//===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Contains generic JIT-linker types.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
 
#define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/Triple.h"
 
#include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
 
#include "llvm/ExecutionEngine/JITSymbol.h"
 
#include "llvm/ExecutionEngine/Orc/Shared/MemoryFlags.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/BinaryStreamReader.h"
 
#include "llvm/Support/BinaryStreamWriter.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/Error.h"
 
#include "llvm/Support/FormatVariadic.h"
 
#include "llvm/Support/MathExtras.h"
 
#include "llvm/Support/MemoryBuffer.h"
 
#include <optional>
 
 
 
#include <map>
 
#include <string>
 
#include <system_error>
 
 
 
namespace llvm {
 
namespace jitlink {
 
 
 
class LinkGraph;
 
class Symbol;
 
class Section;
 
 
 
/// Base class for errors originating in JIT linker, e.g. missing relocation
 
/// support.
 
class JITLinkError : public ErrorInfo<JITLinkError> {
 
public:
 
  static char ID;
 
 
 
  JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
 
 
 
  void log(raw_ostream &OS) const override;
 
  const std::string &getErrorMessage() const { return ErrMsg; }
 
  std::error_code convertToErrorCode() const override;
 
 
 
private:
 
  std::string ErrMsg;
 
};
 
 
 
/// Represents fixups and constraints in the LinkGraph.
 
class Edge {
 
public:
 
  using Kind = uint8_t;
 
 
 
  enum GenericEdgeKind : Kind {
 
    Invalid,                    // Invalid edge value.
 
    FirstKeepAlive,             // Keeps target alive. Offset/addend zero.
 
    KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
 
    FirstRelocation             // First architecture specific relocation.
 
  };
 
 
 
  using OffsetT = uint32_t;
 
  using AddendT = int64_t;
 
 
 
  Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
 
      : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
 
 
 
  OffsetT getOffset() const { return Offset; }
 
  void setOffset(OffsetT Offset) { this->Offset = Offset; }
 
  Kind getKind() const { return K; }
 
  void setKind(Kind K) { this->K = K; }
 
  bool isRelocation() const { return K >= FirstRelocation; }
 
  Kind getRelocation() const {
 
    assert(isRelocation() && "Not a relocation edge");
 
    return K - FirstRelocation;
 
  }
 
  bool isKeepAlive() const { return K >= FirstKeepAlive; }
 
  Symbol &getTarget() const { return *Target; }
 
  void setTarget(Symbol &Target) { this->Target = &Target; }
 
  AddendT getAddend() const { return Addend; }
 
  void setAddend(AddendT Addend) { this->Addend = Addend; }
 
 
 
private:
 
  Symbol *Target = nullptr;
 
  OffsetT Offset = 0;
 
  AddendT Addend = 0;
 
  Kind K = 0;
 
};
 
 
 
/// Returns the string name of the given generic edge kind, or "unknown"
 
/// otherwise. Useful for debugging.
 
const char *getGenericEdgeKindName(Edge::Kind K);
 
 
 
/// Base class for Addressable entities (externals, absolutes, blocks).
 
class Addressable {
 
  friend class LinkGraph;
 
 
 
protected:
 
  Addressable(orc::ExecutorAddr Address, bool IsDefined)
 
      : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
 
 
 
  Addressable(orc::ExecutorAddr Address)
 
      : Address(Address), IsDefined(false), IsAbsolute(true) {
 
    assert(!(IsDefined && IsAbsolute) &&
 
           "Block cannot be both defined and absolute");
 
  }
 
 
 
public:
 
  Addressable(const Addressable &) = delete;
 
  Addressable &operator=(const Addressable &) = default;
 
  Addressable(Addressable &&) = delete;
 
  Addressable &operator=(Addressable &&) = default;
 
 
 
  orc::ExecutorAddr getAddress() const { return Address; }
 
  void setAddress(orc::ExecutorAddr Address) { this->Address = Address; }
 
 
 
  /// Returns true if this is a defined addressable, in which case you
 
  /// can downcast this to a Block.
 
  bool isDefined() const { return static_cast<bool>(IsDefined); }
 
  bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
 
 
 
private:
 
  void setAbsolute(bool IsAbsolute) {
 
    assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
 
    this->IsAbsolute = IsAbsolute;
 
  }
 
 
 
  orc::ExecutorAddr Address;
 
  uint64_t IsDefined : 1;
 
  uint64_t IsAbsolute : 1;
 
 
 
protected:
 
  // bitfields for Block, allocated here to improve packing.
 
  uint64_t ContentMutable : 1;
 
  uint64_t P2Align : 5;
 
  uint64_t AlignmentOffset : 56;
 
};
 
 
 
using SectionOrdinal = unsigned;
 
 
 
/// An Addressable with content and edges.
 
class Block : public Addressable {
 
  friend class LinkGraph;
 
 
 
private:
 
  /// Create a zero-fill defined addressable.
 
  Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address,
 
        uint64_t Alignment, uint64_t AlignmentOffset)
 
      : Addressable(Address, true), Parent(&Parent), Size(Size) {
 
    assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
 
    assert(AlignmentOffset < Alignment &&
 
           "Alignment offset cannot exceed alignment");
 
    assert(AlignmentOffset <= MaxAlignmentOffset &&
 
           "Alignment offset exceeds maximum");
 
    ContentMutable = false;
 
    P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
 
    this->AlignmentOffset = AlignmentOffset;
 
  }
 
 
 
  /// Create a defined addressable for the given content.
 
  /// The Content is assumed to be non-writable, and will be copied when
 
  /// mutations are required.
 
  Block(Section &Parent, ArrayRef<char> Content, orc::ExecutorAddr Address,
 
        uint64_t Alignment, uint64_t AlignmentOffset)
 
      : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
 
        Size(Content.size()) {
 
    assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
 
    assert(AlignmentOffset < Alignment &&
 
           "Alignment offset cannot exceed alignment");
 
    assert(AlignmentOffset <= MaxAlignmentOffset &&
 
           "Alignment offset exceeds maximum");
 
    ContentMutable = false;
 
    P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
 
    this->AlignmentOffset = AlignmentOffset;
 
  }
 
 
 
  /// Create a defined addressable for the given content.
 
  /// The content is assumed to be writable, and the caller is responsible
 
  /// for ensuring that it lives for the duration of the Block's lifetime.
 
  /// The standard way to achieve this is to allocate it on the Graph's
 
  /// allocator.
 
  Block(Section &Parent, MutableArrayRef<char> Content,
 
        orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset)
 
      : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
 
        Size(Content.size()) {
 
    assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
 
    assert(AlignmentOffset < Alignment &&
 
           "Alignment offset cannot exceed alignment");
 
    assert(AlignmentOffset <= MaxAlignmentOffset &&
 
           "Alignment offset exceeds maximum");
 
    ContentMutable = true;
 
    P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
 
    this->AlignmentOffset = AlignmentOffset;
 
  }
 
 
 
public:
 
  using EdgeVector = std::vector<Edge>;
 
  using edge_iterator = EdgeVector::iterator;
 
  using const_edge_iterator = EdgeVector::const_iterator;
 
 
 
  Block(const Block &) = delete;
 
  Block &operator=(const Block &) = delete;
 
  Block(Block &&) = delete;
 
  Block &operator=(Block &&) = delete;
 
 
 
  /// Return the parent section for this block.
 
  Section &getSection() const { return *Parent; }
 
 
 
  /// Returns true if this is a zero-fill block.
 
  ///
 
  /// If true, getSize is callable but getContent is not (the content is
 
  /// defined to be a sequence of zero bytes of length Size).
 
  bool isZeroFill() const { return !Data; }
 
 
 
  /// Returns the size of this defined addressable.
 
  size_t getSize() const { return Size; }
 
 
 
  /// Returns the address range of this defined addressable.
 
  orc::ExecutorAddrRange getRange() const {
 
    return orc::ExecutorAddrRange(getAddress(), getSize());
 
  }
 
 
 
  /// Get the content for this block. Block must not be a zero-fill block.
 
  ArrayRef<char> getContent() const {
 
    assert(Data && "Block does not contain content");
 
    return ArrayRef<char>(Data, Size);
 
  }
 
 
 
  /// Set the content for this block.
 
  /// Caller is responsible for ensuring the underlying bytes are not
 
  /// deallocated while pointed to by this block.
 
  void setContent(ArrayRef<char> Content) {
 
    assert(Content.data() && "Setting null content");
 
    Data = Content.data();
 
    Size = Content.size();
 
    ContentMutable = false;
 
  }
 
 
 
  /// Get mutable content for this block.
 
