//===--- ItaniumDemangle.h -----------*- mode:c++;eval:(read-only-mode) -*-===//
 
//       Do not edit! See README.txt.
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Generic itanium demangler library.
 
// There are two copies of this file in the source tree.  The one under
 
// libcxxabi is the original and the one under llvm is the copy.  Use
 
// cp-to-llvm.sh to update the copy.  See README.txt for more details.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef DEMANGLE_ITANIUMDEMANGLE_H
 
#define DEMANGLE_ITANIUMDEMANGLE_H
 
 
 
#include "DemangleConfig.h"
 
#include "StringView.h"
 
#include "Utility.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cctype>
 
#include <cstdio>
 
#include <cstdlib>
 
#include <cstring>
 
#include <limits>
 
#include <new>
 
#include <utility>
 
 
 
DEMANGLE_NAMESPACE_BEGIN
 
 
 
template <class T, size_t N> class PODSmallVector {
 
  static_assert(std::is_pod<T>::value,
 
                "T is required to be a plain old data type");
 
 
 
  T *First = nullptr;
 
  T *Last = nullptr;
 
  T *Cap = nullptr;
 
  T Inline[N] = {0};
 
 
 
  bool isInline() const { return First == Inline; }
 
 
 
  void clearInline() {
 
    First = Inline;
 
    Last = Inline;
 
    Cap = Inline + N;
 
  }
 
 
 
  void reserve(size_t NewCap) {
 
    size_t S = size();
 
    if (isInline()) {
 
      auto *Tmp = static_cast<T *>(std::malloc(NewCap * sizeof(T)));
 
      if (Tmp == nullptr)
 
        std::terminate();
 
      std::copy(First, Last, Tmp);
 
      First = Tmp;
 
    } else {
 
      First = static_cast<T *>(std::realloc(First, NewCap * sizeof(T)));
 
      if (First == nullptr)
 
        std::terminate();
 
    }
 
    Last = First + S;
 
    Cap = First + NewCap;
 
  }
 
 
 
public:
 
  PODSmallVector() : First(Inline), Last(First), Cap(Inline + N) {}
 
 
 
  PODSmallVector(const PODSmallVector &) = delete;
 
  PODSmallVector &operator=(const PODSmallVector &) = delete;
 
 
 
  PODSmallVector(PODSmallVector &&Other) : PODSmallVector() {
 
    if (Other.isInline()) {
 
      std::copy(Other.begin(), Other.end(), First);
 
      Last = First + Other.size();
 
      Other.clear();
 
      return;
 
    }
 
 
 
    First = Other.First;
 
    Last = Other.Last;
 
    Cap = Other.Cap;
 
    Other.clearInline();
 
  }
 
 
 
  PODSmallVector &operator=(PODSmallVector &&Other) {
 
    if (Other.isInline()) {
 
      if (!isInline()) {
 
        std::free(First);
 
        clearInline();
 
      }
 
      std::copy(Other.begin(), Other.end(), First);
 
      Last = First + Other.size();
 
      Other.clear();
 
      return *this;
 
    }
 
 
 
    if (isInline()) {
 
      First = Other.First;
 
      Last = Other.Last;
 
      Cap = Other.Cap;
 
      Other.clearInline();
 
      return *this;
 
    }
 
 
 
    std::swap(First, Other.First);
 
    std::swap(Last, Other.Last);
 
    std::swap(Cap, Other.Cap);
 
    Other.clear();
 
    return *this;
 
  }
 
 
 
  // NOLINTNEXTLINE(readability-identifier-naming)
 
  void push_back(const T &Elem) {
 
    if (Last == Cap)
 
      reserve(size() * 2);
 
    *Last++ = Elem;
 
  }
 
 
 
  // NOLINTNEXTLINE(readability-identifier-naming)
 
  void pop_back() {
 
    assert(Last != First && "Popping empty vector!");
 
    --Last;
 
  }
 
 
 
  void dropBack(size_t Index) {
 
    assert(Index <= size() && "dropBack() can't expand!");
 
    Last = First + Index;
 
  }
 
 
 
  T *begin() { return First; }
 
  T *end() { return Last; }
 
 
 
  bool empty() const { return First == Last; }
 
  size_t size() const { return static_cast<size_t>(Last - First); }
 
  T &back() {
 
    assert(Last != First && "Calling back() on empty vector!");
 
    return *(Last - 1);
 
  }
 
  T &operator[](size_t Index) {
 
    assert(Index < size() && "Invalid access!");
 
    return *(begin() + Index);
 
  }
 
  void clear() { Last = First; }
 
 
 
  ~PODSmallVector() {
 
    if (!isInline())
 
      std::free(First);
 
  }
 
};
 
 
 
// Base class of all AST nodes. The AST is built by the parser, then is
 
// traversed by the printLeft/Right functions to produce a demangled string.
 
class Node {
 
public:
 
  enum Kind : unsigned char {
 
#define NODE(NodeKind) K##NodeKind,
 
#include "ItaniumNodes.def"
 
  };
 
 
 
  /// Three-way bool to track a cached value. Unknown is possible if this node
 
  /// has an unexpanded parameter pack below it that may affect this cache.
 
  enum class Cache : unsigned char { Yes, No, Unknown, };
 
 
 
  /// Operator precedence for expression nodes. Used to determine required
 
  /// parens in expression emission.
 
  enum class Prec {
 
    Primary,
 
    Postfix,
 
    Unary,
 
    Cast,
 
    PtrMem,
 
    Multiplicative,
 
    Additive,
 
    Shift,
 
    Spaceship,
 
    Relational,
 
    Equality,
 
    And,
 
    Xor,
 
    Ior,
 
    AndIf,
 
    OrIf,
 
    Conditional,
 
    Assign,
 
    Comma,
 
    Default,
 
  };
 
 
 
private:
 
  Kind K;
 
 
 
  Prec Precedence : 6;
 
 
 
  // FIXME: Make these protected.
 
public:
 
  /// Tracks if this node has a component on its right side, in which case we
 
  /// need to call printRight.
 
  Cache RHSComponentCache : 2;
 
 
 
  /// Track if this node is a (possibly qualified) array type. This can affect
 
  /// how we format the output string.
 
  Cache ArrayCache : 2;
 
 
 
  /// Track if this node is a (possibly qualified) function type. This can
 
  /// affect how we format the output string.
 
  Cache FunctionCache : 2;
 
 
 
public:
 
  Node(Kind K_, Prec Precedence_ = Prec::Primary,
 
       Cache RHSComponentCache_ = Cache::No, Cache ArrayCache_ = Cache::No,
 
       Cache FunctionCache_ = Cache::No)
 
      : K(K_), Precedence(Precedence_), RHSComponentCache(RHSComponentCache_),
 
        ArrayCache(ArrayCache_), FunctionCache(FunctionCache_) {}
 
  Node(Kind K_, Cache RHSComponentCache_, Cache ArrayCache_ = Cache::No,
 
       Cache FunctionCache_ = Cache::No)
 
      : Node(K_, Prec::Primary, RHSComponentCache_, ArrayCache_,
 
             FunctionCache_) {}
 
 
 
  /// Visit the most-derived object corresponding to this object.
 
  template<typename Fn> void visit(Fn F) const;
 
 
 
  // The following function is provided by all derived classes:
 
  //
 
  // Call F with arguments that, when passed to the constructor of this node,
 
  // would construct an equivalent node.
 
  //template<typename Fn> void match(Fn F) const;
 
 
 
  bool hasRHSComponent(OutputBuffer &OB) const {
 
    if (RHSComponentCache != Cache::Unknown)
 
      return RHSComponentCache == Cache::Yes;
 
    return hasRHSComponentSlow(OB);
 
  }
 
 
 
  bool hasArray(OutputBuffer &OB) const {
 
    if (ArrayCache != Cache::Unknown)
 
      return ArrayCache == Cache::Yes;
 
    return hasArraySlow(OB);
 
  }
 
 
 
  bool hasFunction(OutputBuffer &OB) const {
 
    if (FunctionCache != Cache::Unknown)
 
      return FunctionCache == Cache::Yes;
 
    return hasFunctionSlow(OB);
 
  }
 
 
 
  Kind getKind() const { return K; }
 
 
 
  Prec getPrecedence() const { return Precedence; }
 
 
 
  virtual bool hasRHSComponentSlow(OutputBuffer &) const { return false; }
 
  virtual bool hasArraySlow(OutputBuffer &) const { return false; }
 
  virtual bool hasFunctionSlow(OutputBuffer &) const { return false; }
 
 
 
  // Dig through "glue" nodes like ParameterPack and ForwardTemplateReference to
 
  // get at a node that actually represents some concrete syntax.
 
  virtual const Node *getSyntaxNode(OutputBuffer &) const { return this; }
 
 
 
  // Print this node as an expression operand, surrounding it in parentheses if
 
  // its precedence is [Strictly] weaker than P.
 
  void printAsOperand(OutputBuffer &OB, Prec P = Prec::Default,
 
                      bool StrictlyWorse = false) const {
 
    bool Paren =
 
        unsigned(getPrecedence()) >= unsigned(P) + unsigned(StrictlyWorse);
 
    if (Paren)
 
      OB.printOpen();
 
    print(OB);
 
    if (Paren)
 
      OB.printClose();
 
  }
 
 
 
  void print(OutputBuffer &OB) const {
 
    printLeft(OB);
 
    if (RHSComponentCache != Cache::No)
 
      printRight(OB);
 
  }
 
 
 
  // Print the "left" side of this Node into OutputBuffer.
 
  virtual void printLeft(OutputBuffer &) const = 0;
 
 
 
  // Print the "right". This distinction is necessary to represent C++ types
 
  // that appear on the RHS of their subtype, such as arrays or functions.
 
  // Since most types don't have such a component, provide a default
 
  // implementation.
 
  virtual void printRight(OutputBuffer &) const {}
 
 
 
  virtual StringView getBaseName() const { return StringView(); }
 
 
 
  // Silence compiler warnings, this dtor will never be called.
 
  virtual ~Node() = default;
 
 
 
#ifndef NDEBUG
 
  DEMANGLE_DUMP_METHOD void dump() const;
 
#endif
 
};
 
 
 
class NodeArray {
 
  Node **Elements;
 
  size_t NumElements;
 
 
 
public:
 
  NodeArray() : Elements(nullptr), NumElements(0) {}
 
  NodeArray(Node **Elements_, size_t NumElements_)
 
      : Elements(Elements_), NumElements(NumElements_) {}
 
 
 
  bool empty() const { return NumElements == 0; }
 
  size_t size() const { return NumElements; }
 
 
 
  Node **begin() const { return Elements; }
 
  Node **end() const { return Elements + NumElements; }
 
 
 
  Node *operator[](size_t Idx) const { return Elements[Idx]; }
 
 
 
  void printWithComma(OutputBuffer &OB) const {
 
    bool FirstElement = true;
 
    for (size_t Idx = 0; Idx != NumElements; ++Idx) {
 
      size_t BeforeComma = OB.getCurrentPosition();
 
      if (!FirstElement)
 
        OB += ", ";
 
      size_t AfterComma = OB.getCurrentPosition();
 
      Elements[Idx]->printAsOperand(OB, Node::Prec::Comma);
 
 
 
      // Elements[Idx] is an empty parameter pack expansion, we should erase the
 
      // comma we just printed.
 
      if (AfterComma == OB.getCurrentPosition()) {
 
        OB.setCurrentPosition(BeforeComma);
 
        continue;
 
      }
 
 
 
      FirstElement = false;
 
    }
 
  }
 
};
 
 
 
struct NodeArrayNode : Node {
 
  NodeArray Array;
 
  NodeArrayNode(NodeArray Array_) : Node(KNodeArrayNode), Array(Array_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Array); }
 
 
 
  void printLeft(OutputBuffer &OB) const override { Array.printWithComma(OB); }
 
};
 
 
 
class DotSuffix final : public Node {
 
  const Node *Prefix;
 
  const StringView Suffix;
 
 
 
public:
 
  DotSuffix(const Node *Prefix_, StringView Suffix_)
 
      : Node(KDotSuffix), Prefix(Prefix_), Suffix(Suffix_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Prefix, Suffix); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Prefix->print(OB);
 
    OB += " (";
 
    OB += Suffix;
 
    OB += ")";
 
  }
 
};
 
 
 
class VendorExtQualType final : public Node {
 
  const Node *Ty;
 
  StringView Ext;
 
  const Node *TA;
 
 
 
public:
 
  VendorExtQualType(const Node *Ty_, StringView Ext_, const Node *TA_)
 
