//===- RuntimeDyld.h - Run-time dynamic linker for MC-JIT -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Interface for the runtime dynamic linker facilities of the MC-JIT.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
 
#define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
 
 
 
#include "llvm/ADT/FunctionExtras.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/DebugInfo/DIContext.h"
 
#include "llvm/ExecutionEngine/JITSymbol.h"
 
#include "llvm/Object/ObjectFile.h"
 
#include "llvm/Support/Error.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <map>
 
#include <memory>
 
#include <string>
 
#include <system_error>
 
 
 
namespace llvm {
 
 
 
namespace object {
 
 
 
template <typename T> class OwningBinary;
 
 
 
} // end namespace object
 
 
 
/// Base class for errors originating in RuntimeDyld, e.g. missing relocation
 
/// support.
 
class RuntimeDyldError : public ErrorInfo<RuntimeDyldError> {
 
public:
 
  static char ID;
 
 
 
  RuntimeDyldError(std::string ErrMsg) : ErrMsg(std::move(ErrMsg)) {}
 
 
 
  void log(raw_ostream &OS) const override;
 
  const std::string &getErrorMessage() const { return ErrMsg; }
 
  std::error_code convertToErrorCode() const override;
 
 
 
private:
 
  std::string ErrMsg;
 
};
 
 
 
class RuntimeDyldImpl;
 
 
 
class RuntimeDyld {
 
public:
 
  // Change the address associated with a section when resolving relocations.
 
  // Any relocations already associated with the symbol will be re-resolved.
 
  void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
 
 
 
  using NotifyStubEmittedFunction = std::function<void(
 
      StringRef FileName, StringRef SectionName, StringRef SymbolName,
 
      unsigned SectionID, uint32_t StubOffset)>;
 
 
 
  /// Information about the loaded object.
 
  class LoadedObjectInfo : public llvm::LoadedObjectInfo {
 
    friend class RuntimeDyldImpl;
 
 
 
  public:
 
    using ObjSectionToIDMap = std::map<object::SectionRef, unsigned>;
 
 
 
    LoadedObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
 
        : RTDyld(RTDyld), ObjSecToIDMap(std::move(ObjSecToIDMap)) {}
 
 
 
    virtual object::OwningBinary<object::ObjectFile>
 
    getObjectForDebug(const object::ObjectFile &Obj) const = 0;
 
 
 
    uint64_t
 
    getSectionLoadAddress(const object::SectionRef &Sec) const override;
 
 
 
  protected:
 
    virtual void anchor();
 
 
 
    RuntimeDyldImpl &RTDyld;
 
    ObjSectionToIDMap ObjSecToIDMap;
 
  };
 
 
 
  /// Memory Management.
 
  class MemoryManager {
 
    friend class RuntimeDyld;
 
 
 
  public:
 
    MemoryManager() = default;
 
    virtual ~MemoryManager() = default;
 
 
 
    /// Allocate a memory block of (at least) the given size suitable for
 
    /// executable code. The SectionID is a unique identifier assigned by the
 
    /// RuntimeDyld instance, and optionally recorded by the memory manager to
 
    /// access a loaded section.
 
    virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
 
                                         unsigned SectionID,
 
                                         StringRef SectionName) = 0;
 
 
 
    /// Allocate a memory block of (at least) the given size suitable for data.
 
    /// The SectionID is a unique identifier assigned by the JIT engine, and
 
    /// optionally recorded by the memory manager to access a loaded section.
 
    virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
 
                                         unsigned SectionID,
 
                                         StringRef SectionName,
 
                                         bool IsReadOnly) = 0;
 
 
 
    /// An allocated TLS section
 
    struct TLSSection {
 
      /// The pointer to the initialization image
 
      uint8_t *InitializationImage;
 
      /// The TLS offset
 
      intptr_t Offset;
 
    };
 
 
 
    /// Allocate a memory block of (at least) the given size to be used for
 
    /// thread-local storage (TLS).
 
    virtual TLSSection allocateTLSSection(uintptr_t Size, unsigned Alignment,
 
                                          unsigned SectionID,
 
                                          StringRef SectionName);
 
 
 
    /// Inform the memory manager about the total amount of memory required to
 
    /// allocate all sections to be loaded:
 
    /// \p CodeSize - the total size of all code sections
 
    /// \p DataSizeRO - the total size of all read-only data sections
 
    /// \p DataSizeRW - the total size of all read-write data sections
 
    ///
 
    /// Note that by default the callback is disabled. To enable it
 
    /// redefine the method needsToReserveAllocationSpace to return true.
 
    virtual void reserveAllocationSpace(uintptr_t CodeSize, Align CodeAlign,
 
                                        uintptr_t RODataSize, Align RODataAlign,
 
                                        uintptr_t RWDataSize,
 
                                        Align RWDataAlign) {}
 
 
 
    /// Override to return true to enable the reserveAllocationSpace callback.
 
    virtual bool needsToReserveAllocationSpace() { return false; }
 
 
 
    /// Override to return false to tell LLVM no stub space will be needed.
 
