//===- llvm/BasicBlock.h - Represent a basic block in the VM ----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains the declaration of the BasicBlock class.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_BASICBLOCK_H
 
#define LLVM_IR_BASICBLOCK_H
 
 
 
#include "llvm-c/Types.h"
 
#include "llvm/ADT/Twine.h"
 
#include "llvm/ADT/ilist.h"
 
#include "llvm/ADT/ilist_node.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/IR/Instruction.h"
 
#include "llvm/IR/SymbolTableListTraits.h"
 
#include "llvm/IR/Value.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
 
 
namespace llvm {
 
 
 
class AssemblyAnnotationWriter;
 
class CallInst;
 
class Function;
 
class LandingPadInst;
 
class LLVMContext;
 
class Module;
 
class PHINode;
 
class ValueSymbolTable;
 
 
 
/// LLVM Basic Block Representation
 
///
 
/// This represents a single basic block in LLVM. A basic block is simply a
 
/// container of instructions that execute sequentially. Basic blocks are Values
 
/// because they are referenced by instructions such as branches and switch
 
/// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block
 
/// represents a label to which a branch can jump.
 
///
 
/// A well formed basic block is formed of a list of non-terminating
 
/// instructions followed by a single terminator instruction. Terminator
 
/// instructions may not occur in the middle of basic blocks, and must terminate
 
/// the blocks. The BasicBlock class allows malformed basic blocks to occur
 
/// because it may be useful in the intermediate stage of constructing or
 
/// modifying a program. However, the verifier will ensure that basic blocks are
 
/// "well formed".
 
class BasicBlock final : public Value, // Basic blocks are data objects also
 
                         public ilist_node_with_parent<BasicBlock, Function> {
 
public:
 
  using InstListType = SymbolTableList<Instruction>;
 
 
 
private:
 
  friend class BlockAddress;
 
  friend class SymbolTableListTraits<BasicBlock>;
 
 
 
  InstListType InstList;
 
  Function *Parent;
 
 
 
  void setParent(Function *parent);
 
 
 
  /// Constructor.
 
  ///
 
  /// If the function parameter is specified, the basic block is automatically
 
  /// inserted at either the end of the function (if InsertBefore is null), or
 
  /// before the specified basic block.
 
  explicit BasicBlock(LLVMContext &C, const Twine &Name = "",
 
                      Function *Parent = nullptr,
 
                      BasicBlock *InsertBefore = nullptr);
 
 
 
public:
 
  BasicBlock(const BasicBlock &) = delete;
 
  BasicBlock &operator=(const BasicBlock &) = delete;
 
  ~BasicBlock();
 
 
 
  /// Get the context in which this basic block lives.
 
  LLVMContext &getContext() const;
 
 
 
  /// Instruction iterators...
 
  using iterator = InstListType::iterator;
 
  using const_iterator = InstListType::const_iterator;
 
  using reverse_iterator = InstListType::reverse_iterator;
 
  using const_reverse_iterator = InstListType::const_reverse_iterator;
 
 
 
  // These functions and classes need access to the instruction list.
 
  friend void Instruction::removeFromParent();
 
  friend iplist<Instruction>::iterator Instruction::eraseFromParent();
 
  friend BasicBlock::iterator Instruction::insertInto(BasicBlock *BB,
 
                                                      BasicBlock::iterator It);
 
  friend class llvm::SymbolTableListTraits<llvm::Instruction>;
 
  friend class llvm::ilist_node_with_parent<llvm::Instruction, llvm::BasicBlock>;
 
 
 
  /// Creates a new BasicBlock.
 
  ///
 
  /// If the Parent parameter is specified, the basic block is automatically
 
  /// inserted at either the end of the function (if InsertBefore is 0), or
 
  /// before the specified basic block.
 
  static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "",
 
                            Function *Parent = nullptr,
 
                            BasicBlock *InsertBefore = nullptr) {
 
    return new BasicBlock(Context, Name, Parent, InsertBefore);
 
  }
 
 
 
  /// Return the enclosing method, or null if none.
 
  const Function *getParent() const { return Parent; }
 
        Function *getParent()       { return Parent; }
 
 
 
  /// Return the module owning the function this basic block belongs to, or
 
  /// nullptr if the function does not have a module.
 