      : Node(KVendorExtQualType), Ty(Ty_), Ext(Ext_), TA(TA_) {}
 
 
 
  const Node *getTy() const { return Ty; }
 
  StringView getExt() const { return Ext; }
 
  const Node *getTA() const { return TA; }
 
 
 
  template <typename Fn> void match(Fn F) const { F(Ty, Ext, TA); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Ty->print(OB);
 
    OB += " ";
 
    OB += Ext;
 
    if (TA != nullptr)
 
      TA->print(OB);
 
  }
 
};
 
 
 
enum FunctionRefQual : unsigned char {
 
  FrefQualNone,
 
  FrefQualLValue,
 
  FrefQualRValue,
 
};
 
 
 
enum Qualifiers {
 
  QualNone = 0,
 
  QualConst = 0x1,
 
  QualVolatile = 0x2,
 
  QualRestrict = 0x4,
 
};
 
 
 
inline Qualifiers operator|=(Qualifiers &Q1, Qualifiers Q2) {
 
  return Q1 = static_cast<Qualifiers>(Q1 | Q2);
 
}
 
 
 
class QualType final : public Node {
 
protected:
 
  const Qualifiers Quals;
 
  const Node *Child;
 
 
 
  void printQuals(OutputBuffer &OB) const {
 
    if (Quals & QualConst)
 
      OB += " const";
 
    if (Quals & QualVolatile)
 
      OB += " volatile";
 
    if (Quals & QualRestrict)
 
      OB += " restrict";
 
  }
 
 
 
public:
 
  QualType(const Node *Child_, Qualifiers Quals_)
 
      : Node(KQualType, Child_->RHSComponentCache,
 
             Child_->ArrayCache, Child_->FunctionCache),
 
        Quals(Quals_), Child(Child_) {}
 
 
 
  Qualifiers getQuals() const { return Quals; }
 
  const Node *getChild() const { return Child; }
 
 
 
  template<typename Fn> void match(Fn F) const { F(Child, Quals); }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &OB) const override {
 
    return Child->hasRHSComponent(OB);
 
  }
 
  bool hasArraySlow(OutputBuffer &OB) const override {
 
    return Child->hasArray(OB);
 
  }
 
  bool hasFunctionSlow(OutputBuffer &OB) const override {
 
    return Child->hasFunction(OB);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Child->printLeft(OB);
 
    printQuals(OB);
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override { Child->printRight(OB); }
 
};
 
 
 
class ConversionOperatorType final : public Node {
 
  const Node *Ty;
 
 
 
public:
 
  ConversionOperatorType(const Node *Ty_)
 
      : Node(KConversionOperatorType), Ty(Ty_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Ty); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "operator ";
 
    Ty->print(OB);
 
  }
 
};
 
 
 
class PostfixQualifiedType final : public Node {
 
  const Node *Ty;
 
  const StringView Postfix;
 
 
 
public:
 
  PostfixQualifiedType(const Node *Ty_, StringView Postfix_)
 
      : Node(KPostfixQualifiedType), Ty(Ty_), Postfix(Postfix_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Ty, Postfix); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Ty->printLeft(OB);
 
    OB += Postfix;
 
  }
 
};
 
 
 
class NameType final : public Node {
 
  const StringView Name;
 
 
 
public:
 
  NameType(StringView Name_) : Node(KNameType), Name(Name_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Name); }
 
 
 
  StringView getName() const { return Name; }
 
  StringView getBaseName() const override { return Name; }
 
 
 
  void printLeft(OutputBuffer &OB) const override { OB += Name; }
 
};
 
 
 
class BitIntType final : public Node {
 
  const Node *Size;
 
  bool Signed;
 
 
 
public:
 
  BitIntType(const Node *Size_, bool Signed_)
 
      : Node(KBitIntType), Size(Size_), Signed(Signed_) {}
 
 
 
  template <typename Fn> void match(Fn F) const { F(Size, Signed); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (!Signed)
 
      OB += "unsigned ";
 
    OB += "_BitInt";
 
    OB.printOpen();
 
    Size->printAsOperand(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class ElaboratedTypeSpefType : public Node {
 
  StringView Kind;
 
  Node *Child;
 
public:
 
  ElaboratedTypeSpefType(StringView Kind_, Node *Child_)
 
      : Node(KElaboratedTypeSpefType), Kind(Kind_), Child(Child_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Kind, Child); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += Kind;
 
    OB += ' ';
 
    Child->print(OB);
 
  }
 
};
 
 
 
struct AbiTagAttr : Node {
 
  Node *Base;
 
  StringView Tag;
 
 
 
  AbiTagAttr(Node* Base_, StringView Tag_)
 
      : Node(KAbiTagAttr, Base_->RHSComponentCache,
 
             Base_->ArrayCache, Base_->FunctionCache),
 
        Base(Base_), Tag(Tag_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Base, Tag); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Base->printLeft(OB);
 
    OB += "[abi:";
 
    OB += Tag;
 
    OB += "]";
 
  }
 
};
 
 
 
class EnableIfAttr : public Node {
 
  NodeArray Conditions;
 
public:
 
  EnableIfAttr(NodeArray Conditions_)
 
      : Node(KEnableIfAttr), Conditions(Conditions_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Conditions); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += " [enable_if:";
 
    Conditions.printWithComma(OB);
 
    OB += ']';
 
  }
 
};
 
 
 
class ObjCProtoName : public Node {
 
  const Node *Ty;
 
  StringView Protocol;
 
 
 
  friend class PointerType;
 
 
 
public:
 
  ObjCProtoName(const Node *Ty_, StringView Protocol_)
 
      : Node(KObjCProtoName), Ty(Ty_), Protocol(Protocol_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Ty, Protocol); }
 
 
 
  bool isObjCObject() const {
 
    return Ty->getKind() == KNameType &&
 
           static_cast<const NameType *>(Ty)->getName() == "objc_object";
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Ty->print(OB);
 
    OB += "<";
 
    OB += Protocol;
 
    OB += ">";
 
  }
 
};
 
 
 
class PointerType final : public Node {
 
  const Node *Pointee;
 
 
 
public:
 
  PointerType(const Node *Pointee_)
 
      : Node(KPointerType, Pointee_->RHSComponentCache),
 
        Pointee(Pointee_) {}
 
 
 
  const Node *getPointee() const { return Pointee; }
 
 
 
  template<typename Fn> void match(Fn F) const { F(Pointee); }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &OB) const override {
 
    return Pointee->hasRHSComponent(OB);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    // We rewrite objc_object<SomeProtocol>* into id<SomeProtocol>.
 
    if (Pointee->getKind() != KObjCProtoName ||
 
        !static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
 
      Pointee->printLeft(OB);
 
      if (Pointee->hasArray(OB))
 
        OB += " ";
 
      if (Pointee->hasArray(OB) || Pointee->hasFunction(OB))
 
        OB += "(";
 
      OB += "*";
 
    } else {
 
      const auto *objcProto = static_cast<const ObjCProtoName *>(Pointee);
 
      OB += "id<";
 
      OB += objcProto->Protocol;
 
      OB += ">";
 
    }
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override {
 
    if (Pointee->getKind() != KObjCProtoName ||
 
        !static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
 
      if (Pointee->hasArray(OB) || Pointee->hasFunction(OB))
 
        OB += ")";
 
      Pointee->printRight(OB);
 
    }
 
  }
 
};
 
 
 
enum class ReferenceKind {
 
  LValue,
 
  RValue,
 
};
 
 
 
// Represents either a LValue or an RValue reference type.
 
class ReferenceType : public Node {
 
  const Node *Pointee;
 
  ReferenceKind RK;
 
 
 
  mutable bool Printing = false;
 
 
 
  // Dig through any refs to refs, collapsing the ReferenceTypes as we go. The
 
  // rule here is rvalue ref to rvalue ref collapses to a rvalue ref, and any
 
  // other combination collapses to a lvalue ref.
 
  //
 
  // A combination of a TemplateForwardReference and a back-ref Substitution
 
  // from an ill-formed string may have created a cycle; use cycle detection to
 
  // avoid looping forever.
 
  std::pair<ReferenceKind, const Node *> collapse(OutputBuffer &OB) const {
 
    auto SoFar = std::make_pair(RK, Pointee);
 
    // Track the chain of nodes for the Floyd's 'tortoise and hare'
 
    // cycle-detection algorithm, since getSyntaxNode(S) is impure
 
    PODSmallVector<const Node *, 8> Prev;
 
    for (;;) {
 
      const Node *SN = SoFar.second->getSyntaxNode(OB);
 
      if (SN->getKind() != KReferenceType)
 
        break;
 
      auto *RT = static_cast<const ReferenceType *>(SN);
 
      SoFar.second = RT->Pointee;
 
      SoFar.first = std::min(SoFar.first, RT->RK);
 
 
 
      // The middle of Prev is the 'slow' pointer moving at half speed
 
      Prev.push_back(SoFar.second);
 
      if (Prev.size() > 1 && SoFar.second == Prev[(Prev.size() - 1) / 2]) {
 
        // Cycle detected
 
        SoFar.second = nullptr;
 
        break;
 
      }
 
    }
 
    return SoFar;
 
  }
 
 
 
public:
 
  ReferenceType(const Node *Pointee_, ReferenceKind RK_)
 
      : Node(KReferenceType, Pointee_->RHSComponentCache),
 
        Pointee(Pointee_), RK(RK_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Pointee, RK); }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &OB) const override {
 
    return Pointee->hasRHSComponent(OB);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    std::pair<ReferenceKind, const Node *> Collapsed = collapse(OB);
 
    if (!Collapsed.second)
 
      return;
 
    Collapsed.second->printLeft(OB);
 
    if (Collapsed.second->hasArray(OB))
 
      OB += " ";
 
    if (Collapsed.second->hasArray(OB) || Collapsed.second->hasFunction(OB))
 
      OB += "(";
 
 
 
    OB += (Collapsed.first == ReferenceKind::LValue ? "&" : "&&");
 
  }
 
  void printRight(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    std::pair<ReferenceKind, const Node *> Collapsed = collapse(OB);
 
    if (!Collapsed.second)
 
      return;
 
    if (Collapsed.second->hasArray(OB) || Collapsed.second->hasFunction(OB))
 
      OB += ")";
 
    Collapsed.second->printRight(OB);
 
  }
 
};
 
 
 
class PointerToMemberType final : public Node {
 
  const Node *ClassType;
 
  const Node *MemberType;
 
 
 
public:
 
  PointerToMemberType(const Node *ClassType_, const Node *MemberType_)
 
      : Node(KPointerToMemberType, MemberType_->RHSComponentCache),
 
        ClassType(ClassType_), MemberType(MemberType_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(ClassType, MemberType); }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &OB) const override {
 
    return MemberType->hasRHSComponent(OB);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    MemberType->printLeft(OB);
 
    if (MemberType->hasArray(OB) || MemberType->hasFunction(OB))
 
      OB += "(";
 
    else
 
      OB += " ";
 
    ClassType->print(OB);
 
    OB += "::*";
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override {
 
    if (MemberType->hasArray(OB) || MemberType->hasFunction(OB))
 
      OB += ")";
 
    MemberType->printRight(OB);
 
  }
 
};
 
 
 
class ArrayType final : public Node {
 
  const Node *Base;
 
  Node *Dimension;
 
 
 
public:
 
  ArrayType(const Node *Base_, Node *Dimension_)
 
      : Node(KArrayType,
 
             /*RHSComponentCache=*/Cache::Yes,
 
             /*ArrayCache=*/Cache::Yes),
 
        Base(Base_), Dimension(Dimension_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Base, Dimension); }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &) const override { return true; }
 
  bool hasArraySlow(OutputBuffer &) const override { return true; }
 
 
 
  void printLeft(OutputBuffer &OB) const override { Base->printLeft(OB); }
 
 
 
  void printRight(OutputBuffer &OB) const override {
 
    if (OB.back() != ']')
 
      OB += " ";
 
    OB += "[";
 
    if (Dimension)
 
      Dimension->print(OB);
 
    OB += "]";
 
    Base->printRight(OB);
 
  }
 
};
 
 
 
class FunctionType final : public Node {
 
  const Node *Ret;
 
  NodeArray Params;
 
  Qualifiers CVQuals;
 
  FunctionRefQual RefQual;
 
  const Node *ExceptionSpec;
 
 
 
public:
 
  FunctionType(const Node *Ret_, NodeArray Params_, Qualifiers CVQuals_,
 
               FunctionRefQual RefQual_, const Node *ExceptionSpec_)
 