  ///
 
  /// If this Block's content is not already mutable this will trigger a copy
 
  /// of the existing immutable content to a new, mutable buffer allocated using
 
  /// LinkGraph::allocateContent.
 
  MutableArrayRef<char> getMutableContent(LinkGraph &G);
 
 
 
  /// Get mutable content for this block.
 
  ///
 
  /// This block's content must already be mutable. It is a programmatic error
 
  /// to call this on a block with immutable content -- consider using
 
  /// getMutableContent instead.
 
  MutableArrayRef<char> getAlreadyMutableContent() {
 
    assert(Data && "Block does not contain content");
 
    assert(ContentMutable && "Content is not mutable");
 
    return MutableArrayRef<char>(const_cast<char *>(Data), Size);
 
  }
 
 
 
  /// Set mutable content for this block.
 
  ///
 
  /// The caller is responsible for ensuring that the memory pointed to by
 
  /// MutableContent is not deallocated while pointed to by this block.
 
  void setMutableContent(MutableArrayRef<char> MutableContent) {
 
    assert(MutableContent.data() && "Setting null content");
 
    Data = MutableContent.data();
 
    Size = MutableContent.size();
 
    ContentMutable = true;
 
  }
 
 
 
  /// Returns true if this block's content is mutable.
 
  ///
 
  /// This is primarily useful for asserting that a block is already in a
 
  /// mutable state prior to modifying the content. E.g. when applying
 
  /// fixups we expect the block to already be mutable as it should have been
 
  /// copied to working memory.
 
  bool isContentMutable() const { return ContentMutable; }
 
 
 
  /// Get the alignment for this content.
 
  uint64_t getAlignment() const { return 1ull << P2Align; }
 
 
 
  /// Set the alignment for this content.
 
  void setAlignment(uint64_t Alignment) {
 
    assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
 
    P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
 
  }
 
 
 
  /// Get the alignment offset for this content.
 
  uint64_t getAlignmentOffset() const { return AlignmentOffset; }
 
 
 
  /// Set the alignment offset for this content.
 
  void setAlignmentOffset(uint64_t AlignmentOffset) {
 
    assert(AlignmentOffset < (1ull << P2Align) &&
 
           "Alignment offset can't exceed alignment");
 
    this->AlignmentOffset = AlignmentOffset;
 
  }
 
 
 
  /// Add an edge to this block.
 
  void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
 
               Edge::AddendT Addend) {
 
    assert((K == Edge::KeepAlive || !isZeroFill()) &&
 
           "Adding edge to zero-fill block?");
 
    Edges.push_back(Edge(K, Offset, Target, Addend));
 
  }
 
 
 
  /// Add an edge by copying an existing one. This is typically used when
 
  /// moving edges between blocks.
 
  void addEdge(const Edge &E) { Edges.push_back(E); }
 
 
 
  /// Return the list of edges attached to this content.
 
  iterator_range<edge_iterator> edges() {
 
    return make_range(Edges.begin(), Edges.end());
 
  }
 
 
 
  /// Returns the list of edges attached to this content.
 
  iterator_range<const_edge_iterator> edges() const {
 
    return make_range(Edges.begin(), Edges.end());
 
  }
 
 
 
  /// Return the size of the edges list.
 
  size_t edges_size() const { return Edges.size(); }
 
 
 
  /// Returns true if the list of edges is empty.
 
  bool edges_empty() const { return Edges.empty(); }
 
 
 
  /// Remove the edge pointed to by the given iterator.
 
  /// Returns an iterator to the new next element.
 
  edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
 
 
 
  /// Returns the address of the fixup for the given edge, which is equal to
 
  /// this block's address plus the edge's offset.
 
  orc::ExecutorAddr getFixupAddress(const Edge &E) const {
 
    return getAddress() + E.getOffset();
 
  }
 
 
 
private:
 
  static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1;
 
 
 
  void setSection(Section &Parent) { this->Parent = &Parent; }
 
 
 
  Section *Parent;
 
  const char *Data = nullptr;
 
  size_t Size = 0;
 
  std::vector<Edge> Edges;
 
};
 
 
 
// Align an address to conform with block alignment requirements.
 
inline uint64_t alignToBlock(uint64_t Addr, Block &B) {
 
  uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment();
 
  return Addr + Delta;
 
}
 
 
 
// Align a orc::ExecutorAddr to conform with block alignment requirements.
 
inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, Block &B) {
 
  return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B));
 
}
 
 
 
/// Describes symbol linkage. This can be used to make resolve definition
 
/// clashes.
 
enum class Linkage : uint8_t {
 
  Strong,
 
  Weak,
 
};
 
 
 
/// For errors and debugging output.
 
const char *getLinkageName(Linkage L);
 
 
 
/// Defines the scope in which this symbol should be visible:
 
///   Default -- Visible in the public interface of the linkage unit.
 
///   Hidden -- Visible within the linkage unit, but not exported from it.
 
///   Local -- Visible only within the LinkGraph.
 
enum class Scope : uint8_t {
 
  Default,
 
  Hidden,
 
  Local
 
};
 
 
 
/// For debugging output.
 
const char *getScopeName(Scope S);
 
 
 
raw_ostream &operator<<(raw_ostream &OS, const Block &B);
 
 
 
/// Symbol representation.
 
///
 
/// Symbols represent locations within Addressable objects.
 
/// They can be either Named or Anonymous.
 
/// Anonymous symbols have neither linkage nor visibility, and must point at
 
/// ContentBlocks.
 
/// Named symbols may be in one of four states:
 
///   - Null: Default initialized. Assignable, but otherwise unusable.
 
///   - Defined: Has both linkage and visibility and points to a ContentBlock
 
///   - Common: Has both linkage and visibility, points to a null Addressable.
 
///   - External: Has neither linkage nor visibility, points to an external
 
///     Addressable.
 
///
 
class Symbol {
 
  friend class LinkGraph;
 
 
 
private:
 
  Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name,
 
         orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive,
 
         bool IsCallable)
 
      : Name(Name), Base(&Base), Offset(Offset), WeakRef(0), Size(Size) {
 
    assert(Offset <= MaxOffset && "Offset out of range");
 
    setLinkage(L);
 
    setScope(S);
 
    setLive(IsLive);
 
    setCallable(IsCallable);
 
  }
 
 
 
  static Symbol &constructExternal(BumpPtrAllocator &Allocator,
 
                                   Addressable &Base, StringRef Name,
 
                                   orc::ExecutorAddrDiff Size, Linkage L,
 
                                   bool WeaklyReferenced) {
 
    assert(!Base.isDefined() &&
 
           "Cannot create external symbol from defined block");
 
    assert(!Name.empty() && "External symbol name cannot be empty");
 
    auto *Sym = Allocator.Allocate<Symbol>();
 
    new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
 
    Sym->setWeaklyReferenced(WeaklyReferenced);
 
    return *Sym;
 
  }
 
 
 
  static Symbol &constructAbsolute(BumpPtrAllocator &Allocator,
 
                                   Addressable &Base, StringRef Name,
 
                                   orc::ExecutorAddrDiff Size, Linkage L,
 
                                   Scope S, bool IsLive) {
 
    assert(!Base.isDefined() &&
 
           "Cannot create absolute symbol from a defined block");
 
    auto *Sym = Allocator.Allocate<Symbol>();
 
    new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
 
    return *Sym;
 
  }
 
 
 
  static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base,
 
                                  orc::ExecutorAddrDiff Offset,
 
                                  orc::ExecutorAddrDiff Size, bool IsCallable,
 
                                  bool IsLive) {
 
    assert((Offset + Size) <= Base.getSize() &&
 
           "Symbol extends past end of block");
 
    auto *Sym = Allocator.Allocate<Symbol>();
 
    new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
 
                     Scope::Local, IsLive, IsCallable);
 
    return *Sym;
 
  }
 
 
 
  static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base,
 
                                   orc::ExecutorAddrDiff Offset, StringRef Name,
 
                                   orc::ExecutorAddrDiff Size, Linkage L,
 
                                   Scope S, bool IsLive, bool IsCallable) {
 
    assert((Offset + Size) <= Base.getSize() &&
 
           "Symbol extends past end of block");
 
    assert(!Name.empty() && "Name cannot be empty");
 
    auto *Sym = Allocator.Allocate<Symbol>();
 
    new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
 
    return *Sym;
 
  }
 
 
 
public:
 
  /// Create a null Symbol. This allows Symbols to be default initialized for
 
  /// use in containers (e.g. as map values). Null symbols are only useful for
 
  /// assigning to.
 
  Symbol() = default;
 
 
 
  // Symbols are not movable or copyable.
 