  ///
 
  /// Note: this is undefined behavior if the block does not have a parent.
 
  const Module *getModule() const;
 
  Module *getModule() {
 
    return const_cast<Module *>(
 
                            static_cast<const BasicBlock *>(this)->getModule());
 
  }
 
 
 
  /// Returns the terminator instruction if the block is well formed or null
 
  /// if the block is not well formed.
 
  const Instruction *getTerminator() const LLVM_READONLY {
 
    if (InstList.empty() || !InstList.back().isTerminator())
 
      return nullptr;
 
    return &InstList.back();
 
  }
 
  Instruction *getTerminator() {
 
    return const_cast<Instruction *>(
 
        static_cast<const BasicBlock *>(this)->getTerminator());
 
  }
 
 
 
  /// Returns the call instruction calling \@llvm.experimental.deoptimize
 
  /// prior to the terminating return instruction of this basic block, if such
 
  /// a call is present.  Otherwise, returns null.
 
  const CallInst *getTerminatingDeoptimizeCall() const;
 
  CallInst *getTerminatingDeoptimizeCall() {
 
    return const_cast<CallInst *>(
 
         static_cast<const BasicBlock *>(this)->getTerminatingDeoptimizeCall());
 
  }
 
 
 
  /// Returns the call instruction calling \@llvm.experimental.deoptimize
 
  /// that is present either in current basic block or in block that is a unique
 
  /// successor to current block, if such call is present. Otherwise, returns null.
 
  const CallInst *getPostdominatingDeoptimizeCall() const;
 
  CallInst *getPostdominatingDeoptimizeCall() {
 
    return const_cast<CallInst *>(
 
         static_cast<const BasicBlock *>(this)->getPostdominatingDeoptimizeCall());
 
  }
 
 
 
  /// Returns the call instruction marked 'musttail' prior to the terminating
 
  /// return instruction of this basic block, if such a call is present.
 
  /// Otherwise, returns null.
 
  const CallInst *getTerminatingMustTailCall() const;
 
  CallInst *getTerminatingMustTailCall() {
 
    return const_cast<CallInst *>(
 
           static_cast<const BasicBlock *>(this)->getTerminatingMustTailCall());
 
  }
 
 
 
  /// Returns a pointer to the first instruction in this block that is not a
 
  /// PHINode instruction.
 
  ///
 
  /// When adding instructions to the beginning of the basic block, they should
 
  /// be added before the returned value, not before the first instruction,
 
  /// which might be PHI. Returns 0 is there's no non-PHI instruction.
 
  const Instruction* getFirstNonPHI() const;
 
  Instruction* getFirstNonPHI() {
 
    return const_cast<Instruction *>(
 
                       static_cast<const BasicBlock *>(this)->getFirstNonPHI());
 
  }
 
 
 
  /// Returns a pointer to the first instruction in this block that is not a
 
  /// PHINode or a debug intrinsic, or any pseudo operation if \c SkipPseudoOp
 
  /// is true.
 
  const Instruction *getFirstNonPHIOrDbg(bool SkipPseudoOp = true) const;
 
  Instruction *getFirstNonPHIOrDbg(bool SkipPseudoOp = true) {
 
    return const_cast<Instruction *>(
 
        static_cast<const BasicBlock *>(this)->getFirstNonPHIOrDbg(
 
            SkipPseudoOp));
 
  }
 
 
 
  /// Returns a pointer to the first instruction in this block that is not a
 
  /// PHINode, a debug intrinsic, or a lifetime intrinsic, or any pseudo
 
  /// operation if \c SkipPseudoOp is true.
 
  const Instruction *
 
  getFirstNonPHIOrDbgOrLifetime(bool SkipPseudoOp = true) const;
 
  Instruction *getFirstNonPHIOrDbgOrLifetime(bool SkipPseudoOp = true) {
 
    return const_cast<Instruction *>(
 
        static_cast<const BasicBlock *>(this)->getFirstNonPHIOrDbgOrLifetime(
 
            SkipPseudoOp));
 
  }
 
 
 
  /// Returns an iterator to the first instruction in this block that is
 
  /// suitable for inserting a non-PHI instruction.
 