      : Node(KFunctionType,
 
             /*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
 
             /*FunctionCache=*/Cache::Yes),
 
        Ret(Ret_), Params(Params_), CVQuals(CVQuals_), RefQual(RefQual_),
 
        ExceptionSpec(ExceptionSpec_) {}
 
 
 
  template<typename Fn> void match(Fn F) const {
 
    F(Ret, Params, CVQuals, RefQual, ExceptionSpec);
 
  }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &) const override { return true; }
 
  bool hasFunctionSlow(OutputBuffer &) const override { return true; }
 
 
 
  // Handle C++'s ... quirky decl grammar by using the left & right
 
  // distinction. Consider:
 
  //   int (*f(float))(char) {}
 
  // f is a function that takes a float and returns a pointer to a function
 
  // that takes a char and returns an int. If we're trying to print f, start
 
  // by printing out the return types's left, then print our parameters, then
 
  // finally print right of the return type.
 
  void printLeft(OutputBuffer &OB) const override {
 
    Ret->printLeft(OB);
 
    OB += " ";
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override {
 
    OB.printOpen();
 
    Params.printWithComma(OB);
 
    OB.printClose();
 
    Ret->printRight(OB);
 
 
 
    if (CVQuals & QualConst)
 
      OB += " const";
 
    if (CVQuals & QualVolatile)
 
      OB += " volatile";
 
    if (CVQuals & QualRestrict)
 
      OB += " restrict";
 
 
 
    if (RefQual == FrefQualLValue)
 
      OB += " &";
 
    else if (RefQual == FrefQualRValue)
 
      OB += " &&";
 
 
 
    if (ExceptionSpec != nullptr) {
 
      OB += ' ';
 
      ExceptionSpec->print(OB);
 
    }
 
  }
 
};
 
 
 
class NoexceptSpec : public Node {
 
  const Node *E;
 
public:
 
  NoexceptSpec(const Node *E_) : Node(KNoexceptSpec), E(E_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(E); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "noexcept";
 
    OB.printOpen();
 
    E->printAsOperand(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class DynamicExceptionSpec : public Node {
 
  NodeArray Types;
 
public:
 
  DynamicExceptionSpec(NodeArray Types_)
 
      : Node(KDynamicExceptionSpec), Types(Types_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Types); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "throw";
 
    OB.printOpen();
 
    Types.printWithComma(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class FunctionEncoding final : public Node {
 
  const Node *Ret;
 
  const Node *Name;
 
  NodeArray Params;
 
  const Node *Attrs;
 
  Qualifiers CVQuals;
 
  FunctionRefQual RefQual;
 
 
 
public:
 
  FunctionEncoding(const Node *Ret_, const Node *Name_, NodeArray Params_,
 
                   const Node *Attrs_, Qualifiers CVQuals_,
 
                   FunctionRefQual RefQual_)
 
      : Node(KFunctionEncoding,
 
             /*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
 
             /*FunctionCache=*/Cache::Yes),
 
        Ret(Ret_), Name(Name_), Params(Params_), Attrs(Attrs_),
 
        CVQuals(CVQuals_), RefQual(RefQual_) {}
 
 
 
  template<typename Fn> void match(Fn F) const {
 
    F(Ret, Name, Params, Attrs, CVQuals, RefQual);
 
  }
 
 
 
  Qualifiers getCVQuals() const { return CVQuals; }
 
  FunctionRefQual getRefQual() const { return RefQual; }
 
  NodeArray getParams() const { return Params; }
 
  const Node *getReturnType() const { return Ret; }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &) const override { return true; }
 
  bool hasFunctionSlow(OutputBuffer &) const override { return true; }
 
 
 
  const Node *getName() const { return Name; }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (Ret) {
 
      Ret->printLeft(OB);
 
      if (!Ret->hasRHSComponent(OB))
 
        OB += " ";
 
    }
 
    Name->print(OB);
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override {
 
    OB.printOpen();
 
    Params.printWithComma(OB);
 
    OB.printClose();
 
    if (Ret)
 
      Ret->printRight(OB);
 
 
 
    if (CVQuals & QualConst)
 
      OB += " const";
 
    if (CVQuals & QualVolatile)
 
      OB += " volatile";
 
    if (CVQuals & QualRestrict)
 
      OB += " restrict";
 
 
 
    if (RefQual == FrefQualLValue)
 
      OB += " &";
 
    else if (RefQual == FrefQualRValue)
 
      OB += " &&";
 
 
 
    if (Attrs != nullptr)
 
      Attrs->print(OB);
 
  }
 
};
 
 
 
class LiteralOperator : public Node {
 
  const Node *OpName;
 
 
 
public:
 
  LiteralOperator(const Node *OpName_)
 
      : Node(KLiteralOperator), OpName(OpName_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(OpName); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "operator\"\" ";
 
    OpName->print(OB);
 
  }
 
};
 
 
 
class SpecialName final : public Node {
 
  const StringView Special;
 
  const Node *Child;
 
 
 
public:
 
  SpecialName(StringView Special_, const Node *Child_)
 
      : Node(KSpecialName), Special(Special_), Child(Child_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Special, Child); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += Special;
 
    Child->print(OB);
 
  }
 
};
 
 
 
class CtorVtableSpecialName final : public Node {
 
  const Node *FirstType;
 
  const Node *SecondType;
 
 
 
public:
 
  CtorVtableSpecialName(const Node *FirstType_, const Node *SecondType_)
 
      : Node(KCtorVtableSpecialName),
 
        FirstType(FirstType_), SecondType(SecondType_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(FirstType, SecondType); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "construction vtable for ";
 
    FirstType->print(OB);
 
    OB += "-in-";
 
    SecondType->print(OB);
 
  }
 
};
 
 
 
struct NestedName : Node {
 
  Node *Qual;
 
  Node *Name;
 
 
 
  NestedName(Node *Qual_, Node *Name_)
 
      : Node(KNestedName), Qual(Qual_), Name(Name_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Qual, Name); }
 
 
 
  StringView getBaseName() const override { return Name->getBaseName(); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Qual->print(OB);
 
    OB += "::";
 
    Name->print(OB);
 
  }
 
};
 
 
 
struct ModuleName : Node {
 
  ModuleName *Parent;
 
  Node *Name;
 
  bool IsPartition;
 
 
 
  ModuleName(ModuleName *Parent_, Node *Name_, bool IsPartition_ = false)
 
      : Node(KModuleName), Parent(Parent_), Name(Name_),
 
        IsPartition(IsPartition_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Parent, Name, IsPartition);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (Parent)
 
      Parent->print(OB);
 
    if (Parent || IsPartition)
 
      OB += IsPartition ? ':' : '.';
 
    Name->print(OB);
 
  }
 
};
 
 
 
struct ModuleEntity : Node {
 
  ModuleName *Module;
 
  Node *Name;
 
 
 
  ModuleEntity(ModuleName *Module_, Node *Name_)
 
      : Node(KModuleEntity), Module(Module_), Name(Name_) {}
 
 
 
  template <typename Fn> void match(Fn F) const { F(Module, Name); }
 
 
 
  StringView getBaseName() const override { return Name->getBaseName(); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Name->print(OB);
 
    OB += '@';
 
    Module->print(OB);
 
  }
 
};
 
 
 
struct LocalName : Node {
 
  Node *Encoding;
 
  Node *Entity;
 
 
 
  LocalName(Node *Encoding_, Node *Entity_)
 
      : Node(KLocalName), Encoding(Encoding_), Entity(Entity_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Encoding, Entity); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Encoding->print(OB);
 
    OB += "::";
 
    Entity->print(OB);
 
  }
 
};
 
 
 
class QualifiedName final : public Node {
 
  // qualifier::name
 
  const Node *Qualifier;
 
  const Node *Name;
 
 
 
public:
 
  QualifiedName(const Node *Qualifier_, const Node *Name_)
 
      : Node(KQualifiedName), Qualifier(Qualifier_), Name(Name_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Qualifier, Name); }
 
 
 
  StringView getBaseName() const override { return Name->getBaseName(); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Qualifier->print(OB);
 
    OB += "::";
 
    Name->print(OB);
 
  }
 
};
 
 
 
class VectorType final : public Node {
 
  const Node *BaseType;
 
  const Node *Dimension;
 
 
 
public:
 
  VectorType(const Node *BaseType_, const Node *Dimension_)
 
      : Node(KVectorType), BaseType(BaseType_), Dimension(Dimension_) {}
 
 
 
  const Node *getBaseType() const { return BaseType; }
 
  const Node *getDimension() const { return Dimension; }
 
 
 
  template<typename Fn> void match(Fn F) const { F(BaseType, Dimension); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    BaseType->print(OB);
 
    OB += " vector[";
 
    if (Dimension)
 
      Dimension->print(OB);
 
    OB += "]";
 
  }
 
};
 
 
 
class PixelVectorType final : public Node {
 
  const Node *Dimension;
 
 
 
public:
 
  PixelVectorType(const Node *Dimension_)
 
      : Node(KPixelVectorType), Dimension(Dimension_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Dimension); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    // FIXME: This should demangle as "vector pixel".
 
    OB += "pixel vector[";
 
    Dimension->print(OB);
 
    OB += "]";
 
  }
 
};
 
 
 
class BinaryFPType final : public Node {
 
  const Node *Dimension;
 
 
 
public:
 
  BinaryFPType(const Node *Dimension_)
 
      : Node(KBinaryFPType), Dimension(Dimension_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Dimension); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "_Float";
 
    Dimension->print(OB);
 
  }
 
};
 
 
 
enum class TemplateParamKind { Type, NonType, Template };
 
 
 
/// An invented name for a template parameter for which we don't have a
 
/// corresponding template argument.
 
///
 
/// This node is created when parsing the <lambda-sig> for a lambda with
 
/// explicit template arguments, which might be referenced in the parameter
 
/// types appearing later in the <lambda-sig>.
 
class SyntheticTemplateParamName final : public Node {
 
  TemplateParamKind Kind;
 
  unsigned Index;
 
 
 
public:
 
  SyntheticTemplateParamName(TemplateParamKind Kind_, unsigned Index_)
 
      : Node(KSyntheticTemplateParamName), Kind(Kind_), Index(Index_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Kind, Index); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    switch (Kind) {
 
    case TemplateParamKind::Type:
 
      OB += "$T";
 
      break;
 
    case TemplateParamKind::NonType:
 
      OB += "$N";
 
      break;
 
    case TemplateParamKind::Template:
 
      OB += "$TT";
 
      break;
 
    }
 
    if (Index > 0)
 
      OB << Index - 1;
 
  }
 
};
 
 
 
/// A template type parameter declaration, 'typename T'.
 
class TypeTemplateParamDecl final : public Node {
 
  Node *Name;
 
 
 
public:
 
  TypeTemplateParamDecl(Node *Name_)
 
      : Node(KTypeTemplateParamDecl, Cache::Yes), Name(Name_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Name); }
 
 
 
  void printLeft(OutputBuffer &OB) const override { OB += "typename "; }
 
 
 
  void printRight(OutputBuffer &OB) const override { Name->print(OB); }
 
};
 
 
 
/// A non-type template parameter declaration, 'int N'.
 
class NonTypeTemplateParamDecl final : public Node {
 
  Node *Name;
 
  Node *Type;
 
 
 
public:
 
  NonTypeTemplateParamDecl(Node *Name_, Node *Type_)
 
      : Node(KNonTypeTemplateParamDecl, Cache::Yes), Name(Name_), Type(Type_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Name, Type); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Type->printLeft(OB);
 
    if (!Type->hasRHSComponent(OB))
 
      OB += " ";
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override {
 
    Name->print(OB);
 
    Type->printRight(OB);
 
  }
 
};
 
 
 
/// A template template parameter declaration,
 
/// 'template<typename T> typename N'.
 
class TemplateTemplateParamDecl final : public Node {
 
  Node *Name;
 
  NodeArray Params;
 
 
 
public:
 
  TemplateTemplateParamDecl(Node *Name_, NodeArray Params_)
 
      : Node(KTemplateTemplateParamDecl, Cache::Yes), Name(Name_),
 
        Params(Params_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Name, Params); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
 
    OB += "template<";
 
    Params.printWithComma(OB);
 
    OB += "> typename ";
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override { Name->print(OB); }
 
};
 
 
 
/// A template parameter pack declaration, 'typename ...T'.
 
class TemplateParamPackDecl final : public Node {
 
  Node *Param;
 
 
 
public:
 
  TemplateParamPackDecl(Node *Param_)
 
      : Node(KTemplateParamPackDecl, Cache::Yes), Param(Param_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Param); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Param->printLeft(OB);
 
    OB += "...";
 
  }
 
 
 
  void printRight(OutputBuffer &OB) const override { Param->printRight(OB); }
 
};
 
 
 
/// An unexpanded parameter pack (either in the expression or type context). If
 
/// this AST is correct, this node will have a ParameterPackExpansion node above
 
/// it.
 