  Symbol(const Symbol &) = delete;
 
  Symbol &operator=(const Symbol &) = delete;
 
  Symbol(Symbol &&) = delete;
 
  Symbol &operator=(Symbol &&) = delete;
 
 
 
  /// Returns true if this symbol has a name.
 
  bool hasName() const { return !Name.empty(); }
 
 
 
  /// Returns the name of this symbol (empty if the symbol is anonymous).
 
  StringRef getName() const {
 
    assert((!Name.empty() || getScope() == Scope::Local) &&
 
           "Anonymous symbol has non-local scope");
 
    return Name;
 
  }
 
 
 
  /// Rename this symbol. The client is responsible for updating scope and
 
  /// linkage if this name-change requires it.
 
  void setName(StringRef Name) { this->Name = Name; }
 
 
 
  /// Returns true if this Symbol has content (potentially) defined within this
 
  /// object file (i.e. is anything but an external or absolute symbol).
 
  bool isDefined() const {
 
    assert(Base && "Attempt to access null symbol");
 
    return Base->isDefined();
 
  }
 
 
 
  /// Returns true if this symbol is live (i.e. should be treated as a root for
 
  /// dead stripping).
 
  bool isLive() const {
 
    assert(Base && "Attempting to access null symbol");
 
    return IsLive;
 
  }
 
 
 
  /// Set this symbol's live bit.
 
  void setLive(bool IsLive) { this->IsLive = IsLive; }
 
 
 
  /// Returns true is this symbol is callable.
 
  bool isCallable() const { return IsCallable; }
 
 
 
  /// Set this symbol's callable bit.
 
  void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
 
 
 
  /// Returns true if the underlying addressable is an unresolved external.
 
  bool isExternal() const {
 
    assert(Base && "Attempt to access null symbol");
 
    return !Base->isDefined() && !Base->isAbsolute();
 
  }
 
 
 
  /// Returns true if the underlying addressable is an absolute symbol.
 
  bool isAbsolute() const {
 
    assert(Base && "Attempt to access null symbol");
 
    return Base->isAbsolute();
 
  }
 
 
 
  /// Return the addressable that this symbol points to.
 
  Addressable &getAddressable() {
 
    assert(Base && "Cannot get underlying addressable for null symbol");
 
    return *Base;
 
  }
 
 
 
  /// Return the addressable that this symbol points to.
 
  const Addressable &getAddressable() const {
 
    assert(Base && "Cannot get underlying addressable for null symbol");
 
    return *Base;
 
  }
 
 
 
  /// Return the Block for this Symbol (Symbol must be defined).
 
  Block &getBlock() {
 
    assert(Base && "Cannot get block for null symbol");
 
    assert(Base->isDefined() && "Not a defined symbol");
 
    return static_cast<Block &>(*Base);
 
  }
 
 
 
  /// Return the Block for this Symbol (Symbol must be defined).
 
  const Block &getBlock() const {
 
    assert(Base && "Cannot get block for null symbol");
 
    assert(Base->isDefined() && "Not a defined symbol");
 
    return static_cast<const Block &>(*Base);
 
  }
 
 
 
  /// Returns the offset for this symbol within the underlying addressable.
 
  orc::ExecutorAddrDiff getOffset() const { return Offset; }
 
 
 
  /// Returns the address of this symbol.
 
  orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; }
 
 
 
  /// Returns the size of this symbol.
 
  orc::ExecutorAddrDiff getSize() const { return Size; }
 
 
 
  /// Set the size of this symbol.
 
  void setSize(orc::ExecutorAddrDiff Size) {
 
    assert(Base && "Cannot set size for null Symbol");
 
    assert((Size == 0 || Base->isDefined()) &&
 
           "Non-zero size can only be set for defined symbols");
 
    assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
 
           "Symbol size cannot extend past the end of its containing block");
 
    this->Size = Size;
 
  }
 
 
 
  /// Returns the address range of this symbol.
 
  orc::ExecutorAddrRange getRange() const {
 
    return orc::ExecutorAddrRange(getAddress(), getSize());
 
  }
 
 
 
  /// Returns true if this symbol is backed by a zero-fill block.
 
  /// This method may only be called on defined symbols.
 
  bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
 
 
 
  /// Returns the content in the underlying block covered by this symbol.
 
  /// This method may only be called on defined non-zero-fill symbols.
 
  ArrayRef<char> getSymbolContent() const {
 
    return getBlock().getContent().slice(Offset, Size);
 
  }
 
 
 
  /// Get the linkage for this Symbol.
 
  Linkage getLinkage() const { return static_cast<Linkage>(L); }
 
 
 
  /// Set the linkage for this Symbol.
 
  void setLinkage(Linkage L) {
 
    assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
 
           "Linkage can only be applied to defined named symbols");
 
    this->L = static_cast<uint8_t>(L);
 
  }
 
 
 
  /// Get the visibility for this Symbol.
 
  Scope getScope() const { return static_cast<Scope>(S); }
 
 
 
  /// Set the visibility for this Symbol.
 
  void setScope(Scope S) {
 
    assert((!Name.empty() || S == Scope::Local) &&
 
           "Can not set anonymous symbol to non-local scope");
 
    assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) &&
 
           "Invalid visibility for symbol type");
 
    this->S = static_cast<uint8_t>(S);
 
  }
 
 
 
  /// Returns true if this is a weakly referenced external symbol.
 
  /// This method may only be called on external symbols.
 
  bool isWeaklyReferenced() const {
 
    assert(isExternal() && "isWeaklyReferenced called on non-external");
 
    return WeakRef;
 
  }
 
 
 
  /// Set the WeaklyReferenced value for this symbol.
 
  /// This method may only be called on external symbols.
 
  void setWeaklyReferenced(bool WeakRef) {
 
    assert(isExternal() && "setWeaklyReferenced called on non-external");
 
    this->WeakRef = WeakRef;
 
  }
 
 
 
private:
 
  void makeExternal(Addressable &A) {
 
    assert(!A.isDefined() && !A.isAbsolute() &&
 
           "Attempting to make external with defined or absolute block");
 
    Base = &A;
 
    Offset = 0;
 
    setScope(Scope::Default);
 
    IsLive = 0;
 
    // note: Size, Linkage and IsCallable fields left unchanged.
 
  }
 
 
 
  void makeAbsolute(Addressable &A) {
 
    assert(!A.isDefined() && A.isAbsolute() &&
 
           "Attempting to make absolute with defined or external block");
 
    Base = &A;
 
    Offset = 0;
 
  }
 
 
 
  void setBlock(Block &B) { Base = &B; }
 
 
 
  void setOffset(orc::ExecutorAddrDiff NewOffset) {
 
    assert(NewOffset <= MaxOffset && "Offset out of range");
 
    Offset = NewOffset;
 
  }
 
 
 
  static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
 
 
 
  // FIXME: A char* or SymbolStringPtr may pack better.
 
  StringRef Name;
 
  Addressable *Base = nullptr;
 
  uint64_t Offset : 58;
 
  uint64_t L : 1;
 
  uint64_t S : 2;
 
  uint64_t IsLive : 1;
 
  uint64_t IsCallable : 1;
 
  uint64_t WeakRef : 1;
 
  size_t Size = 0;
 
};
 
 
 
raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
 
 
 
void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
 
               StringRef EdgeKindName);
 
 
 
/// Represents an object file section.
 
class Section {
 
  friend class LinkGraph;
 
 
 
private:
 
  Section(StringRef Name, orc::MemProt Prot, SectionOrdinal SecOrdinal)
 
      : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
 
 
 
  using SymbolSet = DenseSet<Symbol *>;
 
  using BlockSet = DenseSet<Block *>;
 
 
 
public:
 
  using symbol_iterator = SymbolSet::iterator;
 
  using const_symbol_iterator = SymbolSet::const_iterator;
 
 
 
  using block_iterator = BlockSet::iterator;
 
  using const_block_iterator = BlockSet::const_iterator;
 
 
 
  ~Section();
 
 
 
  // Sections are not movable or copyable.
 
  Section(const Section &) = delete;
 
  Section &operator=(const Section &) = delete;
 
  Section(Section &&) = delete;
 
  Section &operator=(Section &&) = delete;
 
 
 
  /// Returns the name of this section.
 
  StringRef getName() const { return Name; }
 
 
 
  /// Returns the protection flags for this section.
 
  orc::MemProt getMemProt() const { return Prot; }
 
 
 
  /// Set the protection flags for this section.
 
  void setMemProt(orc::MemProt Prot) { this->Prot = Prot; }
 
 
 
  /// Get the deallocation policy for this section.
 
  orc::MemDeallocPolicy getMemDeallocPolicy() const { return MDP; }
 
 
 
  /// Set the deallocation policy for this section.
 
  void setMemDeallocPolicy(orc::MemDeallocPolicy MDP) { this->MDP = MDP; }
 
 
 
  /// Returns the ordinal for this section.
 
