inline bool index_is_valid(int Idx) {
 
    // Note that we specially support the index of zero being valid even in the
 
    // face of a null instruction.
 
    return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
 
  }
 
 
 
  /// Proxy object to allow write access in operator[]
 
  class SuccessorProxy {
 
    Self It;
 
 
 
  public:
 
    explicit SuccessorProxy(const Self &It) : It(It) {}
 
 
 
    SuccessorProxy(const SuccessorProxy &) = default;
 
 
 
    SuccessorProxy &operator=(SuccessorProxy RHS) {
 
      *this = reference(RHS);
 
      return *this;
 
    }
 
 
 
    SuccessorProxy &operator=(reference RHS) {
 
      It.Inst->setSuccessor(It.Idx, RHS);
 
      return *this;
 
    }
 
 
 
    operator reference() const { return *It; }
 
  };
 
 
 
public:
 
  // begin iterator
 
  explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
 
  // end iterator
 
  inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
 
    if (Inst)
 
      Idx = Inst->getNumSuccessors();
 
    else
 
      // Inst == NULL happens, if a basic block is not fully constructed and
 
      // consequently getTerminator() returns NULL. In this case we construct
 
      // a SuccIterator which describes a basic block that has zero
 
      // successors.
 
      // Defining SuccIterator for incomplete and malformed CFGs is especially
 
      // useful for debugging.
 
      Idx = 0;
 
  }
 
 
 
  /// This is used to interface between code that wants to
 
  /// operate on terminator instructions directly.
 
  int getSuccessorIndex() const { return Idx; }
 
 
 
  inline bool operator==(const Self &x) const { return Idx == x.Idx; }
 
 
 
  inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }
 
 
 
  // We use the basic block pointer directly for operator->.
 
  inline BlockT *operator->() const { return operator*(); }
 
 
 
  inline bool operator<(const Self &RHS) const {
 
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
 
    return Idx < RHS.Idx;
 
  }
 
 
 
  int operator-(const Self &RHS) const {
 
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
 
    return Idx - RHS.Idx;
 
  }
 
 
 
  inline Self &operator+=(int RHS) {
 
    int NewIdx = Idx + RHS;
 
    assert(index_is_valid(NewIdx) && "Iterator index out of bound");
 
    Idx = NewIdx;
 
    return *this;
 
  }
 
 
 
  inline Self &operator-=(int RHS) { return operator+=(-RHS); }
 
 
 
  // Specially implement the [] operation using a proxy object to support
 
  // assignment.
 
  inline SuccessorProxy operator[](int Offset) {
 
    Self TmpIt = *this;
 
    TmpIt += Offset;
 
    return SuccessorProxy(TmpIt);
 
  }
 
 
 
  /// Get the source BlockT of this iterator.
 
  inline BlockT *getSource() {
 
    assert(Inst && "Source not available, if basic block was malformed");
 
    return Inst->getParent();
 
  }
 
};
 
 
 
using succ_iterator = SuccIterator<Instruction, BasicBlock>;
 
using const_succ_iterator = SuccIterator<const Instruction, const BasicBlock>;
 
using succ_range = iterator_range<succ_iterator>;
 
using const_succ_range = iterator_range<const_succ_iterator>;
 
 
 
inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
 
inline const_succ_iterator succ_begin(const Instruction *I) {
 
  return const_succ_iterator(I);
 
}
 
inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
 
inline const_succ_iterator succ_end(const Instruction *I) {
 
  return const_succ_iterator(I, true);
 
}
 
inline bool succ_empty(const Instruction *I) {
 
  return succ_begin(I) == succ_end(I);
 
}
 
inline unsigned succ_size(const Instruction *I) {
 
  return std::distance(succ_begin(I), succ_end(I));
 
}
 
inline succ_range successors(Instruction *I) {
 
  return succ_range(succ_begin(I), succ_end(I));
 
}
 
inline const_succ_range successors(const Instruction *I) {
 
  return const_succ_range(succ_begin(I), succ_end(I));
 
}
 
 
 
inline succ_iterator succ_begin(BasicBlock *BB) {
 
  return succ_iterator(BB->getTerminator());
 
}
 
inline const_succ_iterator succ_begin(const BasicBlock *BB) {
 
  return const_succ_iterator(BB->getTerminator());
 