    /// This requires some guarantees depending on architecuture, but when
 
    /// you know what you are doing it saves allocated space.
 
    virtual bool allowStubAllocation() const { return true; }
 
 
 
    /// Register the EH frames with the runtime so that c++ exceptions work.
 
    ///
 
    /// \p Addr parameter provides the local address of the EH frame section
 
    /// data, while \p LoadAddr provides the address of the data in the target
 
    /// address space.  If the section has not been remapped (which will usually
 
    /// be the case for local execution) these two values will be the same.
 
    virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
 
                                  size_t Size) = 0;
 
    virtual void deregisterEHFrames() = 0;
 
 
 
    /// This method is called when object loading is complete and section page
 
    /// permissions can be applied.  It is up to the memory manager implementation
 
    /// to decide whether or not to act on this method.  The memory manager will
 
    /// typically allocate all sections as read-write and then apply specific
 
    /// permissions when this method is called.  Code sections cannot be executed
 
    /// until this function has been called.  In addition, any cache coherency
 
    /// operations needed to reliably use the memory are also performed.
 
    ///
 
    /// Returns true if an error occurred, false otherwise.
 
    virtual bool finalizeMemory(std::string *ErrMsg = nullptr) = 0;
 
 
 
    /// This method is called after an object has been loaded into memory but
 
    /// before relocations are applied to the loaded sections.
 
    ///
 
    /// Memory managers which are preparing code for execution in an external
 
    /// address space can use this call to remap the section addresses for the
 
    /// newly loaded object.
 
    ///
 
    /// For clients that do not need access to an ExecutionEngine instance this
 
    /// method should be preferred to its cousin
 
    /// MCJITMemoryManager::notifyObjectLoaded as this method is compatible with
 
    /// ORC JIT stacks.
 
    virtual void notifyObjectLoaded(RuntimeDyld &RTDyld,
 
                                    const object::ObjectFile &Obj) {}
 
 
 
  private:
 
    virtual void anchor();
 
 
 
    bool FinalizationLocked = false;
 
  };
 
 
 
  /// Construct a RuntimeDyld instance.
 
  RuntimeDyld(MemoryManager &MemMgr, JITSymbolResolver &Resolver);
 
  RuntimeDyld(const RuntimeDyld &) = delete;
 
  RuntimeDyld &operator=(const RuntimeDyld &) = delete;
 
  ~RuntimeDyld();
 
 
 
  /// Add the referenced object file to the list of objects to be loaded and
 
  /// relocated.
 
  std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);
 
 
 
  /// Get the address of our local copy of the symbol. This may or may not
 
  /// be the address used for relocation (clients can copy the data around
 
  /// and resolve relocatons based on where they put it).
 
  void *getSymbolLocalAddress(StringRef Name) const;
 
 
 
  /// Get the section ID for the section containing the given symbol.
 
  unsigned getSymbolSectionID(StringRef Name) const;
 
 
 
  /// Get the target address and flags for the named symbol.
 
  /// This address is the one used for relocation.
 
  JITEvaluatedSymbol getSymbol(StringRef Name) const;
 
 
 
  /// Returns a copy of the symbol table. This can be used by on-finalized
 
  /// callbacks to extract the symbol table before throwing away the
 
  /// RuntimeDyld instance. Because the map keys (StringRefs) are backed by
 
  /// strings inside the RuntimeDyld instance, the map should be processed
 
  /// before the RuntimeDyld instance is discarded.
 
  std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const;
 
 
 
  /// Resolve the relocations for all symbols we currently know about.
 
  void resolveRelocations();
 
 
 
  /// Map a section to its target address space value.
 
  /// Map the address of a JIT section as returned from the memory manager
 
  /// to the address in the target process as the running code will see it.
 