  ///
 
  /// In particular, it skips all PHIs and LandingPad instructions.
 
  const_iterator getFirstInsertionPt() const;
 
  iterator getFirstInsertionPt() {
 
    return static_cast<const BasicBlock *>(this)
 
                                          ->getFirstInsertionPt().getNonConst();
 
  }
 
 
 
  /// Returns an iterator to the first instruction in this block that is
 
  /// not a PHINode, a debug intrinsic, a static alloca or any pseudo operation.
 
  const_iterator getFirstNonPHIOrDbgOrAlloca() const;
 
  iterator getFirstNonPHIOrDbgOrAlloca() {
 
    return static_cast<const BasicBlock *>(this)
 
        ->getFirstNonPHIOrDbgOrAlloca()
 
        .getNonConst();
 
  }
 
 
 
  /// Return a const iterator range over the instructions in the block, skipping
 
  /// any debug instructions. Skip any pseudo operations as well if \c
 
  /// SkipPseudoOp is true.
 
  iterator_range<filter_iterator<BasicBlock::const_iterator,
 
                                 std::function<bool(const Instruction &)>>>
 
  instructionsWithoutDebug(bool SkipPseudoOp = true) const;
 
 
 
  /// Return an iterator range over the instructions in the block, skipping any
 
  /// debug instructions. Skip and any pseudo operations as well if \c
 
  /// SkipPseudoOp is true.
 
  iterator_range<
 
      filter_iterator<BasicBlock::iterator, std::function<bool(Instruction &)>>>
 
  instructionsWithoutDebug(bool SkipPseudoOp = true);
 
 
 
  /// Return the size of the basic block ignoring debug instructions
 
  filter_iterator<BasicBlock::const_iterator,
 
                  std::function<bool(const Instruction &)>>::difference_type
 
  sizeWithoutDebug() const;
 
 
 
  /// Unlink 'this' from the containing function, but do not delete it.
 
  void removeFromParent();
 
 
 
  /// Unlink 'this' from the containing function and delete it.
 
  ///
 
  // \returns an iterator pointing to the element after the erased one.
 
  SymbolTableList<BasicBlock>::iterator eraseFromParent();
 
 
 
  /// Unlink this basic block from its current function and insert it into
 
  /// the function that \p MovePos lives in, right before \p MovePos.
 
  void moveBefore(BasicBlock *MovePos);
 
 
 
  /// Unlink this basic block from its current function and insert it
 
  /// right after \p MovePos in the function \p MovePos lives in.
 
  void moveAfter(BasicBlock *MovePos);
 
 
 
  /// Insert unlinked basic block into a function.
 
  ///
 
  /// Inserts an unlinked basic block into \c Parent.  If \c InsertBefore is
 
  /// provided, inserts before that basic block, otherwise inserts at the end.
 
  ///
 
  /// \pre \a getParent() is \c nullptr.
 
  void insertInto(Function *Parent, BasicBlock *InsertBefore = nullptr);
 
 
 
  /// Return the predecessor of this block if it has a single predecessor
 
  /// block. Otherwise return a null pointer.
 
  const BasicBlock *getSinglePredecessor() const;
 
  BasicBlock *getSinglePredecessor() {
 
    return const_cast<BasicBlock *>(
 
                 static_cast<const BasicBlock *>(this)->getSinglePredecessor());
 
  }
 
 
 
  /// Return the predecessor of this block if it has a unique predecessor
 
  /// block. Otherwise return a null pointer.
 
  ///
 
  /// Note that unique predecessor doesn't mean single edge, there can be
 
  /// multiple edges from the unique predecessor to this block (for example a
 
  /// switch statement with multiple cases having the same destination).
 
  const BasicBlock *getUniquePredecessor() const;
 
  BasicBlock *getUniquePredecessor() {
 
    return const_cast<BasicBlock *>(
 
                 static_cast<const BasicBlock *>(this)->getUniquePredecessor());
 
  }
 
 
 
  /// Return true if this block has exactly N predecessors.
 
  bool hasNPredecessors(unsigned N) const;
 
 
 
  /// Return true if this block has N predecessors or more.
 
  bool hasNPredecessorsOrMore(unsigned N) const;
 
 
 
  /// Return the successor of this block if it has a single successor.
 
