//===- AbstractCallSite.h - Abstract call sites -----------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the AbstractCallSite class, which is a is a wrapper that
 
// allows treating direct, indirect, and callback calls the same.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_ABSTRACTCALLSITE_H
 
#define LLVM_IR_ABSTRACTCALLSITE_H
 
 
 
#include "llvm/IR/Constants.h"
 
#include "llvm/IR/Function.h"
 
#include "llvm/IR/InstrTypes.h"
 
#include "llvm/IR/Value.h"
 
#include <cassert>
 
 
 
namespace llvm {
 
 
 
class Argument;
 
class Use;
 
 
 
/// AbstractCallSite
 
///
 
/// An abstract call site is a wrapper that allows to treat direct,
 
/// indirect, and callback calls the same. If an abstract call site
 
/// represents a direct or indirect call site it behaves like a stripped
 
/// down version of a normal call site object. The abstract call site can
 
/// also represent a callback call, thus the fact that the initially
 
/// called function (=broker) may invoke a third one (=callback callee).
 
/// In this case, the abstract call site hides the middle man, hence the
 
/// broker function. The result is a representation of the callback call,
 
/// inside the broker, but in the context of the original call to the broker.
 
///
 
/// There are up to three functions involved when we talk about callback call
 
/// sites. The caller (1), which invokes the broker function. The broker
 
/// function (2), that will invoke the callee zero or more times. And finally
 
/// the callee (3), which is the target of the callback call.
 
///
 
/// The abstract call site will handle the mapping from parameters to arguments
 
/// depending on the semantic of the broker function. However, it is important
 
/// to note that the mapping is often partial. Thus, some arguments of the
 
/// call/invoke instruction are mapped to parameters of the callee while others
 
/// are not.
 
class AbstractCallSite {
 
public:
 
 
 
  /// The encoding of a callback with regards to the underlying instruction.
 
  struct CallbackInfo {
 
 
 
    /// For direct/indirect calls the parameter encoding is empty. If it is not,
 
    /// the abstract call site represents a callback. In that case, the first
 
    /// element of the encoding vector represents which argument of the call
 
    /// site CB is the callback callee. The remaining elements map parameters
 
    /// (identified by their position) to the arguments that will be passed
 
    /// through (also identified by position but in the call site instruction).
 
    ///
 
    /// NOTE that we use LLVM argument numbers (starting at 0) and not
 
    /// clang/source argument numbers (starting at 1). The -1 entries represent
 
    /// unknown values that are passed to the callee.
 
    using ParameterEncodingTy = SmallVector<int, 0>;
 
    ParameterEncodingTy ParameterEncoding;
 
 
 
  };
 
 
 
private:
 
 
 
  /// The underlying call site:
 
  ///   caller -> callee,             if this is a direct or indirect call site
 
  ///   caller -> broker function,    if this is a callback call site
 
  CallBase *CB;
 
 
 
  /// The encoding of a callback with regards to the underlying instruction.
 
  CallbackInfo CI;
 
 
 
public:
 
  /// Sole constructor for abstract call sites (ACS).
 
  ///
 
  /// An abstract call site can only be constructed through a llvm::Use because
 
  /// each operand (=use) of an instruction could potentially be a different
 
  /// abstract call site. Furthermore, even if the value of the llvm::Use is the
 
  /// same, and the user is as well, the abstract call sites might not be.
 
  ///
 
  /// If a use is not associated with an abstract call site the constructed ACS
 
  /// will evaluate to false if converted to a boolean.
 
  ///
 
  /// If the use is the callee use of a call or invoke instruction, the
 
  /// constructed abstract call site will behave as a llvm::CallSite would.
 
  ///
 
  /// If the use is not a callee use of a call or invoke instruction, the
 
  /// callback metadata is used to determine the argument <-> parameter mapping
 
  /// as well as the callee of the abstract call site.
 
  AbstractCallSite(const Use *U);
 
 
 
  /// Add operand uses of \p CB that represent callback uses into
 
  /// \p CallbackUses.
 
  ///
 
  /// All uses added to \p CallbackUses can be used to create abstract call
 
  /// sites for which AbstractCallSite::isCallbackCall() will return true.
 
  static void getCallbackUses(const CallBase &CB,
 
                              SmallVectorImpl<const Use *> &CallbackUses);
 
 
 
  /// Conversion operator to conveniently check for a valid/initialized ACS.
 
  explicit operator bool() const { return CB != nullptr; }
 
 
 
  /// Return the underlying instruction.
 