///
 
/// This node is created when some <template-args> are found that apply to an
 
/// <encoding>, and is stored in the TemplateParams table. In order for this to
 
/// appear in the final AST, it has to referenced via a <template-param> (ie,
 
/// T_).
 
class ParameterPack final : public Node {
 
  NodeArray Data;
 
 
 
  // Setup OutputBuffer for a pack expansion, unless we're already expanding
 
  // one.
 
  void initializePackExpansion(OutputBuffer &OB) const {
 
    if (OB.CurrentPackMax == std::numeric_limits<unsigned>::max()) {
 
      OB.CurrentPackMax = static_cast<unsigned>(Data.size());
 
      OB.CurrentPackIndex = 0;
 
    }
 
  }
 
 
 
public:
 
  ParameterPack(NodeArray Data_) : Node(KParameterPack), Data(Data_) {
 
    ArrayCache = FunctionCache = RHSComponentCache = Cache::Unknown;
 
    if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
 
          return P->ArrayCache == Cache::No;
 
        }))
 
      ArrayCache = Cache::No;
 
    if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
 
          return P->FunctionCache == Cache::No;
 
        }))
 
      FunctionCache = Cache::No;
 
    if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
 
          return P->RHSComponentCache == Cache::No;
 
        }))
 
      RHSComponentCache = Cache::No;
 
  }
 
 
 
  template<typename Fn> void match(Fn F) const { F(Data); }
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &OB) const override {
 
    initializePackExpansion(OB);
 
    size_t Idx = OB.CurrentPackIndex;
 
    return Idx < Data.size() && Data[Idx]->hasRHSComponent(OB);
 
  }
 
  bool hasArraySlow(OutputBuffer &OB) const override {
 
    initializePackExpansion(OB);
 
    size_t Idx = OB.CurrentPackIndex;
 
    return Idx < Data.size() && Data[Idx]->hasArray(OB);
 
  }
 
  bool hasFunctionSlow(OutputBuffer &OB) const override {
 
    initializePackExpansion(OB);
 
    size_t Idx = OB.CurrentPackIndex;
 
    return Idx < Data.size() && Data[Idx]->hasFunction(OB);
 
  }
 
  const Node *getSyntaxNode(OutputBuffer &OB) const override {
 
    initializePackExpansion(OB);
 
    size_t Idx = OB.CurrentPackIndex;
 
    return Idx < Data.size() ? Data[Idx]->getSyntaxNode(OB) : this;
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    initializePackExpansion(OB);
 
    size_t Idx = OB.CurrentPackIndex;
 
    if (Idx < Data.size())
 
      Data[Idx]->printLeft(OB);
 
  }
 
  void printRight(OutputBuffer &OB) const override {
 
    initializePackExpansion(OB);
 
    size_t Idx = OB.CurrentPackIndex;
 
    if (Idx < Data.size())
 
      Data[Idx]->printRight(OB);
 
  }
 
};
 
 
 
/// A variadic template argument. This node represents an occurrence of
 
/// J<something>E in some <template-args>. It isn't itself unexpanded, unless
 
/// one of it's Elements is. The parser inserts a ParameterPack into the
 
/// TemplateParams table if the <template-args> this pack belongs to apply to an
 
/// <encoding>.
 
class TemplateArgumentPack final : public Node {
 
  NodeArray Elements;
 
public:
 
  TemplateArgumentPack(NodeArray Elements_)
 
      : Node(KTemplateArgumentPack), Elements(Elements_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Elements); }
 
 
 
  NodeArray getElements() const { return Elements; }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Elements.printWithComma(OB);
 
  }
 
};
 
 
 
/// A pack expansion. Below this node, there are some unexpanded ParameterPacks
 
/// which each have Child->ParameterPackSize elements.
 
class ParameterPackExpansion final : public Node {
 
  const Node *Child;
 
 
 
public:
 
  ParameterPackExpansion(const Node *Child_)
 
      : Node(KParameterPackExpansion), Child(Child_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Child); }
 
 
 
  const Node *getChild() const { return Child; }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    constexpr unsigned Max = std::numeric_limits<unsigned>::max();
 
    ScopedOverride<unsigned> SavePackIdx(OB.CurrentPackIndex, Max);
 
    ScopedOverride<unsigned> SavePackMax(OB.CurrentPackMax, Max);
 
    size_t StreamPos = OB.getCurrentPosition();
 
 
 
    // Print the first element in the pack. If Child contains a ParameterPack,
 
    // it will set up S.CurrentPackMax and print the first element.
 
    Child->print(OB);
 
 
 
    // No ParameterPack was found in Child. This can occur if we've found a pack
 
    // expansion on a <function-param>.
 
    if (OB.CurrentPackMax == Max) {
 
      OB += "...";
 
      return;
 
    }
 
 
 
    // We found a ParameterPack, but it has no elements. Erase whatever we may
 
    // of printed.
 
    if (OB.CurrentPackMax == 0) {
 
      OB.setCurrentPosition(StreamPos);
 
      return;
 
    }
 
 
 
    // Else, iterate through the rest of the elements in the pack.
 
    for (unsigned I = 1, E = OB.CurrentPackMax; I < E; ++I) {
 
      OB += ", ";
 
      OB.CurrentPackIndex = I;
 
      Child->print(OB);
 
    }
 
  }
 
};
 
 
 
class TemplateArgs final : public Node {
 
  NodeArray Params;
 
 
 
public:
 
  TemplateArgs(NodeArray Params_) : Node(KTemplateArgs), Params(Params_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Params); }
 
 
 
  NodeArray getParams() { return Params; }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
 
    OB += "<";
 
    Params.printWithComma(OB);
 
    OB += ">";
 
  }
 
};
 
 
 
/// A forward-reference to a template argument that was not known at the point
 
/// where the template parameter name was parsed in a mangling.
 
///
 
/// This is created when demangling the name of a specialization of a
 
/// conversion function template:
 
///
 
/// \code
 
/// struct A {
 
///   template<typename T> operator T*();
 
/// };
 
/// \endcode
 
///
 
/// When demangling a specialization of the conversion function template, we
 
/// encounter the name of the template (including the \c T) before we reach
 
/// the template argument list, so we cannot substitute the parameter name
 
/// for the corresponding argument while parsing. Instead, we create a
 
/// \c ForwardTemplateReference node that is resolved after we parse the
 
/// template arguments.
 
struct ForwardTemplateReference : Node {
 
  size_t Index;
 
  Node *Ref = nullptr;
 
 
 
  // If we're currently printing this node. It is possible (though invalid) for
 
  // a forward template reference to refer to itself via a substitution. This
 
  // creates a cyclic AST, which will stack overflow printing. To fix this, bail
 
  // out if more than one print* function is active.
 
  mutable bool Printing = false;
 
 
 
  ForwardTemplateReference(size_t Index_)
 
      : Node(KForwardTemplateReference, Cache::Unknown, Cache::Unknown,
 
             Cache::Unknown),
 
        Index(Index_) {}
 
 
 
  // We don't provide a matcher for these, because the value of the node is
 
  // not determined by its construction parameters, and it generally needs
 
  // special handling.
 
  template<typename Fn> void match(Fn F) const = delete;
 
 
 
  bool hasRHSComponentSlow(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return false;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    return Ref->hasRHSComponent(OB);
 
  }
 
  bool hasArraySlow(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return false;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    return Ref->hasArray(OB);
 
  }
 
  bool hasFunctionSlow(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return false;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    return Ref->hasFunction(OB);
 
  }
 
  const Node *getSyntaxNode(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return this;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    return Ref->getSyntaxNode(OB);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    Ref->printLeft(OB);
 
  }
 
  void printRight(OutputBuffer &OB) const override {
 
    if (Printing)
 
      return;
 
    ScopedOverride<bool> SavePrinting(Printing, true);
 
    Ref->printRight(OB);
 
  }
 
};
 
 
 
struct NameWithTemplateArgs : Node {
 
  // name<template_args>
 
  Node *Name;
 
  Node *TemplateArgs;
 
 
 
  NameWithTemplateArgs(Node *Name_, Node *TemplateArgs_)
 
      : Node(KNameWithTemplateArgs), Name(Name_), TemplateArgs(TemplateArgs_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Name, TemplateArgs); }
 
 
 
  StringView getBaseName() const override { return Name->getBaseName(); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Name->print(OB);
 
    TemplateArgs->print(OB);
 
  }
 
};
 
 
 
class GlobalQualifiedName final : public Node {
 
  Node *Child;
 
 
 
public:
 
  GlobalQualifiedName(Node* Child_)
 
      : Node(KGlobalQualifiedName), Child(Child_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Child); }
 
 
 
  StringView getBaseName() const override { return Child->getBaseName(); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "::";
 
    Child->print(OB);
 
  }
 
};
 
 
 
enum class SpecialSubKind {
 
  allocator,
 
  basic_string,
 
  string,
 
  istream,
 
  ostream,
 
  iostream,
 
};
 
 
 
class SpecialSubstitution;
 
class ExpandedSpecialSubstitution : public Node {
 
protected:
 
  SpecialSubKind SSK;
 
 
 
  ExpandedSpecialSubstitution(SpecialSubKind SSK_, Kind K_)
 
      : Node(K_), SSK(SSK_) {}
 
public:
 
  ExpandedSpecialSubstitution(SpecialSubKind SSK_)
 
      : ExpandedSpecialSubstitution(SSK_, KExpandedSpecialSubstitution) {}
 
  inline ExpandedSpecialSubstitution(SpecialSubstitution const *);
 
 
 
  template<typename Fn> void match(Fn F) const { F(SSK); }
 
 
 
protected:
 
  bool isInstantiation() const {
 
    return unsigned(SSK) >= unsigned(SpecialSubKind::string);
 
  }
 
 
 
  StringView getBaseName() const override {
 
    switch (SSK) {
 
    case SpecialSubKind::allocator:
 
      return StringView("allocator");
 
    case SpecialSubKind::basic_string:
 
      return StringView("basic_string");
 
    case SpecialSubKind::string:
 
      return StringView("basic_string");
 
    case SpecialSubKind::istream:
 
      return StringView("basic_istream");
 
    case SpecialSubKind::ostream:
 
      return StringView("basic_ostream");
 
    case SpecialSubKind::iostream:
 
      return StringView("basic_iostream");
 
    }
 
    DEMANGLE_UNREACHABLE;
 
  }
 
 
 
private:
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB << "std::" << getBaseName();
 
    if (isInstantiation()) {
 
      OB << "<char, std::char_traits<char>";
 
      if (SSK == SpecialSubKind::string)
 
        OB << ", std::allocator<char>";
 
      OB << ">";
 
    }
 
  }
 
};
 
 
 
class SpecialSubstitution final : public ExpandedSpecialSubstitution {
 
public:
 
  SpecialSubstitution(SpecialSubKind SSK_)
 
      : ExpandedSpecialSubstitution(SSK_, KSpecialSubstitution) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(SSK); }
 
 
 
  StringView getBaseName() const override {
 
    auto SV = ExpandedSpecialSubstitution::getBaseName ();
 
    if (isInstantiation()) {
 
      // The instantiations are typedefs that drop the "basic_" prefix.
 
      assert(SV.startsWith("basic_"));
 
      SV = SV.dropFront(sizeof("basic_") - 1);
 
    }
 
    return SV;
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB << "std::" << getBaseName();
 
  }
 
};
 
 
 
inline ExpandedSpecialSubstitution::ExpandedSpecialSubstitution(
 
    SpecialSubstitution const *SS)
 
    : ExpandedSpecialSubstitution(SS->SSK) {}
 
 
 
class CtorDtorName final : public Node {
 
  const Node *Basename;
 
  const bool IsDtor;
 
  const int Variant;
 
 
 
public:
 
  CtorDtorName(const Node *Basename_, bool IsDtor_, int Variant_)
 
      : Node(KCtorDtorName), Basename(Basename_), IsDtor(IsDtor_),
 
        Variant(Variant_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Basename, IsDtor, Variant); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (IsDtor)
 
      OB += "~";
 
    OB += Basename->getBaseName();
 
  }
 
};
 
 
 
class DtorName : public Node {
 
  const Node *Base;
 
 
 
public:
 