}
 
inline succ_iterator succ_end(BasicBlock *BB) {
 
  return succ_iterator(BB->getTerminator(), true);
 
}
 
inline const_succ_iterator succ_end(const BasicBlock *BB) {
 
  return const_succ_iterator(BB->getTerminator(), true);
 
}
 
inline bool succ_empty(const BasicBlock *BB) {
 
  return succ_begin(BB) == succ_end(BB);
 
}
 
inline unsigned succ_size(const BasicBlock *BB) {
 
  return std::distance(succ_begin(BB), succ_end(BB));
 
}
 
inline succ_range successors(BasicBlock *BB) {
 
  return succ_range(succ_begin(BB), succ_end(BB));
 
}
 
inline const_succ_range successors(const BasicBlock *BB) {
 
  return const_succ_range(succ_begin(BB), succ_end(BB));
 
}
 
 
 
//===--------------------------------------------------------------------===//
 
// GraphTraits specializations for basic block graphs (CFGs)
 
//===--------------------------------------------------------------------===//
 
 
 
// Provide specializations of GraphTraits to be able to treat a function as a
 
// graph of basic blocks...
 
 
 
template <> struct GraphTraits<BasicBlock*> {
 
  using NodeRef = BasicBlock *;
 
  using ChildIteratorType = succ_iterator;
 
 
 
  static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
 
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
 
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
 
};
 
 
 
template <> struct GraphTraits<const BasicBlock*> {
 
  using NodeRef = const BasicBlock *;
 
  using ChildIteratorType = const_succ_iterator;
 
 
 
  static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
 
 
 
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
 
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
 
};
 
 
 
// Provide specializations of GraphTraits to be able to treat a function as a
 
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
 
// a function is considered to be when traversing the predecessor edges of a BB
 
// instead of the successor edges.
 
//
 
template <> struct GraphTraits<Inverse<BasicBlock*>> {
 
  using NodeRef = BasicBlock *;
 
  using ChildIteratorType = pred_iterator;
 
 
 
  static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
 
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
 
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
 
};
 
 
 
template <> struct GraphTraits<Inverse<const BasicBlock*>> {
 
  using NodeRef = const BasicBlock *;
 
  using ChildIteratorType = const_pred_iterator;
 
 
 
  static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
 
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
 
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
// GraphTraits specializations for function basic block graphs (CFGs)
 
//===--------------------------------------------------------------------===//
 
 
 
// Provide specializations of GraphTraits to be able to treat a function as a
 
// graph of basic blocks... these are the same as the basic block iterators,
 
// except that the root node is implicitly the first node of the function.
 
//
 
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
 
  static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
 
 
 
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
 
  using nodes_iterator = pointer_iterator<Function::iterator>;
 
 
 
  static nodes_iterator nodes_begin(Function *F) {
 
    return nodes_iterator(F->begin());
 
  }
 
 
 
  static nodes_iterator nodes_end(Function *F) {
 
    return nodes_iterator(F->end());
 
  }
 
 
 
  static size_t size(Function *F) { return F->size(); }
 
};
 
template <> struct GraphTraits<const Function*> :
 
  public GraphTraits<const BasicBlock*> {
 
  static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
 
 
 
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
 
  using nodes_iterator = pointer_iterator<Function::const_iterator>;
 
 
 
  static nodes_iterator nodes_begin(const Function *F) {
 
    return nodes_iterator(F->begin());
 
  }
 
 
 
  static nodes_iterator nodes_end(const Function *F) {
 
    return nodes_iterator(F->end());
 
  }
 
 
 
  static size_t size(const Function *F) { return F->size(); }
 
};
 
 
 
// Provide specializations of GraphTraits to be able to treat a function as a
 
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
 
// a function is considered to be when traversing the predecessor edges of a BB
 
// instead of the successor edges.
 
//
 
template <> struct GraphTraits<Inverse<Function*>> :
 
  public GraphTraits<Inverse<BasicBlock*>> {
 
  static NodeRef getEntryNode(Inverse<Function *> G) {
 
    return &G.Graph->getEntryBlock();
 
  }
 
};
 
template <> struct GraphTraits<Inverse<const Function*>> :
 
  public GraphTraits<Inverse<const BasicBlock*>> {
 
  static NodeRef getEntryNode(Inverse<const Function *> G) {
 
    return &G.Graph->getEntryBlock();
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_CFG_H