  /// This is the address which will be used for relocation resolution.
 
  void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
 
 
 
  /// Returns the section's working memory.
 
  StringRef getSectionContent(unsigned SectionID) const;
 
 
 
  /// If the section was loaded, return the section's load address,
 
  /// otherwise return std::nullopt.
 
  uint64_t getSectionLoadAddress(unsigned SectionID) const;
 
 
 
  /// Set the NotifyStubEmitted callback. This is used for debugging
 
  /// purposes. A callback is made for each stub that is generated.
 
  void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) {
 
    this->NotifyStubEmitted = std::move(NotifyStubEmitted);
 
  }
 
 
 
  /// Register any EH frame sections that have been loaded but not previously
 
  /// registered with the memory manager.  Note, RuntimeDyld is responsible
 
  /// for identifying the EH frame and calling the memory manager with the
 
  /// EH frame section data.  However, the memory manager itself will handle
 
  /// the actual target-specific EH frame registration.
 
  void registerEHFrames();
 
 
 
  void deregisterEHFrames();
 
 
 
  bool hasError();
 
  StringRef getErrorString();
 
 
 
  /// By default, only sections that are "required for execution" are passed to
 
  /// the RTDyldMemoryManager, and other sections are discarded. Passing 'true'
 
  /// to this method will cause RuntimeDyld to pass all sections to its
 
  /// memory manager regardless of whether they are "required to execute" in the
 
  /// usual sense. This is useful for inspecting metadata sections that may not
 
  /// contain relocations, E.g. Debug info, stackmaps.
 
  ///
 
  /// Must be called before the first object file is loaded.
 
  void setProcessAllSections(bool ProcessAllSections) {
 
    assert(!Dyld && "setProcessAllSections must be called before loadObject.");
 
    this->ProcessAllSections = ProcessAllSections;
 
  }
 
 
 
  /// Perform all actions needed to make the code owned by this RuntimeDyld
 
  /// instance executable:
 
  ///
 
  /// 1) Apply relocations.
 
  /// 2) Register EH frames.
 
  /// 3) Update memory permissions*.
 
  ///
 
  /// * Finalization is potentially recursive**, and the 3rd step will only be
 
  ///   applied by the outermost call to finalize. This allows different
 
  ///   RuntimeDyld instances to share a memory manager without the innermost
 
  ///   finalization locking the memory and causing relocation fixup errors in
 
  ///   outer instances.
 
  ///
 
  /// ** Recursive finalization occurs when one RuntimeDyld instances needs the
 
  ///   address of a symbol owned by some other instance in order to apply
 
  ///   relocations.
 
  ///
 
  void finalizeWithMemoryManagerLocking();
 
 
 
private:
 
  friend void jitLinkForORC(
 
      object::OwningBinary<object::ObjectFile> O,
 
      RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
 
      bool ProcessAllSections,
 
      unique_function<Error(const object::ObjectFile &Obj, LoadedObjectInfo &,
 
                            std::map<StringRef, JITEvaluatedSymbol>)>
 
          OnLoaded,
 
      unique_function<void(object::OwningBinary<object::ObjectFile> O,
 
                           std::unique_ptr<LoadedObjectInfo>, Error)>
 
          OnEmitted);
 
 
 
  // RuntimeDyldImpl is the actual class. RuntimeDyld is just the public
 
  // interface.
 
  std::unique_ptr<RuntimeDyldImpl> Dyld;
 
  MemoryManager &MemMgr;
 
  JITSymbolResolver &Resolver;
 
  bool ProcessAllSections;
 
  NotifyStubEmittedFunction NotifyStubEmitted;
 
};
 
 
 
// Asynchronous JIT link for ORC.
 
//
 
// Warning: This API is experimental and probably should not be used by anyone
 
// but ORC's RTDyldObjectLinkingLayer2. Internally it constructs a RuntimeDyld
 
// instance and uses continuation passing to perform the fix-up and finalize
 
// steps asynchronously.
 
void jitLinkForORC(
 
    object::OwningBinary<object::ObjectFile> O,
 
    RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
 
    bool ProcessAllSections,
 
    unique_function<Error(const object::ObjectFile &Obj,
 
                          RuntimeDyld::LoadedObjectInfo &,
 
                          std::map<StringRef, JITEvaluatedSymbol>)>
 
        OnLoaded,
 
    unique_function<void(object::OwningBinary<object::ObjectFile>,
 
                         std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
 
        OnEmitted);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H