  DtorName(const Node *Base_) : Node(KDtorName), Base(Base_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Base); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "~";
 
    Base->printLeft(OB);
 
  }
 
};
 
 
 
class UnnamedTypeName : public Node {
 
  const StringView Count;
 
 
 
public:
 
  UnnamedTypeName(StringView Count_) : Node(KUnnamedTypeName), Count(Count_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Count); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "'unnamed";
 
    OB += Count;
 
    OB += "\'";
 
  }
 
};
 
 
 
class ClosureTypeName : public Node {
 
  NodeArray TemplateParams;
 
  NodeArray Params;
 
  StringView Count;
 
 
 
public:
 
  ClosureTypeName(NodeArray TemplateParams_, NodeArray Params_,
 
                  StringView Count_)
 
      : Node(KClosureTypeName), TemplateParams(TemplateParams_),
 
        Params(Params_), Count(Count_) {}
 
 
 
  template<typename Fn> void match(Fn F) const {
 
    F(TemplateParams, Params, Count);
 
  }
 
 
 
  void printDeclarator(OutputBuffer &OB) const {
 
    if (!TemplateParams.empty()) {
 
      ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
 
      OB += "<";
 
      TemplateParams.printWithComma(OB);
 
      OB += ">";
 
    }
 
    OB.printOpen();
 
    Params.printWithComma(OB);
 
    OB.printClose();
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "\'lambda";
 
    OB += Count;
 
    OB += "\'";
 
    printDeclarator(OB);
 
  }
 
};
 
 
 
class StructuredBindingName : public Node {
 
  NodeArray Bindings;
 
public:
 
  StructuredBindingName(NodeArray Bindings_)
 
      : Node(KStructuredBindingName), Bindings(Bindings_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Bindings); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB.printOpen('[');
 
    Bindings.printWithComma(OB);
 
    OB.printClose(']');
 
  }
 
};
 
 
 
// -- Expression Nodes --
 
 
 
class BinaryExpr : public Node {
 
  const Node *LHS;
 
  const StringView InfixOperator;
 
  const Node *RHS;
 
 
 
public:
 
  BinaryExpr(const Node *LHS_, StringView InfixOperator_, const Node *RHS_,
 
             Prec Prec_)
 
      : Node(KBinaryExpr, Prec_), LHS(LHS_), InfixOperator(InfixOperator_),
 
        RHS(RHS_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(LHS, InfixOperator, RHS, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    bool ParenAll = OB.isGtInsideTemplateArgs() &&
 
                    (InfixOperator == ">" || InfixOperator == ">>");
 
    if (ParenAll)
 
      OB.printOpen();
 
    // Assignment is right associative, with special LHS precedence.
 
    bool IsAssign = getPrecedence() == Prec::Assign;
 
    LHS->printAsOperand(OB, IsAssign ? Prec::OrIf : getPrecedence(), !IsAssign);
 
    // No space before comma operator
 
    if (!(InfixOperator == ","))
 
      OB += " ";
 
    OB += InfixOperator;
 
    OB += " ";
 
    RHS->printAsOperand(OB, getPrecedence(), IsAssign);
 
    if (ParenAll)
 
      OB.printClose();
 
  }
 
};
 
 
 
class ArraySubscriptExpr : public Node {
 
  const Node *Op1;
 
  const Node *Op2;
 
 
 
public:
 
  ArraySubscriptExpr(const Node *Op1_, const Node *Op2_, Prec Prec_)
 
      : Node(KArraySubscriptExpr, Prec_), Op1(Op1_), Op2(Op2_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Op1, Op2, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Op1->printAsOperand(OB, getPrecedence());
 
    OB.printOpen('[');
 
    Op2->printAsOperand(OB);
 
    OB.printClose(']');
 
  }
 
};
 
 
 
class PostfixExpr : public Node {
 
  const Node *Child;
 
  const StringView Operator;
 
 
 
public:
 
  PostfixExpr(const Node *Child_, StringView Operator_, Prec Prec_)
 
      : Node(KPostfixExpr, Prec_), Child(Child_), Operator(Operator_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Child, Operator, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Child->printAsOperand(OB, getPrecedence(), true);
 
    OB += Operator;
 
  }
 
};
 
 
 
class ConditionalExpr : public Node {
 
  const Node *Cond;
 
  const Node *Then;
 
  const Node *Else;
 
 
 
public:
 
  ConditionalExpr(const Node *Cond_, const Node *Then_, const Node *Else_,
 
                  Prec Prec_)
 
      : Node(KConditionalExpr, Prec_), Cond(Cond_), Then(Then_), Else(Else_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Cond, Then, Else, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Cond->printAsOperand(OB, getPrecedence());
 
    OB += " ? ";
 
    Then->printAsOperand(OB);
 
    OB += " : ";
 
    Else->printAsOperand(OB, Prec::Assign, true);
 
  }
 
};
 
 
 
class MemberExpr : public Node {
 
  const Node *LHS;
 
  const StringView Kind;
 
  const Node *RHS;
 
 
 
public:
 
  MemberExpr(const Node *LHS_, StringView Kind_, const Node *RHS_, Prec Prec_)
 
      : Node(KMemberExpr, Prec_), LHS(LHS_), Kind(Kind_), RHS(RHS_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(LHS, Kind, RHS, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    LHS->printAsOperand(OB, getPrecedence(), true);
 
    OB += Kind;
 
    RHS->printAsOperand(OB, getPrecedence(), false);
 
  }
 
};
 
 
 
class SubobjectExpr : public Node {
 
  const Node *Type;
 
  const Node *SubExpr;
 
  StringView Offset;
 
  NodeArray UnionSelectors;
 
  bool OnePastTheEnd;
 
 
 
public:
 
  SubobjectExpr(const Node *Type_, const Node *SubExpr_, StringView Offset_,
 
                NodeArray UnionSelectors_, bool OnePastTheEnd_)
 
      : Node(KSubobjectExpr), Type(Type_), SubExpr(SubExpr_), Offset(Offset_),
 
        UnionSelectors(UnionSelectors_), OnePastTheEnd(OnePastTheEnd_) {}
 
 
 
  template<typename Fn> void match(Fn F) const {
 
    F(Type, SubExpr, Offset, UnionSelectors, OnePastTheEnd);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    SubExpr->print(OB);
 
    OB += ".<";
 
    Type->print(OB);
 
    OB += " at offset ";
 
    if (Offset.empty()) {
 
      OB += "0";
 
    } else if (Offset[0] == 'n') {
 
      OB += "-";
 
      OB += Offset.dropFront();
 
    } else {
 
      OB += Offset;
 
    }
 
    OB += ">";
 
  }
 
};
 
 
 
class EnclosingExpr : public Node {
 
  const StringView Prefix;
 
  const Node *Infix;
 
  const StringView Postfix;
 
 
 
public:
 
  EnclosingExpr(StringView Prefix_, const Node *Infix_,
 
                Prec Prec_ = Prec::Primary)
 
      : Node(KEnclosingExpr, Prec_), Prefix(Prefix_), Infix(Infix_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Prefix, Infix, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += Prefix;
 
    OB.printOpen();
 
    Infix->print(OB);
 
    OB.printClose();
 
    OB += Postfix;
 
  }
 
};
 
 
 
class CastExpr : public Node {
 
  // cast_kind<to>(from)
 
  const StringView CastKind;
 
  const Node *To;
 
  const Node *From;
 
 
 
public:
 
  CastExpr(StringView CastKind_, const Node *To_, const Node *From_, Prec Prec_)
 
      : Node(KCastExpr, Prec_), CastKind(CastKind_), To(To_), From(From_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(CastKind, To, From, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += CastKind;
 
    {
 
      ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
 
      OB += "<";
 
      To->printLeft(OB);
 
      OB += ">";
 
    }
 
    OB.printOpen();
 
    From->printAsOperand(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class SizeofParamPackExpr : public Node {
 
  const Node *Pack;
 
 
 
public:
 
  SizeofParamPackExpr(const Node *Pack_)
 
      : Node(KSizeofParamPackExpr), Pack(Pack_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Pack); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "sizeof...";
 
    OB.printOpen();
 
    ParameterPackExpansion PPE(Pack);
 
    PPE.printLeft(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class CallExpr : public Node {
 
  const Node *Callee;
 
  NodeArray Args;
 
 
 
public:
 
  CallExpr(const Node *Callee_, NodeArray Args_, Prec Prec_)
 
      : Node(KCallExpr, Prec_), Callee(Callee_), Args(Args_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Callee, Args, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    Callee->print(OB);
 
    OB.printOpen();
 
    Args.printWithComma(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class NewExpr : public Node {
 
  // new (expr_list) type(init_list)
 
  NodeArray ExprList;
 
  Node *Type;
 
  NodeArray InitList;
 
  bool IsGlobal; // ::operator new ?
 
  bool IsArray;  // new[] ?
 
public:
 
  NewExpr(NodeArray ExprList_, Node *Type_, NodeArray InitList_, bool IsGlobal_,
 
          bool IsArray_, Prec Prec_)
 
      : Node(KNewExpr, Prec_), ExprList(ExprList_), Type(Type_),
 
        InitList(InitList_), IsGlobal(IsGlobal_), IsArray(IsArray_) {}
 
 
 
  template<typename Fn> void match(Fn F) const {
 
    F(ExprList, Type, InitList, IsGlobal, IsArray, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (IsGlobal)
 
      OB += "::";
 
    OB += "new";
 
    if (IsArray)
 
      OB += "[]";
 
    if (!ExprList.empty()) {
 
      OB.printOpen();
 
      ExprList.printWithComma(OB);
 
      OB.printClose();
 
    }
 
    OB += " ";
 
    Type->print(OB);
 
    if (!InitList.empty()) {
 
      OB.printOpen();
 
      InitList.printWithComma(OB);
 
      OB.printClose();
 
    }
 
  }
 
};
 
 
 
class DeleteExpr : public Node {
 
  Node *Op;
 
  bool IsGlobal;
 
  bool IsArray;
 
 
 
public:
 
  DeleteExpr(Node *Op_, bool IsGlobal_, bool IsArray_, Prec Prec_)
 
      : Node(KDeleteExpr, Prec_), Op(Op_), IsGlobal(IsGlobal_),
 
        IsArray(IsArray_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Op, IsGlobal, IsArray, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (IsGlobal)
 
      OB += "::";
 
    OB += "delete";
 
    if (IsArray)
 
      OB += "[]";
 
    OB += ' ';
 
    Op->print(OB);
 
  }
 
};
 
 
 
class PrefixExpr : public Node {
 
  StringView Prefix;
 
  Node *Child;
 
 
 
public:
 
  PrefixExpr(StringView Prefix_, Node *Child_, Prec Prec_)
 
      : Node(KPrefixExpr, Prec_), Prefix(Prefix_), Child(Child_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Prefix, Child, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += Prefix;
 
    Child->printAsOperand(OB, getPrecedence());
 
  }
 
};
 
 
 
class FunctionParam : public Node {
 
  StringView Number;
 
 
 
public:
 
  FunctionParam(StringView Number_) : Node(KFunctionParam), Number(Number_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Number); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "fp";
 
    OB += Number;
 
  }
 
};
 
 
 
class ConversionExpr : public Node {
 
  const Node *Type;
 
  NodeArray Expressions;
 
 
 
public:
 
  ConversionExpr(const Node *Type_, NodeArray Expressions_, Prec Prec_)
 
      : Node(KConversionExpr, Prec_), Type(Type_), Expressions(Expressions_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Type, Expressions, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB.printOpen();
 
    Type->print(OB);
 
    OB.printClose();
 
    OB.printOpen();
 
    Expressions.printWithComma(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class PointerToMemberConversionExpr : public Node {
 
  const Node *Type;
 
  const Node *SubExpr;
 
  StringView Offset;
 
 
 
public:
 
  PointerToMemberConversionExpr(const Node *Type_, const Node *SubExpr_,
 
                                StringView Offset_, Prec Prec_)
 
      : Node(KPointerToMemberConversionExpr, Prec_), Type(Type_),
 
        SubExpr(SubExpr_), Offset(Offset_) {}
 
 
 
  template <typename Fn> void match(Fn F) const {
 
    F(Type, SubExpr, Offset, getPrecedence());
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB.printOpen();
 
    Type->print(OB);
 
    OB.printClose();
 
    OB.printOpen();
 
    SubExpr->print(OB);
 
    OB.printClose();
 
  }
 
};
 
 
 
class InitListExpr : public Node {
 
  const Node *Ty;
 
  NodeArray Inits;
 
public:
 
  InitListExpr(const Node *Ty_, NodeArray Inits_)
 