  SectionOrdinal getOrdinal() const { return SecOrdinal; }
 
 
 
  /// Returns an iterator over the blocks defined in this section.
 
  iterator_range<block_iterator> blocks() {
 
    return make_range(Blocks.begin(), Blocks.end());
 
  }
 
 
 
  /// Returns an iterator over the blocks defined in this section.
 
  iterator_range<const_block_iterator> blocks() const {
 
    return make_range(Blocks.begin(), Blocks.end());
 
  }
 
 
 
  /// Returns the number of blocks in this section.
 
  BlockSet::size_type blocks_size() const { return Blocks.size(); }
 
 
 
  /// Returns an iterator over the symbols defined in this section.
 
  iterator_range<symbol_iterator> symbols() {
 
    return make_range(Symbols.begin(), Symbols.end());
 
  }
 
 
 
  /// Returns an iterator over the symbols defined in this section.
 
  iterator_range<const_symbol_iterator> symbols() const {
 
    return make_range(Symbols.begin(), Symbols.end());
 
  }
 
 
 
  /// Return the number of symbols in this section.
 
  SymbolSet::size_type symbols_size() const { return Symbols.size(); }
 
 
 
private:
 
  void addSymbol(Symbol &Sym) {
 
    assert(!Symbols.count(&Sym) && "Symbol is already in this section");
 
    Symbols.insert(&Sym);
 
  }
 
 
 
  void removeSymbol(Symbol &Sym) {
 
    assert(Symbols.count(&Sym) && "symbol is not in this section");
 
    Symbols.erase(&Sym);
 
  }
 
 
 
  void addBlock(Block &B) {
 
    assert(!Blocks.count(&B) && "Block is already in this section");
 
    Blocks.insert(&B);
 
  }
 
 
 
  void removeBlock(Block &B) {
 
    assert(Blocks.count(&B) && "Block is not in this section");
 
    Blocks.erase(&B);
 
  }
 
 
 
  void transferContentTo(Section &DstSection) {
 
    if (&DstSection == this)
 
      return;
 
    for (auto *S : Symbols)
 
      DstSection.addSymbol(*S);
 
    for (auto *B : Blocks)
 
      DstSection.addBlock(*B);
 
    Symbols.clear();
 
    Blocks.clear();
 
  }
 
 
 
  StringRef Name;
 
  orc::MemProt Prot;
 
  orc::MemDeallocPolicy MDP = orc::MemDeallocPolicy::Standard;
 
  SectionOrdinal SecOrdinal = 0;
 
  BlockSet Blocks;
 
  SymbolSet Symbols;
 
};
 
 
 
/// Represents a section address range via a pair of Block pointers
 
/// to the first and last Blocks in the section.
 
class SectionRange {
 
public:
 
  SectionRange() = default;
 
  SectionRange(const Section &Sec) {
 
    if (Sec.blocks().empty())
 
      return;
 
    First = Last = *Sec.blocks().begin();
 
    for (auto *B : Sec.blocks()) {
 
      if (B->getAddress() < First->getAddress())
 
        First = B;
 
      if (B->getAddress() > Last->getAddress())
 
        Last = B;
 
    }
 
  }
 
  Block *getFirstBlock() const {
 
    assert((!Last || First) && "First can not be null if end is non-null");
 
    return First;
 
  }
 
  Block *getLastBlock() const {
 
    assert((First || !Last) && "Last can not be null if start is non-null");
 
    return Last;
 
  }
 
  bool empty() const {
 
    assert((First || !Last) && "Last can not be null if start is non-null");
 
    return !First;
 
  }
 
  orc::ExecutorAddr getStart() const {
 
    return First ? First->getAddress() : orc::ExecutorAddr();
 
  }
 
  orc::ExecutorAddr getEnd() const {
 
    return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr();
 
  }
 
  orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); }
 
 
 
  orc::ExecutorAddrRange getRange() const {
 
    return orc::ExecutorAddrRange(getStart(), getEnd());
 
  }
 
 
 
private:
 
  Block *First = nullptr;
 
  Block *Last = nullptr;
 
};
 
 
 
class LinkGraph {
 
private:
 
  using SectionList = std::vector<std::unique_ptr<Section>>;
 
  using ExternalSymbolSet = DenseSet<Symbol *>;
 
  using BlockSet = DenseSet<Block *>;
 
 
 
  template <typename... ArgTs>
 
  Addressable &createAddressable(ArgTs &&... Args) {
 
    Addressable *A =
 
        reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
 
    new (A) Addressable(std::forward<ArgTs>(Args)...);
 
    return *A;
 
  }
 
 
 
  void destroyAddressable(Addressable &A) {
 
    A.~Addressable();
 
    Allocator.Deallocate(&A);
 
  }
 
 
 
  template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
 
    Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
 
    new (B) Block(std::forward<ArgTs>(Args)...);
 
    B->getSection().addBlock(*B);
 
    return *B;
 
  }
 
 
 
  void destroyBlock(Block &B) {
 
    B.~Block();
 
    Allocator.Deallocate(&B);
 
  }
 
 
 
  void destroySymbol(Symbol &S) {
 
    S.~Symbol();
 
    Allocator.Deallocate(&S);
 
  }
 
 
 
  static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
 
    return S.blocks();
 
  }
 
 
 
  static iterator_range<Section::const_block_iterator>
 
  getSectionConstBlocks(Section &S) {
 
    return S.blocks();
 
  }
 
 
 
  static iterator_range<Section::symbol_iterator>
 
  getSectionSymbols(Section &S) {
 
    return S.symbols();
 
  }
 
 
 
  static iterator_range<Section::const_symbol_iterator>
 
  getSectionConstSymbols(Section &S) {
 
    return S.symbols();
 
  }
 
 
 
public:
 
  using external_symbol_iterator = ExternalSymbolSet::iterator;
 
 
 
  using section_iterator = pointee_iterator<SectionList::iterator>;
 
  using const_section_iterator = pointee_iterator<SectionList::const_iterator>;
 
 
 
  template <typename OuterItrT, typename InnerItrT, typename T,
 
            iterator_range<InnerItrT> getInnerRange(
 
                typename OuterItrT::reference)>
 
  class nested_collection_iterator
 
      : public iterator_facade_base<
 
            nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
 
            std::forward_iterator_tag, T> {
 
  public:
 
    nested_collection_iterator() = default;
 
 
 
    nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
 
        : OuterI(OuterI), OuterE(OuterE),
 
          InnerI(getInnerBegin(OuterI, OuterE)) {
 
      moveToNonEmptyInnerOrEnd();
 
    }
 
 
 
    bool operator==(const nested_collection_iterator &RHS) const {
 
      return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
 
    }
 
 
 
    T operator*() const {
 
      assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
 
      return *InnerI;
 
    }
 
 
 
    nested_collection_iterator operator++() {
 
      ++InnerI;
 
      moveToNonEmptyInnerOrEnd();
 
      return *this;
 
    }
 
 
 
  private:
 
    static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
 
      return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
 
    }
 
 
 
    void moveToNonEmptyInnerOrEnd() {
 
      while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
 
        ++OuterI;
 
        InnerI = getInnerBegin(OuterI, OuterE);
 
      }
 
    }
 
 
 
    OuterItrT OuterI, OuterE;
 
    InnerItrT InnerI;
 
  };
 
 
 
  using defined_symbol_iterator =
 
      nested_collection_iterator<const_section_iterator,
 
                                 Section::symbol_iterator, Symbol *,
 
                                 getSectionSymbols>;
 
 
 
  using const_defined_symbol_iterator =
 
      nested_collection_iterator<const_section_iterator,
 
                                 Section::const_symbol_iterator, const Symbol *,
 
                                 getSectionConstSymbols>;
 
 
 
  using block_iterator = nested_collection_iterator<const_section_iterator,
 
                                                    Section::block_iterator,
 
                                                    Block *, getSectionBlocks>;
 
 
 
  using const_block_iterator =
 
      nested_collection_iterator<const_section_iterator,
 
                                 Section::const_block_iterator, const Block *,
 
                                 getSectionConstBlocks>;
 
 
 
  using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
 
 
 
  LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
 
            support::endianness Endianness,
 
            GetEdgeKindNameFunction GetEdgeKindName)
 
      : Name(std::move(Name)), TT(TT), PointerSize(PointerSize),
 
        Endianness(Endianness), GetEdgeKindName(std::move(GetEdgeKindName)) {}
 
 
 
  LinkGraph(const LinkGraph &) = delete;
 
  LinkGraph &operator=(const LinkGraph &) = delete;
 
  LinkGraph(LinkGraph &&) = delete;
 
  LinkGraph &operator=(LinkGraph &&) = delete;
 
 
 
  /// Returns the name of this graph (usually the name of the original
 
  /// underlying MemoryBuffer).
 
  const std::string &getName() const { return Name; }
 
 
 
  /// Returns the target triple for this Graph.
 
  const Triple &getTargetTriple() const { return TT; }
 
 
 
  /// Returns the pointer size for use in this graph.
 
  unsigned getPointerSize() const { return PointerSize; }
 
 
 
  /// Returns the endianness of content in this graph.
 
  support::endianness getEndianness() const { return Endianness; }
 
 
 
  const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
 
 
 
  /// Allocate a mutable buffer of the given size using the LinkGraph's
 
  /// allocator.
 