  /// Otherwise return a null pointer.
 
  ///
 
  /// This method is analogous to getSinglePredecessor above.
 
  const BasicBlock *getSingleSuccessor() const;
 
  BasicBlock *getSingleSuccessor() {
 
    return const_cast<BasicBlock *>(
 
                   static_cast<const BasicBlock *>(this)->getSingleSuccessor());
 
  }
 
 
 
  /// Return the successor of this block if it has a unique successor.
 
  /// Otherwise return a null pointer.
 
  ///
 
  /// This method is analogous to getUniquePredecessor above.
 
  const BasicBlock *getUniqueSuccessor() const;
 
  BasicBlock *getUniqueSuccessor() {
 
    return const_cast<BasicBlock *>(
 
                   static_cast<const BasicBlock *>(this)->getUniqueSuccessor());
 
  }
 
 
 
  /// Print the basic block to an output stream with an optional
 
  /// AssemblyAnnotationWriter.
 
  void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW = nullptr,
 
             bool ShouldPreserveUseListOrder = false,
 
             bool IsForDebug = false) const;
 
 
 
  //===--------------------------------------------------------------------===//
 
  /// Instruction iterator methods
 
  ///
 
  inline iterator                begin()       { return InstList.begin(); }
 
  inline const_iterator          begin() const { return InstList.begin(); }
 
  inline iterator                end  ()       { return InstList.end();   }
 
  inline const_iterator          end  () const { return InstList.end();   }
 
 
 
  inline reverse_iterator        rbegin()       { return InstList.rbegin(); }
 
  inline const_reverse_iterator  rbegin() const { return InstList.rbegin(); }
 
  inline reverse_iterator        rend  ()       { return InstList.rend();   }
 
  inline const_reverse_iterator  rend  () const { return InstList.rend();   }
 
 
 
  inline size_t                   size() const { return InstList.size();  }
 
  inline bool                    empty() const { return InstList.empty(); }
 
  inline const Instruction      &front() const { return InstList.front(); }
 
  inline       Instruction      &front()       { return InstList.front(); }
 
  inline const Instruction       &back() const { return InstList.back();  }
 
  inline       Instruction       &back()       { return InstList.back();  }
 
 
 
  /// Iterator to walk just the phi nodes in the basic block.
 
  template <typename PHINodeT = PHINode, typename BBIteratorT = iterator>
 
  class phi_iterator_impl
 
      : public iterator_facade_base<phi_iterator_impl<PHINodeT, BBIteratorT>,
 
                                    std::forward_iterator_tag, PHINodeT> {
 
    friend BasicBlock;
 
 
 
    PHINodeT *PN;
 
 
 
    phi_iterator_impl(PHINodeT *PN) : PN(PN) {}
 
 
 
  public:
 
    // Allow default construction to build variables, but this doesn't build
 
    // a useful iterator.
 
    phi_iterator_impl() = default;
 
 
 
    // Allow conversion between instantiations where valid.
 
    template <typename PHINodeU, typename BBIteratorU,
 
              typename = std::enable_if_t<
 
                  std::is_convertible<PHINodeU *, PHINodeT *>::value>>
 
    phi_iterator_impl(const phi_iterator_impl<PHINodeU, BBIteratorU> &Arg)
 
        : PN(Arg.PN) {}
 
 
 
    bool operator==(const phi_iterator_impl &Arg) const { return PN == Arg.PN; }
 
 
 
    PHINodeT &operator*() const { return *PN; }
 
 
 
    using phi_iterator_impl::iterator_facade_base::operator++;
 
    phi_iterator_impl &operator++() {
 
      assert(PN && "Cannot increment the end iterator!");
 
      PN = dyn_cast<PHINodeT>(std::next(BBIteratorT(PN)));
 
      return *this;
 
    }
 
  };
 
  using phi_iterator = phi_iterator_impl<>;
 
  using const_phi_iterator =
 
      phi_iterator_impl<const PHINode, BasicBlock::const_iterator>;
 
 
 
  /// Returns a range that iterates over the phis in the basic block.
 