      : Node(KInitListExpr), Ty(Ty_), Inits(Inits_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Ty, Inits); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (Ty)
 
      Ty->print(OB);
 
    OB += '{';
 
    Inits.printWithComma(OB);
 
    OB += '}';
 
  }
 
};
 
 
 
class BracedExpr : public Node {
 
  const Node *Elem;
 
  const Node *Init;
 
  bool IsArray;
 
public:
 
  BracedExpr(const Node *Elem_, const Node *Init_, bool IsArray_)
 
      : Node(KBracedExpr), Elem(Elem_), Init(Init_), IsArray(IsArray_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Elem, Init, IsArray); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (IsArray) {
 
      OB += '[';
 
      Elem->print(OB);
 
      OB += ']';
 
    } else {
 
      OB += '.';
 
      Elem->print(OB);
 
    }
 
    if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
 
      OB += " = ";
 
    Init->print(OB);
 
  }
 
};
 
 
 
class BracedRangeExpr : public Node {
 
  const Node *First;
 
  const Node *Last;
 
  const Node *Init;
 
public:
 
  BracedRangeExpr(const Node *First_, const Node *Last_, const Node *Init_)
 
      : Node(KBracedRangeExpr), First(First_), Last(Last_), Init(Init_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(First, Last, Init); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += '[';
 
    First->print(OB);
 
    OB += " ... ";
 
    Last->print(OB);
 
    OB += ']';
 
    if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
 
      OB += " = ";
 
    Init->print(OB);
 
  }
 
};
 
 
 
class FoldExpr : public Node {
 
  const Node *Pack, *Init;
 
  StringView OperatorName;
 
  bool IsLeftFold;
 
 
 
public:
 
  FoldExpr(bool IsLeftFold_, StringView OperatorName_, const Node *Pack_,
 
           const Node *Init_)
 
      : Node(KFoldExpr), Pack(Pack_), Init(Init_), OperatorName(OperatorName_),
 
        IsLeftFold(IsLeftFold_) {}
 
 
 
  template<typename Fn> void match(Fn F) const {
 
    F(IsLeftFold, OperatorName, Pack, Init);
 
  }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    auto PrintPack = [&] {
 
      OB.printOpen();
 
      ParameterPackExpansion(Pack).print(OB);
 
      OB.printClose();
 
    };
 
 
 
    OB.printOpen();
 
    // Either '[init op ]... op pack' or 'pack op ...[ op init]'
 
    // Refactored to '[(init|pack) op ]...[ op (pack|init)]'
 
    // Fold expr operands are cast-expressions
 
    if (!IsLeftFold || Init != nullptr) {
 
      // '(init|pack) op '
 
      if (IsLeftFold)
 
        Init->printAsOperand(OB, Prec::Cast, true);
 
      else
 
        PrintPack();
 
      OB << " " << OperatorName << " ";
 
    }
 
    OB << "...";
 
    if (IsLeftFold || Init != nullptr) {
 
      // ' op (init|pack)'
 
      OB << " " << OperatorName << " ";
 
      if (IsLeftFold)
 
        PrintPack();
 
      else
 
        Init->printAsOperand(OB, Prec::Cast, true);
 
    }
 
    OB.printClose();
 
  }
 
};
 
 
 
class ThrowExpr : public Node {
 
  const Node *Op;
 
 
 
public:
 
  ThrowExpr(const Node *Op_) : Node(KThrowExpr), Op(Op_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Op); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "throw ";
 
    Op->print(OB);
 
  }
 
};
 
 
 
class BoolExpr : public Node {
 
  bool Value;
 
 
 
public:
 
  BoolExpr(bool Value_) : Node(KBoolExpr), Value(Value_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Value); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += Value ? StringView("true") : StringView("false");
 
  }
 
};
 
 
 
class StringLiteral : public Node {
 
  const Node *Type;
 
 
 
public:
 
  StringLiteral(const Node *Type_) : Node(KStringLiteral), Type(Type_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Type); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "\"<";
 
    Type->print(OB);
 
    OB += ">\"";
 
  }
 
};
 
 
 
class LambdaExpr : public Node {
 
  const Node *Type;
 
 
 
public:
 
  LambdaExpr(const Node *Type_) : Node(KLambdaExpr), Type(Type_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Type); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB += "[]";
 
    if (Type->getKind() == KClosureTypeName)
 
      static_cast<const ClosureTypeName *>(Type)->printDeclarator(OB);
 
    OB += "{...}";
 
  }
 
};
 
 
 
class EnumLiteral : public Node {
 
  // ty(integer)
 
  const Node *Ty;
 
  StringView Integer;
 
 
 
public:
 
  EnumLiteral(const Node *Ty_, StringView Integer_)
 
      : Node(KEnumLiteral), Ty(Ty_), Integer(Integer_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Ty, Integer); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    OB.printOpen();
 
    Ty->print(OB);
 
    OB.printClose();
 
 
 
    if (Integer[0] == 'n')
 
      OB << "-" << Integer.dropFront(1);
 
    else
 
      OB << Integer;
 
  }
 
};
 
 
 
class IntegerLiteral : public Node {
 
  StringView Type;
 
  StringView Value;
 
 
 
public:
 
  IntegerLiteral(StringView Type_, StringView Value_)
 
      : Node(KIntegerLiteral), Type(Type_), Value(Value_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Type, Value); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    if (Type.size() > 3) {
 
      OB.printOpen();
 
      OB += Type;
 
      OB.printClose();
 
    }
 
 
 
    if (Value[0] == 'n') {
 
      OB += '-';
 
      OB += Value.dropFront(1);
 
    } else
 
      OB += Value;
 
 
 
    if (Type.size() <= 3)
 
      OB += Type;
 
  }
 
};
 
 
 
template <class Float> struct FloatData;
 
 
 
namespace float_literal_impl {
 
constexpr Node::Kind getFloatLiteralKind(float *) {
 
  return Node::KFloatLiteral;
 
}
 
constexpr Node::Kind getFloatLiteralKind(double *) {
 
  return Node::KDoubleLiteral;
 
}
 
constexpr Node::Kind getFloatLiteralKind(long double *) {
 
  return Node::KLongDoubleLiteral;
 
}
 
}
 
 
 
template <class Float> class FloatLiteralImpl : public Node {
 
  const StringView Contents;
 
 
 
  static constexpr Kind KindForClass =
 
      float_literal_impl::getFloatLiteralKind((Float *)nullptr);
 
 
 
public:
 
  FloatLiteralImpl(StringView Contents_)
 
      : Node(KindForClass), Contents(Contents_) {}
 
 
 
  template<typename Fn> void match(Fn F) const { F(Contents); }
 
 
 
  void printLeft(OutputBuffer &OB) const override {
 
    const char *first = Contents.begin();
 
    const char *last = Contents.end() + 1;
 
 
 
    const size_t N = FloatData<Float>::mangled_size;
 
    if (static_cast<std::size_t>(last - first) > N) {
 
      last = first + N;
 
      union {
 
        Float value;
 
        char buf[sizeof(Float)];
 
      };
 
      const char *t = first;
 
      char *e = buf;
 
      for (; t != last; ++t, ++e) {
 
        unsigned d1 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
 
                                  : static_cast<unsigned>(*t - 'a' + 10);
 
        ++t;
 
        unsigned d0 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
 
                                  : static_cast<unsigned>(*t - 'a' + 10);
 
        *e = static_cast<char>((d1 << 4) + d0);
 
      }
 
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 
      std::reverse(buf, e);
 
#endif
 
      char num[FloatData<Float>::max_demangled_size] = {0};
 
      int n = snprintf(num, sizeof(num), FloatData<Float>::spec, value);
 
      OB += StringView(num, num + n);
 
    }
 
  }
 
};
 
 
 
using FloatLiteral = FloatLiteralImpl<float>;
 
using DoubleLiteral = FloatLiteralImpl<double>;
 
using LongDoubleLiteral = FloatLiteralImpl<long double>;
 
 
 
/// Visit the node. Calls \c F(P), where \c P is the node cast to the
 
/// appropriate derived class.
 
template<typename Fn>
 
void Node::visit(Fn F) const {
 
  switch (K) {
 
#define NODE(X)                                                                \
 
  case K##X:                                                                   \
 
    return F(static_cast<const X *>(this));
 
#include "ItaniumNodes.def"
 
  }
 
  assert(0 && "unknown mangling node kind");
 
}
 
 
 
/// Determine the kind of a node from its type.
 
template<typename NodeT> struct NodeKind;
 
#define NODE(X)                                                                \
 
  template <> struct NodeKind<X> {                                             \
 
    static constexpr Node::Kind Kind = Node::K##X;                             \
 
    static constexpr const char *name() { return #X; }                         \
 
  };
 
#include "ItaniumNodes.def"
 
 
 
template <typename Derived, typename Alloc> struct AbstractManglingParser {
 
  const char *First;
 
  const char *Last;
 
 
 
  // Name stack, this is used by the parser to hold temporary names that were
 
  // parsed. The parser collapses multiple names into new nodes to construct
 
  // the AST. Once the parser is finished, names.size() == 1.
 
  PODSmallVector<Node *, 32> Names;
 
 
 
  // Substitution table. Itanium supports name substitutions as a means of
 
  // compression. The string "S42_" refers to the 44nd entry (base-36) in this
 
  // table.
 
  PODSmallVector<Node *, 32> Subs;
 
 
 
  using TemplateParamList = PODSmallVector<Node *, 8>;
 
 
 
  class ScopedTemplateParamList {
 
    AbstractManglingParser *Parser;
 
    size_t OldNumTemplateParamLists;
 
    TemplateParamList Params;
 
 
 
  public:
 
    ScopedTemplateParamList(AbstractManglingParser *TheParser)
 
        : Parser(TheParser),
 
          OldNumTemplateParamLists(TheParser->TemplateParams.size()) {
 
      Parser->TemplateParams.push_back(&Params);
 
    }
 
    ~ScopedTemplateParamList() {
 
      assert(Parser->TemplateParams.size() >= OldNumTemplateParamLists);
 
      Parser->TemplateParams.dropBack(OldNumTemplateParamLists);
 
    }
 
  };
 
 
 
  // Template parameter table. Like the above, but referenced like "T42_".
 
  // This has a smaller size compared to Subs and Names because it can be
 
  // stored on the stack.
 
  TemplateParamList OuterTemplateParams;
 
 
 
  // Lists of template parameters indexed by template parameter depth,
 
  // referenced like "TL2_4_". If nonempty, element 0 is always
 
  // OuterTemplateParams; inner elements are always template parameter lists of
 
  // lambda expressions. For a generic lambda with no explicit template
 
  // parameter list, the corresponding parameter list pointer will be null.
 
  PODSmallVector<TemplateParamList *, 4> TemplateParams;
 
 
 
  // Set of unresolved forward <template-param> references. These can occur in a
 
  // conversion operator's type, and are resolved in the enclosing <encoding>.
 