  MutableArrayRef<char> allocateBuffer(size_t Size) {
 
    return {Allocator.Allocate<char>(Size), Size};
 
  }
 
 
 
  /// Allocate a copy of the given string using the LinkGraph's allocator.
 
  /// This can be useful when renaming symbols or adding new content to the
 
  /// graph.
 
  MutableArrayRef<char> allocateContent(ArrayRef<char> Source) {
 
    auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
 
    llvm::copy(Source, AllocatedBuffer);
 
    return MutableArrayRef<char>(AllocatedBuffer, Source.size());
 
  }
 
 
 
  /// Allocate a copy of the given string using the LinkGraph's allocator.
 
  /// This can be useful when renaming symbols or adding new content to the
 
  /// graph.
 
  ///
 
  /// Note: This Twine-based overload requires an extra string copy and an
 
  /// extra heap allocation for large strings. The ArrayRef<char> overload
 
  /// should be preferred where possible.
 
  MutableArrayRef<char> allocateString(Twine Source) {
 
    SmallString<256> TmpBuffer;
 
    auto SourceStr = Source.toStringRef(TmpBuffer);
 
    auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
 
    llvm::copy(SourceStr, AllocatedBuffer);
 
    return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size());
 
  }
 
 
 
  /// Create a section with the given name, protection flags, and alignment.
 
  Section &createSection(StringRef Name, orc::MemProt Prot) {
 
    assert(llvm::none_of(Sections,
 
                         [&](std::unique_ptr<Section> &Sec) {
 
                           return Sec->getName() == Name;
 
                         }) &&
 
           "Duplicate section name");
 
    std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
 
    Sections.push_back(std::move(Sec));
 
    return *Sections.back();
 
  }
 
 
 
  /// Create a content block.
 
  Block &createContentBlock(Section &Parent, ArrayRef<char> Content,
 
                            orc::ExecutorAddr Address, uint64_t Alignment,
 
                            uint64_t AlignmentOffset) {
 
    return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
 
  }
 
 
 
  /// Create a content block with initially mutable data.
 
  Block &createMutableContentBlock(Section &Parent,
 
                                   MutableArrayRef<char> MutableContent,
 
                                   orc::ExecutorAddr Address,
 
                                   uint64_t Alignment,
 
                                   uint64_t AlignmentOffset) {
 
    return createBlock(Parent, MutableContent, Address, Alignment,
 
                       AlignmentOffset);
 
  }
 
 
 
  /// Create a content block with initially mutable data of the given size.
 
  /// Content will be allocated via the LinkGraph's allocateBuffer method.
 
  /// By default the memory will be zero-initialized. Passing false for
 
  /// ZeroInitialize will prevent this.
 
  Block &createMutableContentBlock(Section &Parent, size_t ContentSize,
 
                                   orc::ExecutorAddr Address,
 
                                   uint64_t Alignment, uint64_t AlignmentOffset,
 
                                   bool ZeroInitialize = true) {
 
    auto Content = allocateContent(ContentSize);
 
    if (ZeroInitialize)
 
      memset(Content.data(), 0, Content.size());
 
    return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
 
  }
 
 
 
  /// Create a zero-fill block.
 
  Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size,
 
                             orc::ExecutorAddr Address, uint64_t Alignment,
 
                             uint64_t AlignmentOffset) {
 
    return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
 
  }
 
 
 
  /// Returns a BinaryStreamReader for the given block.
 
  BinaryStreamReader getBlockContentReader(Block &B) {
 
    ArrayRef<uint8_t> C(
 
        reinterpret_cast<const uint8_t *>(B.getContent().data()), B.getSize());
 
    return BinaryStreamReader(C, getEndianness());
 
  }
 
 
 
  /// Returns a BinaryStreamWriter for the given block.
 
  /// This will call getMutableContent to obtain mutable content for the block.
 
  BinaryStreamWriter getBlockContentWriter(Block &B) {
 
    MutableArrayRef<uint8_t> C(
 
        reinterpret_cast<uint8_t *>(B.getMutableContent(*this).data()),
 
        B.getSize());
 
    return BinaryStreamWriter(C, getEndianness());
 
  }
 
 
 
  /// Cache type for the splitBlock function.
 
  using SplitBlockCache = std::optional<SmallVector<Symbol *, 8>>;
 
 
 
  /// Splits block B at the given index which must be greater than zero.
 
  /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
 
  /// If SplitIndex < B.getSize() then this function returns a new block
 
  /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
 
  /// [ SplitIndex, B.size() ).
 
  ///
 
  /// The optional Cache parameter can be used to speed up repeated calls to
 
  /// splitBlock for a single block. If the value is None the cache will be
 
  /// treated as uninitialized and splitBlock will populate it. Otherwise it
 
  /// is assumed to contain the list of Symbols pointing at B, sorted in
 
  /// descending order of offset.
 
  ///
 
  /// Notes:
 
  ///
 
  /// 1. splitBlock must be used with care. Splitting a block may cause
 
  ///    incoming edges to become invalid if the edge target subexpression
 
  ///    points outside the bounds of the newly split target block (E.g. an
 
  ///    edge 'S + 10 : Pointer64' where S points to a newly split block
 
  ///    whose size is less than 10). No attempt is made to detect invalidation
 
  ///    of incoming edges, as in general this requires context that the
 
  ///    LinkGraph does not have. Clients are responsible for ensuring that
 
  ///    splitBlock is not used in a way that invalidates edges.
 
  ///
 
  /// 2. The newly introduced block will have a new ordinal which will be
 
  ///    higher than any other ordinals in the section. Clients are responsible
 
  ///    for re-assigning block ordinals to restore a compatible order if
 
  ///    needed.
 
  ///
 
  /// 3. The cache is not automatically updated if new symbols are introduced
 
  ///    between calls to splitBlock. Any newly introduced symbols may be
 
  ///    added to the cache manually (descending offset order must be
 
  ///    preserved), or the cache can be set to None and rebuilt by
 
  ///    splitBlock on the next call.
 
  Block &splitBlock(Block &B, size_t SplitIndex,
 
                    SplitBlockCache *Cache = nullptr);
 
 
 
  /// Add an external symbol.
 
  /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
 
  /// size is not known, you should substitute '0'.
 
  /// The IsWeaklyReferenced argument determines whether the symbol must be
 
  /// present during lookup: Externals that are strongly referenced must be
 
  /// found or an error will be emitted. Externals that are weakly referenced
 
  /// are permitted to be undefined, in which case they are assigned an address
 
  /// of 0.
 
  Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size,
 
                            bool IsWeaklyReferenced) {
 
    assert(llvm::count_if(ExternalSymbols,
 
                          [&](const Symbol *Sym) {
 
                            return Sym->getName() == Name;
 
                          }) == 0 &&
 
           "Duplicate external symbol");
 
    auto &Sym = Symbol::constructExternal(
 
        Allocator, createAddressable(orc::ExecutorAddr(), false), Name, Size,
 
        Linkage::Strong, IsWeaklyReferenced);
 
    ExternalSymbols.insert(&Sym);
 
    return Sym;
 
  }
 
 
 
  /// Add an absolute symbol.
 
  Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address,
 
                            orc::ExecutorAddrDiff Size, Linkage L, Scope S,
 
                            bool IsLive) {
 
    assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols,
 
                                               [&](const Symbol *Sym) {
 
                                                 return Sym->getName() == Name;
 
                                               }) == 0) &&
 
                                    "Duplicate absolute symbol");
 
    auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address),
 
                                          Name, Size, L, S, IsLive);
 
    AbsoluteSymbols.insert(&Sym);
 
    return Sym;
 
  }
 
 
 
  /// Add an anonymous symbol.
 
  Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
 
                             orc::ExecutorAddrDiff Size, bool IsCallable,
 
                             bool IsLive) {
 
    auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size,
 
                                         IsCallable, IsLive);
 
    Content.getSection().addSymbol(Sym);
 
    return Sym;
 
  }
 
 
 
  /// Add a named symbol.
 
  Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
 
                           StringRef Name, orc::ExecutorAddrDiff Size,
 
                           Linkage L, Scope S, bool IsCallable, bool IsLive) {
 
    assert((S == Scope::Local || llvm::count_if(defined_symbols(),
 
                                                [&](const Symbol *Sym) {
 
                                                  return Sym->getName() == Name;
 
                                                }) == 0) &&
 
           "Duplicate defined symbol");
 
    auto &Sym = Symbol::constructNamedDef(Allocator, Content, Offset, Name,
 
                                          Size, L, S, IsLive, IsCallable);
 
    Content.getSection().addSymbol(Sym);
 
    return Sym;
 
  }
 
 
 
  iterator_range<section_iterator> sections() {
 
    return make_range(section_iterator(Sections.begin()),
 
                      section_iterator(Sections.end()));
 
  }
 
 
 
  SectionList::size_type sections_size() const { return Sections.size(); }
 
 
 
  /// Returns the section with the given name if it exists, otherwise returns
 
  /// null.
 
  Section *findSectionByName(StringRef Name) {
 
    for (auto &S : sections())
 
      if (S.getName() == Name)
 
        return &S;
 
    return nullptr;
 
  }
 
 
 
  iterator_range<block_iterator> blocks() {
 
    return make_range(block_iterator(Sections.begin(), Sections.end()),
 
                      block_iterator(Sections.end(), Sections.end()));
 
  }
 
 
 
  iterator_range<const_block_iterator> blocks() const {
 
    return make_range(const_block_iterator(Sections.begin(), Sections.end()),
 
                      const_block_iterator(Sections.end(), Sections.end()));
 
  }
 
 
 
  iterator_range<external_symbol_iterator> external_symbols() {
 
    return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
 
  }
 
 
 
  iterator_range<external_symbol_iterator> absolute_symbols() {
 
    return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
 
  }
 
 
 
  iterator_range<defined_symbol_iterator> defined_symbols() {
 
    return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()),
 
                      defined_symbol_iterator(Sections.end(), Sections.end()));
 
  }
 
 
 
  iterator_range<const_defined_symbol_iterator> defined_symbols() const {
 
    return make_range(
 
        const_defined_symbol_iterator(Sections.begin(), Sections.end()),
 
        const_defined_symbol_iterator(Sections.end(), Sections.end()));
 
  }
 
 
 
  /// Make the given symbol external (must not already be external).
 
  ///
 
  /// Symbol size, linkage and callability will be left unchanged. Symbol scope
 
  /// will be set to Default, and offset will be reset to 0.
 
  void makeExternal(Symbol &Sym) {
 
    assert(!Sym.isExternal() && "Symbol is already external");
 
    if (Sym.isAbsolute()) {
 
      assert(AbsoluteSymbols.count(&Sym) &&
 
             "Sym is not in the absolute symbols set");
 
      assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
 
      AbsoluteSymbols.erase(&Sym);
 
      auto &A = Sym.getAddressable();
 
      A.setAbsolute(false);
 
      A.setAddress(orc::ExecutorAddr());
 
    } else {
 
      assert(Sym.isDefined() && "Sym is not a defined symbol");
 
      Section &Sec = Sym.getBlock().getSection();
 
      Sec.removeSymbol(Sym);
 
      Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false));
 
    }
 
    ExternalSymbols.insert(&Sym);
 
  }
 
 
 
  /// Make the given symbol an absolute with the given address (must not already
 
  /// be absolute).
 
  ///
 
  /// The symbol's size, linkage, and callability, and liveness will be left
 
  /// unchanged, and its offset will be reset to 0.
 
  ///
 
  /// If the symbol was external then its scope will be set to local, otherwise
 
  /// it will be left unchanged.
 
  void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) {
 
    assert(!Sym.isAbsolute() && "Symbol is already absolute");
 
    if (Sym.isExternal()) {
 
      assert(ExternalSymbols.count(&Sym) &&
 
             "Sym is not in the absolute symbols set");
 
      assert(Sym.getOffset() == 0 && "External is not at offset 0");
 
      ExternalSymbols.erase(&Sym);
 
      auto &A = Sym.getAddressable();
 
      A.setAbsolute(true);
 
      A.setAddress(Address);
 
      Sym.setScope(Scope::Local);
 
    } else {
 
      assert(Sym.isDefined() && "Sym is not a defined symbol");
 
      Section &Sec = Sym.getBlock().getSection();
 
      Sec.removeSymbol(Sym);
 
      Sym.makeAbsolute(createAddressable(Address));
 
    }
 
    AbsoluteSymbols.insert(&Sym);
 
  }
 
 
 
  /// Turn an absolute or external symbol into a defined one by attaching it to
 
  /// a block. Symbol must not already be defined.
 
  void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset,
 
                   orc::ExecutorAddrDiff Size, Linkage L, Scope S,
 
                   bool IsLive) {
 
    assert(!Sym.isDefined() && "Sym is already a defined symbol");
 
    if (Sym.isAbsolute()) {
 
      assert(AbsoluteSymbols.count(&Sym) &&
 
             "Symbol is not in the absolutes set");
 
      AbsoluteSymbols.erase(&Sym);
 
    } else {
 
      assert(ExternalSymbols.count(&Sym) &&
 
             "Symbol is not in the externals set");
 
      ExternalSymbols.erase(&Sym);
 
    }
 
    Addressable &OldBase = *Sym.Base;
 
    Sym.setBlock(Content);
 
    Sym.setOffset(Offset);
 
    Sym.setSize(Size);
 
    Sym.setLinkage(L);
 
    Sym.setScope(S);
 
    Sym.setLive(IsLive);
 
    Content.getSection().addSymbol(Sym);
 
    destroyAddressable(OldBase);
 
  }
 
 
 
  /// Transfer a defined symbol from one block to another.
 
  ///
 
  /// The symbol's offset within DestBlock is set to NewOffset.
 
  ///
 
  /// If ExplicitNewSize is given as None then the size of the symbol will be
 
  /// checked and auto-truncated to at most the size of the remainder (from the
 
  /// given offset) of the size of the new block.
 
  ///
 
  /// All other symbol attributes are unchanged.
 
  void
 
  transferDefinedSymbol(Symbol &Sym, Block &DestBlock,
 
                        orc::ExecutorAddrDiff NewOffset,
 
                        std::optional<orc::ExecutorAddrDiff> ExplicitNewSize) {
 
    auto &OldSection = Sym.getBlock().getSection();
 
    Sym.setBlock(DestBlock);
 
    Sym.setOffset(NewOffset);
 
    if (ExplicitNewSize)
 
      Sym.setSize(*ExplicitNewSize);
 
    else {
 
      auto RemainingBlockSize = DestBlock.getSize() - NewOffset;
 
      if (Sym.getSize() > RemainingBlockSize)
 
        Sym.setSize(RemainingBlockSize);
 
    }
 
    if (&DestBlock.getSection() != &OldSection) {
 
      OldSection.removeSymbol(Sym);
 
      DestBlock.getSection().addSymbol(Sym);
 
    }
 
  }
 
 
 
  /// Transfers the given Block and all Symbols pointing to it to the given
 
  /// Section.
 
  ///
 
  /// No attempt is made to check compatibility of the source and destination
 
  /// sections. Blocks may be moved between sections with incompatible
 
  /// permissions (e.g. from data to text). The client is responsible for
 
  /// ensuring that this is safe.
 
  void transferBlock(Block &B, Section &NewSection) {
 
    auto &OldSection = B.getSection();
 
    if (&OldSection == &NewSection)
 
      return;
 
    SmallVector<Symbol *> AttachedSymbols;
 
    for (auto *S : OldSection.symbols())
 
      if (&S->getBlock() == &B)
 
        AttachedSymbols.push_back(S);
 
    for (auto *S : AttachedSymbols) {
 
      OldSection.removeSymbol(*S);
 
      NewSection.addSymbol(*S);
 
    }
 
    OldSection.removeBlock(B);
 
    NewSection.addBlock(B);
 
  }
 
 
 
  /// Move all blocks and symbols from the source section to the destination
 
  /// section.
 