  ///
 
  /// Note that this cannot be used with basic blocks that have no terminator.
 
  iterator_range<const_phi_iterator> phis() const {
 
    return const_cast<BasicBlock *>(this)->phis();
 
  }
 
  iterator_range<phi_iterator> phis();
 
 
 
private:
 
  /// Return the underlying instruction list container.
 
  /// This is deliberately private because we have implemented an adequate set
 
  /// of functions to modify the list, including BasicBlock::splice(),
 
  /// BasicBlock::erase(), Instruction::insertInto() etc.
 
  const InstListType &getInstList() const { return InstList; }
 
  InstListType &getInstList() { return InstList; }
 
 
 
  /// Returns a pointer to a member of the instruction list.
 
  /// This is private on purpose, just like `getInstList()`.
 
  static InstListType BasicBlock::*getSublistAccess(Instruction *) {
 
    return &BasicBlock::InstList;
 
  }
 
 
 
public:
 
  /// Returns a pointer to the symbol table if one exists.
 
  ValueSymbolTable *getValueSymbolTable();
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast.
 
  static bool classof(const Value *V) {
 
    return V->getValueID() == Value::BasicBlockVal;
 
  }
 
 
 
  /// Cause all subinstructions to "let go" of all the references that said
 
  /// subinstructions are maintaining.
 
  ///
 
  /// This allows one to 'delete' a whole class at a time, even though there may
 
  /// be circular references... first all references are dropped, and all use
 
  /// counts go to zero.  Then everything is delete'd for real.  Note that no
 
  /// operations are valid on an object that has "dropped all references",
 
  /// except operator delete.
 
  void dropAllReferences();
 
 
 
  /// Update PHI nodes in this BasicBlock before removal of predecessor \p Pred.
 
  /// Note that this function does not actually remove the predecessor.
 
  ///
 
  /// If \p KeepOneInputPHIs is true then don't remove PHIs that are left with
 
  /// zero or one incoming values, and don't simplify PHIs with all incoming
 
  /// values the same.
 
  void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs = false);
 
 
 
  bool canSplitPredecessors() const;
 
 
 
  /// Split the basic block into two basic blocks at the specified instruction.
 
  ///
 
  /// If \p Before is true, splitBasicBlockBefore handles the
 
  /// block splitting. Otherwise, execution proceeds as described below.
 
  ///
 
  /// Note that all instructions BEFORE the specified iterator
 
  /// stay as part of the original basic block, an unconditional branch is added
 
  /// to the original BB, and the rest of the instructions in the BB are moved
 
  /// to the new BB, including the old terminator.  The newly formed basic block
 
  /// is returned. This function invalidates the specified iterator.
 
  ///
 
  /// Note that this only works on well formed basic blocks (must have a
 
  /// terminator), and \p 'I' must not be the end of instruction list (which
 
  /// would cause a degenerate basic block to be formed, having a terminator
 
  /// inside of the basic block).
 
  ///
 
  /// Also note that this doesn't preserve any passes. To split blocks while
 
  /// keeping loop information consistent, use the SplitBlock utility function.
 
  BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "",
 
                              bool Before = false);
 
  BasicBlock *splitBasicBlock(Instruction *I, const Twine &BBName = "",
 
                              bool Before = false) {
 
    return splitBasicBlock(I->getIterator(), BBName, Before);
 
  }
 
 
 
  /// Split the basic block into two basic blocks at the specified instruction
 
  /// and insert the new basic blocks as the predecessor of the current block.
 
  ///
 
  /// This function ensures all instructions AFTER and including the specified
 
  /// iterator \p I are part of the original basic block. All Instructions
 
  /// BEFORE the iterator \p I are moved to the new BB and an unconditional
 
  /// branch is added to the new BB. The new basic block is returned.
 