  PODSmallVector<ForwardTemplateReference *, 4> ForwardTemplateRefs;
 
 
 
  bool TryToParseTemplateArgs = true;
 
  bool PermitForwardTemplateReferences = false;
 
  size_t ParsingLambdaParamsAtLevel = (size_t)-1;
 
 
 
  unsigned NumSyntheticTemplateParameters[3] = {};
 
 
 
  Alloc ASTAllocator;
 
 
 
  AbstractManglingParser(const char *First_, const char *Last_)
 
      : First(First_), Last(Last_) {}
 
 
 
  Derived &getDerived() { return static_cast<Derived &>(*this); }
 
 
 
  void reset(const char *First_, const char *Last_) {
 
    First = First_;
 
    Last = Last_;
 
    Names.clear();
 
    Subs.clear();
 
    TemplateParams.clear();
 
    ParsingLambdaParamsAtLevel = (size_t)-1;
 
    TryToParseTemplateArgs = true;
 
    PermitForwardTemplateReferences = false;
 
    for (int I = 0; I != 3; ++I)
 
      NumSyntheticTemplateParameters[I] = 0;
 
    ASTAllocator.reset();
 
  }
 
 
 
  template <class T, class... Args> Node *make(Args &&... args) {
 
    return ASTAllocator.template makeNode<T>(std::forward<Args>(args)...);
 
  }
 
 
 
  template <class It> NodeArray makeNodeArray(It begin, It end) {
 
    size_t sz = static_cast<size_t>(end - begin);
 
    void *mem = ASTAllocator.allocateNodeArray(sz);
 
    Node **data = new (mem) Node *[sz];
 
    std::copy(begin, end, data);
 
    return NodeArray(data, sz);
 
  }
 
 
 
  NodeArray popTrailingNodeArray(size_t FromPosition) {
 
    assert(FromPosition <= Names.size());
 
    NodeArray res =
 
        makeNodeArray(Names.begin() + (long)FromPosition, Names.end());
 
    Names.dropBack(FromPosition);
 
    return res;
 
  }
 
 
 
  bool consumeIf(StringView S) {
 
    if (StringView(First, Last).startsWith(S)) {
 
      First += S.size();
 
      return true;
 
    }
 
    return false;
 
  }
 
 
 
  bool consumeIf(char C) {
 
    if (First != Last && *First == C) {
 
      ++First;
 
      return true;
 
    }
 
    return false;
 
  }
 
 
 
  char consume() { return First != Last ? *First++ : '\0'; }
 
 
 
  char look(unsigned Lookahead = 0) const {
 
    if (static_cast<size_t>(Last - First) <= Lookahead)
 
      return '\0';
 
    return First[Lookahead];
 
  }
 
 
 
  size_t numLeft() const { return static_cast<size_t>(Last - First); }
 
 
 
  StringView parseNumber(bool AllowNegative = false);
 
  Qualifiers parseCVQualifiers();
 
  bool parsePositiveInteger(size_t *Out);
 
  StringView parseBareSourceName();
 
 
 
  bool parseSeqId(size_t *Out);
 
  Node *parseSubstitution();
 
  Node *parseTemplateParam();
 
  Node *parseTemplateParamDecl();
 
  Node *parseTemplateArgs(bool TagTemplates = false);
 
  Node *parseTemplateArg();
 
 
 
  /// Parse the <expr> production.
 
  Node *parseExpr();
 
  Node *parsePrefixExpr(StringView Kind, Node::Prec Prec);
 
  Node *parseBinaryExpr(StringView Kind, Node::Prec Prec);
 
  Node *parseIntegerLiteral(StringView Lit);
 
  Node *parseExprPrimary();
 
  template <class Float> Node *parseFloatingLiteral();
 
  Node *parseFunctionParam();
 
  Node *parseConversionExpr();
 
  Node *parseBracedExpr();
 
  Node *parseFoldExpr();
 
  Node *parsePointerToMemberConversionExpr(Node::Prec Prec);
 
  Node *parseSubobjectExpr();
 
 
 
  /// Parse the <type> production.
 
  Node *parseType();
 
  Node *parseFunctionType();
 
  Node *parseVectorType();
 
  Node *parseDecltype();
 
  Node *parseArrayType();
 
  Node *parsePointerToMemberType();
 
  Node *parseClassEnumType();
 
  Node *parseQualifiedType();
 
 
 
  Node *parseEncoding();
 
  bool parseCallOffset();
 
  Node *parseSpecialName();
 
 
 
  /// Holds some extra information about a <name> that is being parsed. This
 
  /// information is only pertinent if the <name> refers to an <encoding>.
 
  struct NameState {
 
    bool CtorDtorConversion = false;
 
    bool EndsWithTemplateArgs = false;
 
    Qualifiers CVQualifiers = QualNone;
 
    FunctionRefQual ReferenceQualifier = FrefQualNone;
 
    size_t ForwardTemplateRefsBegin;
 
 
 
    NameState(AbstractManglingParser *Enclosing)
 
        : ForwardTemplateRefsBegin(Enclosing->ForwardTemplateRefs.size()) {}
 
  };
 
 
 
  bool resolveForwardTemplateRefs(NameState &State) {
 
    size_t I = State.ForwardTemplateRefsBegin;
 
    size_t E = ForwardTemplateRefs.size();
 
    for (; I < E; ++I) {
 
      size_t Idx = ForwardTemplateRefs[I]->Index;
 
      if (TemplateParams.empty() || !TemplateParams[0] ||
 
          Idx >= TemplateParams[0]->size())
 
        return true;
 
      ForwardTemplateRefs[I]->Ref = (*TemplateParams[0])[Idx];
 
    }
 
    ForwardTemplateRefs.dropBack(State.ForwardTemplateRefsBegin);
 
    return false;
 
  }
 
 
 
  /// Parse the <name> production>
 
  Node *parseName(NameState *State = nullptr);
 
  Node *parseLocalName(NameState *State);
 
  Node *parseOperatorName(NameState *State);
 
  bool parseModuleNameOpt(ModuleName *&Module);
 
  Node *parseUnqualifiedName(NameState *State, Node *Scope, ModuleName *Module);
 
  Node *parseUnnamedTypeName(NameState *State);
 
  Node *parseSourceName(NameState *State);
 
  Node *parseUnscopedName(NameState *State, bool *isSubstName);
 
  Node *parseNestedName(NameState *State);
 
  Node *parseCtorDtorName(Node *&SoFar, NameState *State);
 
 
 
  Node *parseAbiTags(Node *N);
 
 
 
  struct OperatorInfo {
 
    enum OIKind : unsigned char {
 
      Prefix,      // Prefix unary: @ expr
 
      Postfix,     // Postfix unary: expr @
 
      Binary,      // Binary: lhs @ rhs
 
      Array,       // Array index:  lhs [ rhs ]
 
      Member,      // Member access: lhs @ rhs
 
      New,         // New
 
      Del,         // Delete
 
      Call,        // Function call: expr (expr*)
 
      CCast,       // C cast: (type)expr
 
      Conditional, // Conditional: expr ? expr : expr
 
      NameOnly,    // Overload only, not allowed in expression.
 
      // Below do not have operator names
 
      NamedCast, // Named cast, @<type>(expr)
 
      OfIdOp,    // alignof, sizeof, typeid
 
 
 
      Unnameable = NamedCast,
 
    };
 
    char Enc[2];      // Encoding
 
    OIKind Kind;      // Kind of operator
 
    bool Flag : 1;    // Entry-specific flag
 
    Node::Prec Prec : 7; // Precedence
 
    const char *Name; // Spelling
 
 
 
  public:
 
    constexpr OperatorInfo(const char (&E)[3], OIKind K, bool F, Node::Prec P,
 
                           const char *N)
 
        : Enc{E[0], E[1]}, Kind{K}, Flag{F}, Prec{P}, Name{N} {}
 
 
 
  public:
 
    bool operator<(const OperatorInfo &Other) const {
 
      return *this < Other.Enc;
 
    }
 
    bool operator<(const char *Peek) const {
 
      return Enc[0] < Peek[0] || (Enc[0] == Peek[0] && Enc[1] < Peek[1]);
 
    }
 
    bool operator==(const char *Peek) const {
 
      return Enc[0] == Peek[0] && Enc[1] == Peek[1];
 
    }
 
    bool operator!=(const char *Peek) const { return !this->operator==(Peek); }
 
 
 
  public:
 
    StringView getSymbol() const {
 
      StringView Res = Name;
 
      if (Kind < Unnameable) {
 
        assert(Res.startsWith("operator") &&
 
               "operator name does not start with 'operator'");
 
        Res = Res.dropFront(sizeof("operator") - 1);
 
        Res.consumeFront(' ');
 
      }
 
      return Res;
 
    }
 
    StringView getName() const { return Name; }
 
    OIKind getKind() const { return Kind; }
 
    bool getFlag() const { return Flag; }
 
    Node::Prec getPrecedence() const { return Prec; }
 
  };
 
  static const OperatorInfo Ops[];
 
  static const size_t NumOps;
 
  const OperatorInfo *parseOperatorEncoding();
 
 
 
  /// Parse the <unresolved-name> production.
 
  Node *parseUnresolvedName(bool Global);
 
  Node *parseSimpleId();
 
  Node *parseBaseUnresolvedName();
 
  Node *parseUnresolvedType();
 
  Node *parseDestructorName();
 
 
 
  /// Top-level entry point into the parser.
 
  Node *parse();
 
};
 
 
 
const char* parse_discriminator(const char* first, const char* last);
 
 
 
// <name> ::= <nested-name> // N
 
//        ::= <local-name> # See Scope Encoding below  // Z
 
//        ::= <unscoped-template-name> <template-args>
 
//        ::= <unscoped-name>
 
//
 
// <unscoped-template-name> ::= <unscoped-name>
 
//                          ::= <substitution>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseName(NameState *State) {
 
  if (look() == 'N')
 
    return getDerived().parseNestedName(State);
 
  if (look() == 'Z')
 
    return getDerived().parseLocalName(State);
 
 
 
  Node *Result = nullptr;
 
  bool IsSubst = false;
 
 
 
  Result = getDerived().parseUnscopedName(State, &IsSubst);
 
  if (!Result)
 
    return nullptr;
 
 
 
  if (look() == 'I') {
 
    //        ::= <unscoped-template-name> <template-args>
 
    if (!IsSubst)
 
      // An unscoped-template-name is substitutable.
 
      Subs.push_back(Result);
 
    Node *TA = getDerived().parseTemplateArgs(State != nullptr);
 
    if (TA == nullptr)
 
      return nullptr;
 
    if (State)
 
      State->EndsWithTemplateArgs = true;
 
    Result = make<NameWithTemplateArgs>(Result, TA);
 
  } else if (IsSubst) {
 
    // The substitution case must be followed by <template-args>.
 
    return nullptr;
 
  }
 
 
 
  return Result;
 
}
 
 
 
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
 
//              := Z <function encoding> E s [<discriminator>]
 
//              := Z <function encoding> Ed [ <parameter number> ] _ <entity name>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseLocalName(NameState *State) {
 
  if (!consumeIf('Z'))
 
    return nullptr;
 
  Node *Encoding = getDerived().parseEncoding();
 
  if (Encoding == nullptr || !consumeIf('E'))
 
    return nullptr;
 
 
 
  if (consumeIf('s')) {
 
    First = parse_discriminator(First, Last);
 
    auto *StringLitName = make<NameType>("string literal");
 
    if (!StringLitName)
 
      return nullptr;
 
    return make<LocalName>(Encoding, StringLitName);
 
  }
 
 
 
  if (consumeIf('d')) {
 
    parseNumber(true);
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    Node *N = getDerived().parseName(State);
 
    if (N == nullptr)
 
      return nullptr;
 
    return make<LocalName>(Encoding, N);
 
  }
 
 
 
  Node *Entity = getDerived().parseName(State);
 
  if (Entity == nullptr)
 
    return nullptr;
 
  First = parse_discriminator(First, Last);
 
  return make<LocalName>(Encoding, Entity);
 
}
 
 
 
// <unscoped-name> ::= <unqualified-name>
 
//                 ::= St <unqualified-name>   # ::std::
 
// [*] extension
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parseUnscopedName(NameState *State,
 
                                                          bool *IsSubst) {
 
 
 
  Node *Std = nullptr;
 
  if (consumeIf("St")) {
 
    Std = make<NameType>("std");
 
    if (Std == nullptr)
 
      return nullptr;
 
  }
 
 
 
  Node *Res = nullptr;
 
  ModuleName *Module = nullptr;
 
  if (look() == 'S') {
 
    Node *S = getDerived().parseSubstitution();
 
    if (!S)
 
      return nullptr;
 
    if (S->getKind() == Node::KModuleName)
 
      Module = static_cast<ModuleName *>(S);
 
    else if (IsSubst && Std == nullptr) {
 
      Res = S;
 
      *IsSubst = true;
 
    } else {
 
      return nullptr;
 
    }
 
  }
 
 
 
  if (Res == nullptr || Std != nullptr) {
 
    Res = getDerived().parseUnqualifiedName(State, Std, Module);
 
  }
 
 
 
  return Res;
 
}
 
 
 
// <unqualified-name> ::= [<module-name>] L? <operator-name> [<abi-tags>]
 
//                    ::= [<module-name>] <ctor-dtor-name> [<abi-tags>]
 
//                    ::= [<module-name>] L? <source-name> [<abi-tags>]
 
//                    ::= [<module-name>] L? <unnamed-type-name> [<abi-tags>]
 
//                      # structured binding declaration
 
//                    ::= [<module-name>] L? DC <source-name>+ E
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseUnqualifiedName(
 
    NameState *State, Node *Scope, ModuleName *Module) {
 
  if (getDerived().parseModuleNameOpt(Module))
 
    return nullptr;
 
 
 
  consumeIf('L');
 
 
 
  Node *Result;
 
  if (look() >= '1' && look() <= '9') {
 
    Result = getDerived().parseSourceName(State);
 
  } else if (look() == 'U') {
 
    Result = getDerived().parseUnnamedTypeName(State);
 