  ///
 
  /// If PreserveSrcSection is true (or SrcSection and DstSection are the same)
 
  /// then SrcSection is preserved, otherwise it is removed (the default).
 
  void mergeSections(Section &DstSection, Section &SrcSection,
 
                     bool PreserveSrcSection = false) {
 
    if (&DstSection == &SrcSection)
 
      return;
 
    for (auto *B : SrcSection.blocks())
 
      B->setSection(DstSection);
 
    SrcSection.transferContentTo(DstSection);
 
    if (!PreserveSrcSection)
 
      removeSection(SrcSection);
 
  }
 
 
 
  /// Removes an external symbol. Also removes the underlying Addressable.
 
  void removeExternalSymbol(Symbol &Sym) {
 
    assert(!Sym.isDefined() && !Sym.isAbsolute() &&
 
           "Sym is not an external symbol");
 
    assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
 
    ExternalSymbols.erase(&Sym);
 
    Addressable &Base = *Sym.Base;
 
    assert(llvm::none_of(ExternalSymbols,
 
                         [&](Symbol *AS) { return AS->Base == &Base; }) &&
 
           "Base addressable still in use");
 
    destroySymbol(Sym);
 
    destroyAddressable(Base);
 
  }
 
 
 
  /// Remove an absolute symbol. Also removes the underlying Addressable.
 
  void removeAbsoluteSymbol(Symbol &Sym) {
 
    assert(!Sym.isDefined() && Sym.isAbsolute() &&
 
           "Sym is not an absolute symbol");
 
    assert(AbsoluteSymbols.count(&Sym) &&
 
           "Symbol is not in the absolute symbols set");
 
    AbsoluteSymbols.erase(&Sym);
 
    Addressable &Base = *Sym.Base;
 
    assert(llvm::none_of(ExternalSymbols,
 
                         [&](Symbol *AS) { return AS->Base == &Base; }) &&
 
           "Base addressable still in use");
 
    destroySymbol(Sym);
 
    destroyAddressable(Base);
 
  }
 
 
 
  /// Removes defined symbols. Does not remove the underlying block.
 
  void removeDefinedSymbol(Symbol &Sym) {
 
    assert(Sym.isDefined() && "Sym is not a defined symbol");
 
    Sym.getBlock().getSection().removeSymbol(Sym);
 
    destroySymbol(Sym);
 
  }
 
 
 
  /// Remove a block. The block reference is defunct after calling this
 
  /// function and should no longer be used.
 
  void removeBlock(Block &B) {
 
    assert(llvm::none_of(B.getSection().symbols(),
 
                         [&](const Symbol *Sym) {
 
                           return &Sym->getBlock() == &B;
 
                         }) &&
 
           "Block still has symbols attached");
 
    B.getSection().removeBlock(B);
 
    destroyBlock(B);
 
  }
 
 
 
  /// Remove a section. The section reference is defunct after calling this
 
  /// function and should no longer be used.
 
  void removeSection(Section &Sec) {
 
    auto I = llvm::find_if(Sections, [&Sec](const std::unique_ptr<Section> &S) {
 
      return S.get() == &Sec;
 
    });
 
    assert(I != Sections.end() && "Section does not appear in this graph");
 
    Sections.erase(I);
 
  }
 
 
 
  /// Accessor for the AllocActions object for this graph. This can be used to
 
  /// register allocation action calls prior to finalization.
 
  ///
 
  /// Accessing this object after finalization will result in undefined
 
  /// behavior.
 
  orc::shared::AllocActions &allocActions() { return AAs; }
 
 
 
  /// Dump the graph.
 
  void dump(raw_ostream &OS);
 
 
 
private:
 
  // Put the BumpPtrAllocator first so that we don't free any of the underlying
 
  // memory until the Symbol/Addressable destructors have been run.
 
  BumpPtrAllocator Allocator;
 
 
 
  std::string Name;
 
  Triple TT;
 
  unsigned PointerSize;
 
  support::endianness Endianness;
 
  GetEdgeKindNameFunction GetEdgeKindName = nullptr;
 
  SectionList Sections;
 
  ExternalSymbolSet ExternalSymbols;
 
  ExternalSymbolSet AbsoluteSymbols;
 
  orc::shared::AllocActions AAs;
 
};
 
 
 
inline MutableArrayRef<char> Block::getMutableContent(LinkGraph &G) {
 
  if (!ContentMutable)
 
    setMutableContent(G.allocateContent({Data, Size}));
 
  return MutableArrayRef<char>(const_cast<char *>(Data), Size);
 
}
 
 
 
/// Enables easy lookup of blocks by addresses.
 
class BlockAddressMap {
 
public:
 
  using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>;
 
  using const_iterator = AddrToBlockMap::const_iterator;
 
 
 
  /// A block predicate that always adds all blocks.
 
  static bool includeAllBlocks(const Block &B) { return true; }
 
 
 
  /// A block predicate that always includes blocks with non-null addresses.
 
  static bool includeNonNull(const Block &B) { return !!B.getAddress(); }
 
 
 
  BlockAddressMap() = default;
 
 
 
  /// Add a block to the map. Returns an error if the block overlaps with any
 
  /// existing block.
 
  template <typename PredFn = decltype(includeAllBlocks)>
 
  Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
 
    if (!Pred(B))
 
      return Error::success();
 
 
 
    auto I = AddrToBlock.upper_bound(B.getAddress());
 
 
 
    // If we're not at the end of the map, check for overlap with the next
 
    // element.
 
    if (I != AddrToBlock.end()) {
 
      if (B.getAddress() + B.getSize() > I->second->getAddress())
 
        return overlapError(B, *I->second);
 
    }
 
 
 
    // If we're not at the start of the map, check for overlap with the previous
 
    // element.
 
    if (I != AddrToBlock.begin()) {
 
      auto &PrevBlock = *std::prev(I)->second;
 
      if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
 
        return overlapError(B, PrevBlock);
 
    }
 
 
 
    AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
 
    return Error::success();
 
  }
 
 
 
  /// Add a block to the map without checking for overlap with existing blocks.
 
  /// The client is responsible for ensuring that the block added does not
 
  /// overlap with any existing block.
 
  void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
 
 
 
  /// Add a range of blocks to the map. Returns an error if any block in the
 
  /// range overlaps with any other block in the range, or with any existing
 
  /// block in the map.
 
  template <typename BlockPtrRange,
 
            typename PredFn = decltype(includeAllBlocks)>
 
  Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
 
    for (auto *B : Blocks)
 
      if (auto Err = addBlock(*B, Pred))
 
        return Err;
 
    return Error::success();
 
  }
 
 
 
  /// Add a range of blocks to the map without checking for overlap with
 
  /// existing blocks. The client is responsible for ensuring that the block
 
  /// added does not overlap with any existing block.
 
  template <typename BlockPtrRange>
 
  void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
 
    for (auto *B : Blocks)
 
      addBlockWithoutChecking(*B);
 
  }
 
 
 
  /// Iterates over (Address, Block*) pairs in ascending order of address.
 
  const_iterator begin() const { return AddrToBlock.begin(); }
 
  const_iterator end() const { return AddrToBlock.end(); }
 
 
 
  /// Returns the block starting at the given address, or nullptr if no such
 
  /// block exists.
 
  Block *getBlockAt(orc::ExecutorAddr Addr) const {
 
    auto I = AddrToBlock.find(Addr);
 
    if (I == AddrToBlock.end())
 
      return nullptr;
 
    return I->second;
 
  }
 
 
 
  /// Returns the block covering the given address, or nullptr if no such block
 
  /// exists.
 
  Block *getBlockCovering(orc::ExecutorAddr Addr) const {
 
    auto I = AddrToBlock.upper_bound(Addr);
 
    if (I == AddrToBlock.begin())
 
      return nullptr;
 
    auto *B = std::prev(I)->second;
 
    if (Addr < B->getAddress() + B->getSize())
 
      return B;
 
    return nullptr;
 
  }
 
 
 
private:
 
  Error overlapError(Block &NewBlock, Block &ExistingBlock) {
 
    auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
 
    auto ExistingBlockEnd =
 
        ExistingBlock.getAddress() + ExistingBlock.getSize();
 
    return make_error<JITLinkError>(
 
        "Block at " +
 
        formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(),
 
                NewBlockEnd.getValue()) +
 
        " overlaps " +
 
        formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(),
 
                ExistingBlockEnd.getValue()));
 
  }
 
 
 
  AddrToBlockMap AddrToBlock;
 
};
 
 
 
/// A map of addresses to Symbols.
 
class SymbolAddressMap {
 
public:
 
  using SymbolVector = SmallVector<Symbol *, 1>;
 
 
 
  /// Add a symbol to the SymbolAddressMap.
 
  void addSymbol(Symbol &Sym) {
 
    AddrToSymbols[Sym.getAddress()].push_back(&Sym);
 
  }
 
 
 
  /// Add all symbols in a given range to the SymbolAddressMap.
 
  template <typename SymbolPtrCollection>
 
  void addSymbols(SymbolPtrCollection &&Symbols) {
 
    for (auto *Sym : Symbols)
 
      addSymbol(*Sym);
 
  }
 
 
 
  /// Returns the list of symbols that start at the given address, or nullptr if
 
  /// no such symbols exist.
 
  const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const {
 
    auto I = AddrToSymbols.find(Addr);
 
    if (I == AddrToSymbols.end())
 
      return nullptr;
 
    return &I->second;
 
  }
 
 
 
private:
 
  std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols;
 
};
 
 
 
/// A function for mutating LinkGraphs.
 
using LinkGraphPassFunction = std::function<Error(LinkGraph &)>;
 
 
 
/// A list of LinkGraph passes.
 
using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
 
 
 
/// An LinkGraph pass configuration, consisting of a list of pre-prune,
 
/// post-prune, and post-fixup passes.
 
struct PassConfiguration {
 
 
 
  /// Pre-prune passes.
 