  ///
 
  /// Note that this only works on well formed basic blocks (must have a
 
  /// terminator), and \p 'I' must not be the end of instruction list (which
 
  /// would cause a degenerate basic block to be formed, having a terminator
 
  /// inside of the basic block).  \p 'I' cannot be a iterator for a PHINode
 
  /// with multiple incoming blocks.
 
  ///
 
  /// Also note that this doesn't preserve any passes. To split blocks while
 
  /// keeping loop information consistent, use the SplitBlockBefore utility
 
  /// function.
 
  BasicBlock *splitBasicBlockBefore(iterator I, const Twine &BBName = "");
 
  BasicBlock *splitBasicBlockBefore(Instruction *I, const Twine &BBName = "") {
 
    return splitBasicBlockBefore(I->getIterator(), BBName);
 
  }
 
 
 
  /// Transfer all instructions from \p FromBB to this basic block at \p ToIt.
 
  void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB) {
 
    splice(ToIt, FromBB, FromBB->begin(), FromBB->end());
 
  }
 
 
 
  /// Transfer one instruction from \p FromBB at \p FromIt to this basic block
 
  /// at \p ToIt.
 
  void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB,
 
              BasicBlock::iterator FromIt) {
 
    auto FromItNext = std::next(FromIt);
 
    // Single-element splice is a noop if destination == source.
 
    if (ToIt == FromIt || ToIt == FromItNext)
 
      return;
 
    splice(ToIt, FromBB, FromIt, FromItNext);
 
  }
 
 
 
  /// Transfer a range of instructions that belong to \p FromBB from \p
 
  /// FromBeginIt to \p FromEndIt, to this basic block at \p ToIt.
 
  void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB,
 
              BasicBlock::iterator FromBeginIt,
 
              BasicBlock::iterator FromEndIt);
 
 
 
  /// Erases a range of instructions from \p FromIt to (not including) \p ToIt.
 
  /// \Returns \p ToIt.
 
  BasicBlock::iterator erase(BasicBlock::iterator FromIt, BasicBlock::iterator ToIt);
 
 
 
  /// Returns true if there are any uses of this basic block other than
 
  /// direct branches, switches, etc. to it.
 
  bool hasAddressTaken() const {
 
    return getBasicBlockBits().BlockAddressRefCount != 0;
 
  }
 
 
 
  /// Update all phi nodes in this basic block to refer to basic block \p New
 
  /// instead of basic block \p Old.
 
  void replacePhiUsesWith(BasicBlock *Old, BasicBlock *New);
 
 
 
  /// Update all phi nodes in this basic block's successors to refer to basic
 
  /// block \p New instead of basic block \p Old.
 
  void replaceSuccessorsPhiUsesWith(BasicBlock *Old, BasicBlock *New);
 
 
 
  /// Update all phi nodes in this basic block's successors to refer to basic
 
  /// block \p New instead of to it.
 
  void replaceSuccessorsPhiUsesWith(BasicBlock *New);
 
 
 
  /// Return true if this basic block is an exception handling block.
 
  bool isEHPad() const { return getFirstNonPHI()->isEHPad(); }
 
 
 
  /// Return true if this basic block is a landing pad.
 
  ///
 
  /// Being a ``landing pad'' means that the basic block is the destination of
 
  /// the 'unwind' edge of an invoke instruction.
 
  bool isLandingPad() const;
 
 
 
  /// Return the landingpad instruction associated with the landing pad.
 
  const LandingPadInst *getLandingPadInst() const;
 
  LandingPadInst *getLandingPadInst() {
 
    return const_cast<LandingPadInst *>(
 
                    static_cast<const BasicBlock *>(this)->getLandingPadInst());
 
  }
 
 
 
  /// Return true if it is legal to hoist instructions into this block.
 
  bool isLegalToHoistInto() const;
 
 
 
  /// Return true if this is the entry block of the containing function.
 