  CallBase *getInstruction() const { return CB; }
 
 
 
  /// Return true if this ACS represents a direct call.
 
  bool isDirectCall() const {
 
    return !isCallbackCall() && !CB->isIndirectCall();
 
  }
 
 
 
  /// Return true if this ACS represents an indirect call.
 
  bool isIndirectCall() const {
 
    return !isCallbackCall() && CB->isIndirectCall();
 
  }
 
 
 
  /// Return true if this ACS represents a callback call.
 
  bool isCallbackCall() const {
 
    // For a callback call site the callee is ALWAYS stored first in the
 
    // transitive values vector. Thus, a non-empty vector indicates a callback.
 
    return !CI.ParameterEncoding.empty();
 
  }
 
 
 
  /// Return true if @p UI is the use that defines the callee of this ACS.
 
  bool isCallee(Value::const_user_iterator UI) const {
 
    return isCallee(&UI.getUse());
 
  }
 
 
 
  /// Return true if @p U is the use that defines the callee of this ACS.
 
  bool isCallee(const Use *U) const {
 
    if (isDirectCall())
 
      return CB->isCallee(U);
 
 
 
    assert(!CI.ParameterEncoding.empty() &&
 
           "Callback without parameter encoding!");
 
 
 
    // If the use is actually in a constant cast expression which itself
 
    // has only one use, we look through the constant cast expression.
 
    if (auto *CE = dyn_cast<ConstantExpr>(U->getUser()))
 
      if (CE->hasOneUse() && CE->isCast())
 
        U = &*CE->use_begin();
 
 
 
    return (int)CB->getArgOperandNo(U) == CI.ParameterEncoding[0];
 
  }
 
 
 
  /// Return the number of parameters of the callee.
 
  unsigned getNumArgOperands() const {
 
    if (isDirectCall())
 
      return CB->arg_size();
 
    // Subtract 1 for the callee encoding.
 
    return CI.ParameterEncoding.size() - 1;
 
  }
 
 
 
  /// Return the operand index of the underlying instruction associated with @p
 
  /// Arg.
 
  int getCallArgOperandNo(Argument &Arg) const {
 
    return getCallArgOperandNo(Arg.getArgNo());
 
  }
 
 
 
  /// Return the operand index of the underlying instruction associated with
 
  /// the function parameter number @p ArgNo or -1 if there is none.
 
  int getCallArgOperandNo(unsigned ArgNo) const {
 
    if (isDirectCall())
 
      return ArgNo;
 
    // Add 1 for the callee encoding.
 
    return CI.ParameterEncoding[ArgNo + 1];
 
  }
 
 
 
  /// Return the operand of the underlying instruction associated with @p Arg.
 
  Value *getCallArgOperand(Argument &Arg) const {
 
    return getCallArgOperand(Arg.getArgNo());
 
  }
 
 
 
  /// Return the operand of the underlying instruction associated with the
 
  /// function parameter number @p ArgNo or nullptr if there is none.
 
  Value *getCallArgOperand(unsigned ArgNo) const {
 
    if (isDirectCall())
 
      return CB->getArgOperand(ArgNo);
 
    // Add 1 for the callee encoding.
 
    return CI.ParameterEncoding[ArgNo + 1] >= 0
 
               ? CB->getArgOperand(CI.ParameterEncoding[ArgNo + 1])
 
               : nullptr;
 
  }
 
 
 
  /// Return the operand index of the underlying instruction associated with the
 
  /// callee of this ACS. Only valid for callback calls!
 
  int getCallArgOperandNoForCallee() const {
 
    assert(isCallbackCall());
 
    assert(CI.ParameterEncoding.size() && CI.ParameterEncoding[0] >= 0);
 
    return CI.ParameterEncoding[0];
 
  }
 
 
 
  /// Return the use of the callee value in the underlying instruction. Only
 
  /// valid for callback calls!
 
  const Use &getCalleeUseForCallback() const {
 
    int CalleeArgIdx = getCallArgOperandNoForCallee();
 
    assert(CalleeArgIdx >= 0 &&
 
           unsigned(CalleeArgIdx) < getInstruction()->getNumOperands());
 
    return getInstruction()->getOperandUse(CalleeArgIdx);
 
  }
 
 
 
  /// Return the pointer to function that is being called.
 
  Value *getCalledOperand() const {
 
    if (isDirectCall())
 
      return CB->getCalledOperand();
 
    return CB->getArgOperand(getCallArgOperandNoForCallee());
 
  }
 
 
 
  /// Return the function being called if this is a direct call, otherwise
 
  /// return null (if it's an indirect call).
 
  Function *getCalledFunction() const {
 
    Value *V = getCalledOperand();
 
    return V ? dyn_cast<Function>(V->stripPointerCasts()) : nullptr;
 
  }
 
};
 
 
 
/// Apply function Func to each CB's callback call site.
 
template <typename UnaryFunction>
 
void forEachCallbackCallSite(const CallBase &CB, UnaryFunction Func) {
 
  SmallVector<const Use *, 4u> CallbackUses;
 
  AbstractCallSite::getCallbackUses(CB, CallbackUses);
 
  for (const Use *U : CallbackUses) {
 
    AbstractCallSite ACS(U);
 
    assert(ACS && ACS.isCallbackCall() && "must be a callback call");
 
    Func(ACS);
 
  }
 
}
 
 
 
/// Apply function Func to each CB's callback function.
 
template <typename UnaryFunction>
 
void forEachCallbackFunction(const CallBase &CB, UnaryFunction Func) {
 
  forEachCallbackCallSite(CB, [&Func](AbstractCallSite &ACS) {
 
    if (Function *Callback = ACS.getCalledFunction())
 
      Func(Callback);
 
  });
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_ABSTRACTCALLSITE_H