  ///
 
  /// These passes are called on the graph after it is built, and before any
 
  /// symbols have been pruned. Graph nodes still have their original vmaddrs.
 
  ///
 
  /// Notable use cases: Marking symbols live or should-discard.
 
  LinkGraphPassList PrePrunePasses;
 
 
 
  /// Post-prune passes.
 
  ///
 
  /// These passes are called on the graph after dead stripping, but before
 
  /// memory is allocated or nodes assigned their final addresses.
 
  ///
 
  /// Notable use cases: Building GOT, stub, and TLV symbols.
 
  LinkGraphPassList PostPrunePasses;
 
 
 
  /// Post-allocation passes.
 
  ///
 
  /// These passes are called on the graph after memory has been allocated and
 
  /// defined nodes have been assigned their final addresses, but before the
 
  /// context has been notified of these addresses. At this point externals
 
  /// have not been resolved, and symbol content has not yet been copied into
 
  /// working memory.
 
  ///
 
  /// Notable use cases: Setting up data structures associated with addresses
 
  /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
 
  /// JIT runtime) -- using a PostAllocationPass for this ensures that the
 
  /// data structures are in-place before any query for resolved symbols
 
  /// can complete.
 
  LinkGraphPassList PostAllocationPasses;
 
 
 
  /// Pre-fixup passes.
 
  ///
 
  /// These passes are called on the graph after memory has been allocated,
 
  /// content copied into working memory, and all nodes (including externals)
 
  /// have been assigned their final addresses, but before any fixups have been
 
  /// applied.
 
  ///
 
  /// Notable use cases: Late link-time optimizations like GOT and stub
 
  /// elimination.
 
  LinkGraphPassList PreFixupPasses;
 
 
 
  /// Post-fixup passes.
 
  ///
 
  /// These passes are called on the graph after block contents has been copied
 
  /// to working memory, and fixups applied. Blocks have been updated to point
 
  /// to their fixed up content.
 
  ///
 
  /// Notable use cases: Testing and validation.
 
  LinkGraphPassList PostFixupPasses;
 
};
 
 
 
/// Flags for symbol lookup.
 
///
 
/// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
 
///        the two types once we have an OrcSupport library.
 
enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
 
 
 
raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
 
 
 
/// A map of symbol names to resolved addresses.
 
using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>;
 
 
 
/// A function object to call with a resolved symbol map (See AsyncLookupResult)
 
/// or an error if resolution failed.
 
class JITLinkAsyncLookupContinuation {
 
public:
 
  virtual ~JITLinkAsyncLookupContinuation() = default;
 
  virtual void run(Expected<AsyncLookupResult> LR) = 0;
 
 
 
private:
 
  virtual void anchor();
 
};
 
 
 
/// Create a lookup continuation from a function object.
 
template <typename Continuation>
 
std::unique_ptr<JITLinkAsyncLookupContinuation>
 
createLookupContinuation(Continuation Cont) {
 
 
 
  class Impl final : public JITLinkAsyncLookupContinuation {
 
  public:
 
    Impl(Continuation C) : C(std::move(C)) {}
 
    void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
 
 
 
  private:
 
    Continuation C;
 
  };
 
 
 
  return std::make_unique<Impl>(std::move(Cont));
 
}
 
 
 
/// Holds context for a single jitLink invocation.
 
class JITLinkContext {
 
public:
 
  using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
 
 
 
  /// Create a JITLinkContext.
 
  JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
 
 
 
  /// Destroy a JITLinkContext.
 
  virtual ~JITLinkContext();
 
 
 
  /// Return the JITLinkDylib that this link is targeting, if any.
 
  const JITLinkDylib *getJITLinkDylib() const { return JD; }
 
 
 
  /// Return the MemoryManager to be used for this link.
 
  virtual JITLinkMemoryManager &getMemoryManager() = 0;
 
 
 
  /// Notify this context that linking failed.
 
  /// Called by JITLink if linking cannot be completed.
 
  virtual void notifyFailed(Error Err) = 0;
 
 
 
  /// Called by JITLink to resolve external symbols. This method is passed a
 
  /// lookup continutation which it must call with a result to continue the
 
  /// linking process.
 
  virtual void lookup(const LookupMap &Symbols,
 
                      std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
 
 
 
  /// Called by JITLink once all defined symbols in the graph have been assigned
 
  /// their final memory locations in the target process. At this point the
 
  /// LinkGraph can be inspected to build a symbol table, however the block
 
  /// content will not generally have been copied to the target location yet.
 
  ///
 
  /// If the client detects an error in the LinkGraph state (e.g. unexpected or
 
  /// missing symbols) they may return an error here. The error will be
 
  /// propagated to notifyFailed and the linker will bail out.
 
  virtual Error notifyResolved(LinkGraph &G) = 0;
 
 
 
  /// Called by JITLink to notify the context that the object has been
 
  /// finalized (i.e. emitted to memory and memory permissions set). If all of
 
  /// this objects dependencies have also been finalized then the code is ready
 
  /// to run.
 
  virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0;
 
 
 
  /// Called by JITLink prior to linking to determine whether default passes for
 
  /// the target should be added. The default implementation returns true.
 
  /// If subclasses override this method to return false for any target then
 
  /// they are required to fully configure the pass pipeline for that target.
 
  virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
 
 
 
  /// Returns the mark-live pass to be used for this link. If no pass is
 
  /// returned (the default) then the target-specific linker implementation will
 
  /// choose a conservative default (usually marking all symbols live).
 
  /// This function is only called if shouldAddDefaultTargetPasses returns true,
 
  /// otherwise the JITContext is responsible for adding a mark-live pass in
 
  /// modifyPassConfig.
 
  virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
 
 
 
  /// Called by JITLink to modify the pass pipeline prior to linking.
 
  /// The default version performs no modification.
 
  virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config);
 
 
 
private:
 
  const JITLinkDylib *JD = nullptr;
 
};
 
 
 
/// Marks all symbols in a graph live. This can be used as a default,
 
/// conservative mark-live implementation.
 
Error markAllSymbolsLive(LinkGraph &G);
 
 
 
/// Create an out of range error for the given edge in the given block.
 
Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
 
                                const Edge &E);
 
 
 
Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
 
                         const Edge &E);
 
 
 
/// Base case for edge-visitors where the visitor-list is empty.
 
inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {}
 
 
 
/// Applies the first visitor in the list to the given edge. If the visitor's
 
/// visitEdge method returns true then we return immediately, otherwise we
 
/// apply the next visitor.
 
template <typename VisitorT, typename... VisitorTs>
 
void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V,
 
               VisitorTs &&...Vs) {
 
  if (!V.visitEdge(G, B, E))
 
    visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
 
}
 
 
 
/// For each edge in the given graph, apply a list of visitors to the edge,
 
/// stopping when the first visitor's visitEdge method returns true.
 
///
 
/// Only visits edges that were in the graph at call time: if any visitor
 
/// adds new edges those will not be visited. Visitors are not allowed to
 
/// remove edges (though they can change their kind, target, and addend).
 
template <typename... VisitorTs>
 
void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) {
 
  // We may add new blocks during this process, but we don't want to iterate
 
  // over them, so build a worklist.
 
  std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end());
 
 
 
  for (auto *B : Worklist)
 
    for (auto &E : B->edges())
 
      visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
 
}
 
 
 
/// Create a LinkGraph from the given object buffer.
 
///
 
/// Note: The graph does not take ownership of the underlying buffer, nor copy
 
/// its contents. The caller is responsible for ensuring that the object buffer
 
/// outlives the graph.
 
Expected<std::unique_ptr<LinkGraph>>
 
createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
 
 
 
/// Link the given graph.
 
void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
 
 
 
} // end namespace jitlink
 
} // end namespace llvm
 
 
 
#endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H