  /// This method can only be used on blocks that have a parent function.
 
  bool isEntryBlock() const;
 
 
 
  std::optional<uint64_t> getIrrLoopHeaderWeight() const;
 
 
 
  /// Returns true if the Order field of child Instructions is valid.
 
  bool isInstrOrderValid() const {
 
    return getBasicBlockBits().InstrOrderValid;
 
  }
 
 
 
  /// Mark instruction ordering invalid. Done on every instruction insert.
 
  void invalidateOrders() {
 
    validateInstrOrdering();
 
    BasicBlockBits Bits = getBasicBlockBits();
 
    Bits.InstrOrderValid = false;
 
    setBasicBlockBits(Bits);
 
  }
 
 
 
  /// Renumber instructions and mark the ordering as valid.
 
  void renumberInstructions();
 
 
 
  /// Asserts that instruction order numbers are marked invalid, or that they
 
  /// are in ascending order. This is constant time if the ordering is invalid,
 
  /// and linear in the number of instructions if the ordering is valid. Callers
 
  /// should be careful not to call this in ways that make common operations
 
  /// O(n^2). For example, it takes O(n) time to assign order numbers to
 
  /// instructions, so the order should be validated no more than once after
 
  /// each ordering to ensure that transforms have the same algorithmic
 
  /// complexity when asserts are enabled as when they are disabled.
 
  void validateInstrOrdering() const;
 
 
 
private:
 
#if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
 
// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
 
// and give the `pack` pragma push semantics.
 
#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
 
#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
 
#else
 
#define BEGIN_TWO_BYTE_PACK()
 
#define END_TWO_BYTE_PACK()
 
#endif
 
 
 
  BEGIN_TWO_BYTE_PACK()
 
  /// Bitfield to help interpret the bits in Value::SubclassData.
 
  struct BasicBlockBits {
 
    unsigned short BlockAddressRefCount : 15;
 
    unsigned short InstrOrderValid : 1;
 
  };
 
  END_TWO_BYTE_PACK()
 
 
 
#undef BEGIN_TWO_BYTE_PACK
 
#undef END_TWO_BYTE_PACK
 
 
 
  /// Safely reinterpret the subclass data bits to a more useful form.
 
  BasicBlockBits getBasicBlockBits() const {
 
    static_assert(sizeof(BasicBlockBits) == sizeof(unsigned short),
 
                  "too many bits for Value::SubclassData");
 
    unsigned short ValueData = getSubclassDataFromValue();
 
    BasicBlockBits AsBits;
 
    memcpy(&AsBits, &ValueData, sizeof(AsBits));
 
    return AsBits;
 
  }
 
 
 
  /// Reinterpret our subclass bits and store them back into Value.
 
  void setBasicBlockBits(BasicBlockBits AsBits) {
 
    unsigned short D;
 
    memcpy(&D, &AsBits, sizeof(D));
 
    Value::setValueSubclassData(D);
 
  }
 
 
 
  /// Increment the internal refcount of the number of BlockAddresses
 
  /// referencing this BasicBlock by \p Amt.
 
  ///
 
  /// This is almost always 0, sometimes one possibly, but almost never 2, and
 
  /// inconceivably 3 or more.
 
  void AdjustBlockAddressRefCount(int Amt) {
 
    BasicBlockBits Bits = getBasicBlockBits();
 
    Bits.BlockAddressRefCount += Amt;
 
    setBasicBlockBits(Bits);
 
    assert(Bits.BlockAddressRefCount < 255 && "Refcount wrap-around");
 
  }
 
 
 
  /// Shadow Value::setValueSubclassData with a private forwarding method so
 
  /// that any future subclasses cannot accidentally use it.
 
  void setValueSubclassData(unsigned short D) {
 
    Value::setValueSubclassData(D);
 
  }
 
};
 
 
 
// Create wrappers for C Binding types (see CBindingWrapping.h).
 
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef)
 
 
 
/// Advance \p It while it points to a debug instruction and return the result.
 
/// This assumes that \p It is not at the end of a block.
 
BasicBlock::iterator skipDebugIntrinsics(BasicBlock::iterator It);
 
 
 
#ifdef NDEBUG
 
/// In release builds, this is a no-op. For !NDEBUG builds, the checks are
 
/// implemented in the .cpp file to avoid circular header deps.
 
inline void BasicBlock::validateInstrOrdering() const {}
 
#endif
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_BASICBLOCK_H