  } else if (consumeIf("DC")) {
 
    // Structured binding
 
    size_t BindingsBegin = Names.size();
 
    do {
 
      Node *Binding = getDerived().parseSourceName(State);
 
      if (Binding == nullptr)
 
        return nullptr;
 
      Names.push_back(Binding);
 
    } while (!consumeIf('E'));
 
    Result = make<StructuredBindingName>(popTrailingNodeArray(BindingsBegin));
 
  } else if (look() == 'C' || look() == 'D') {
 
    // A <ctor-dtor-name>.
 
    if (Scope == nullptr || Module != nullptr)
 
      return nullptr;
 
    Result = getDerived().parseCtorDtorName(Scope, State);
 
  } else {
 
    Result = getDerived().parseOperatorName(State);
 
  }
 
 
 
  if (Result != nullptr && Module != nullptr)
 
    Result = make<ModuleEntity>(Module, Result);
 
  if (Result != nullptr)
 
    Result = getDerived().parseAbiTags(Result);
 
  if (Result != nullptr && Scope != nullptr)
 
    Result = make<NestedName>(Scope, Result);
 
 
 
  return Result;
 
}
 
 
 
// <module-name> ::= <module-subname>
 
//               ::= <module-name> <module-subname>
 
//               ::= <substitution>  # passed in by caller
 
// <module-subname> ::= W <source-name>
 
//                  ::= W P <source-name>
 
template <typename Derived, typename Alloc>
 
bool AbstractManglingParser<Derived, Alloc>::parseModuleNameOpt(
 
    ModuleName *&Module) {
 
  while (consumeIf('W')) {
 
    bool IsPartition = consumeIf('P');
 
    Node *Sub = getDerived().parseSourceName(nullptr);
 
    if (!Sub)
 
      return true;
 
    Module =
 
        static_cast<ModuleName *>(make<ModuleName>(Module, Sub, IsPartition));
 
    Subs.push_back(Module);
 
  }
 
 
 
  return false;
 
}
 
 
 
// <unnamed-type-name> ::= Ut [<nonnegative number>] _
 
//                     ::= <closure-type-name>
 
//
 
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
 
//
 
// <lambda-sig> ::= <parameter type>+  # Parameter types or "v" if the lambda has no parameters
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parseUnnamedTypeName(NameState *State) {
 
  // <template-params> refer to the innermost <template-args>. Clear out any
 
  // outer args that we may have inserted into TemplateParams.
 
  if (State != nullptr)
 
    TemplateParams.clear();
 
 
 
  if (consumeIf("Ut")) {
 
    StringView Count = parseNumber();
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    return make<UnnamedTypeName>(Count);
 
  }
 
  if (consumeIf("Ul")) {
 
    ScopedOverride<size_t> SwapParams(ParsingLambdaParamsAtLevel,
 
                                      TemplateParams.size());
 
    ScopedTemplateParamList LambdaTemplateParams(this);
 
 
 
    size_t ParamsBegin = Names.size();
 
    while (look() == 'T' &&
 
           StringView("yptn").find(look(1)) != StringView::npos) {
 
      Node *T = parseTemplateParamDecl();
 
      if (!T)
 
        return nullptr;
 
      Names.push_back(T);
 
    }
 
    NodeArray TempParams = popTrailingNodeArray(ParamsBegin);
 
 
 
    // FIXME: If TempParams is empty and none of the function parameters
 
    // includes 'auto', we should remove LambdaTemplateParams from the
 
    // TemplateParams list. Unfortunately, we don't find out whether there are
 
    // any 'auto' parameters until too late in an example such as:
 
    //
 
    //   template<typename T> void f(
 
    //       decltype([](decltype([]<typename T>(T v) {}),
 
    //                   auto) {})) {}
 
    //   template<typename T> void f(
 
    //       decltype([](decltype([]<typename T>(T w) {}),
 
    //                   int) {})) {}
 
    //
 
    // Here, the type of v is at level 2 but the type of w is at level 1. We
 
    // don't find this out until we encounter the type of the next parameter.
 
    //
 
    // However, compilers can't actually cope with the former example in
 
    // practice, and it's likely to be made ill-formed in future, so we don't
 
    // need to support it here.
 
    //
 
    // If we encounter an 'auto' in the function parameter types, we will
 
    // recreate a template parameter scope for it, but any intervening lambdas
 
    // will be parsed in the 'wrong' template parameter depth.
 
    if (TempParams.empty())
 
      TemplateParams.pop_back();
 
 
 
    if (!consumeIf("vE")) {
 
      do {
 
        Node *P = getDerived().parseType();
 
        if (P == nullptr)
 
          return nullptr;
 
        Names.push_back(P);
 
      } while (!consumeIf('E'));
 
    }
 
    NodeArray Params = popTrailingNodeArray(ParamsBegin);
 
 
 
    StringView Count = parseNumber();
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    return make<ClosureTypeName>(TempParams, Params, Count);
 
  }
 
  if (consumeIf("Ub")) {
 
    (void)parseNumber();
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    return make<NameType>("'block-literal'");
 
  }
 
  return nullptr;
 
}
 
 
 
// <source-name> ::= <positive length number> <identifier>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseSourceName(NameState *) {
 
  size_t Length = 0;
 
  if (parsePositiveInteger(&Length))
 
    return nullptr;
 
  if (numLeft() < Length || Length == 0)
 
    return nullptr;
 
  StringView Name(First, First + Length);
 
  First += Length;
 
  if (Name.startsWith("_GLOBAL__N"))
 
    return make<NameType>("(anonymous namespace)");
 
  return make<NameType>(Name);
 
}
 
 
 
// Operator encodings
 
template <typename Derived, typename Alloc>
 
const typename AbstractManglingParser<
 
    Derived, Alloc>::OperatorInfo AbstractManglingParser<Derived,
 
                                                         Alloc>::Ops[] = {
 
    // Keep ordered by encoding
 
    {"aN", OperatorInfo::Binary, false, Node::Prec::Assign, "operator&="},
 
    {"aS", OperatorInfo::Binary, false, Node::Prec::Assign, "operator="},
 
    {"aa", OperatorInfo::Binary, false, Node::Prec::AndIf, "operator&&"},
 
    {"ad", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator&"},
 
    {"an", OperatorInfo::Binary, false, Node::Prec::And, "operator&"},
 
    {"at", OperatorInfo::OfIdOp, /*Type*/ true, Node::Prec::Unary, "alignof "},
 
    {"aw", OperatorInfo::NameOnly, false, Node::Prec::Primary,
 
     "operator co_await"},
 
    {"az", OperatorInfo::OfIdOp, /*Type*/ false, Node::Prec::Unary, "alignof "},
 
    {"cc", OperatorInfo::NamedCast, false, Node::Prec::Postfix, "const_cast"},
 
    {"cl", OperatorInfo::Call, false, Node::Prec::Postfix, "operator()"},
 
    {"cm", OperatorInfo::Binary, false, Node::Prec::Comma, "operator,"},
 
    {"co", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator~"},
 
    {"cv", OperatorInfo::CCast, false, Node::Prec::Cast, "operator"}, // C Cast
 
    {"dV", OperatorInfo::Binary, false, Node::Prec::Assign, "operator/="},
 
    {"da", OperatorInfo::Del, /*Ary*/ true, Node::Prec::Unary,
 
     "operator delete[]"},
 
    {"dc", OperatorInfo::NamedCast, false, Node::Prec::Postfix, "dynamic_cast"},
 
    {"de", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator*"},
 
    {"dl", OperatorInfo::Del, /*Ary*/ false, Node::Prec::Unary,
 
     "operator delete"},
 
    {"ds", OperatorInfo::Member, /*Named*/ false, Node::Prec::PtrMem,
 
     "operator.*"},
 
    {"dt", OperatorInfo::Member, /*Named*/ false, Node::Prec::Postfix,
 
     "operator."},
 
    {"dv", OperatorInfo::Binary, false, Node::Prec::Assign, "operator/"},
 
    {"eO", OperatorInfo::Binary, false, Node::Prec::Assign, "operator^="},
 
    {"eo", OperatorInfo::Binary, false, Node::Prec::Xor, "operator^"},
 
    {"eq", OperatorInfo::Binary, false, Node::Prec::Equality, "operator=="},
 
    {"ge", OperatorInfo::Binary, false, Node::Prec::Relational, "operator>="},
 
    {"gt", OperatorInfo::Binary, false, Node::Prec::Relational, "operator>"},
 
    {"ix", OperatorInfo::Array, false, Node::Prec::Postfix, "operator[]"},
 
    {"lS", OperatorInfo::Binary, false, Node::Prec::Assign, "operator<<="},
 
    {"le", OperatorInfo::Binary, false, Node::Prec::Relational, "operator<="},
 
    {"ls", OperatorInfo::Binary, false, Node::Prec::Shift, "operator<<"},
 
    {"lt", OperatorInfo::Binary, false, Node::Prec::Relational, "operator<"},
 
    {"mI", OperatorInfo::Binary, false, Node::Prec::Assign, "operator-="},
 
    {"mL", OperatorInfo::Binary, false, Node::Prec::Assign, "operator*="},
 
    {"mi", OperatorInfo::Binary, false, Node::Prec::Additive, "operator-"},
 
    {"ml", OperatorInfo::Binary, false, Node::Prec::Multiplicative,
 
     "operator*"},
 
    {"mm", OperatorInfo::Postfix, false, Node::Prec::Postfix, "operator--"},
 
    {"na", OperatorInfo::New, /*Ary*/ true, Node::Prec::Unary,
 
     "operator new[]"},
 
    {"ne", OperatorInfo::Binary, false, Node::Prec::Equality, "operator!="},
 
    {"ng", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator-"},
 
    {"nt", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator!"},
 
    {"nw", OperatorInfo::New, /*Ary*/ false, Node::Prec::Unary, "operator new"},
 
    {"oR", OperatorInfo::Binary, false, Node::Prec::Assign, "operator|="},
 
    {"oo", OperatorInfo::Binary, false, Node::Prec::OrIf, "operator||"},
 
    {"or", OperatorInfo::Binary, false, Node::Prec::Ior, "operator|"},
 
    {"pL", OperatorInfo::Binary, false, Node::Prec::Assign, "operator+="},
 
    {"pl", OperatorInfo::Binary, false, Node::Prec::Additive, "operator+"},
 
    {"pm", OperatorInfo::Member, /*Named*/ false, Node::Prec::PtrMem,
 
     "operator->*"},
 
    {"pp", OperatorInfo::Postfix, false, Node::Prec::Postfix, "operator++"},
 
    {"ps", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator+"},
 
    {"pt", OperatorInfo::Member, /*Named*/ true, Node::Prec::Postfix,
 
     "operator->"},
 
    {"qu", OperatorInfo::Conditional, false, Node::Prec::Conditional,
 
     "operator?"},
 
    {"rM", OperatorInfo::Binary, false, Node::Prec::Assign, "operator%="},
 
    {"rS", OperatorInfo::Binary, false, Node::Prec::Assign, "operator>>="},
 
    {"rc", OperatorInfo::NamedCast, false, Node::Prec::Postfix,
 
     "reinterpret_cast"},
 
    {"rm", OperatorInfo::Binary, false, Node::Prec::Multiplicative,
 
     "operator%"},
 
    {"rs", OperatorInfo::Binary, false, Node::Prec::Shift, "operator>>"},
 
    {"sc", OperatorInfo::NamedCast, false, Node::Prec::Postfix, "static_cast"},
 
    {"ss", OperatorInfo::Binary, false, Node::Prec::Spaceship, "operator<=>"},
 
    {"st", OperatorInfo::OfIdOp, /*Type*/ true, Node::Prec::Unary, "sizeof "},
 
    {"sz", OperatorInfo::OfIdOp, /*Type*/ false, Node::Prec::Unary, "sizeof "},
 
    {"te", OperatorInfo::OfIdOp, /*Type*/ false, Node::Prec::Postfix,
 
     "typeid "},
 
    {"ti", OperatorInfo::OfIdOp, /*Type*/ true, Node::Prec::Postfix, "typeid "},
 
};
 
template <typename Derived, typename Alloc>
 
const size_t AbstractManglingParser<Derived, Alloc>::NumOps = sizeof(Ops) /
 
                                                              sizeof(Ops[0]);
 
 
 
// If the next 2 chars are an operator encoding, consume them and return their
 
// OperatorInfo.  Otherwise return nullptr.
 
template <typename Derived, typename Alloc>
 
const typename AbstractManglingParser<Derived, Alloc>::OperatorInfo *
 
AbstractManglingParser<Derived, Alloc>::parseOperatorEncoding() {
 
  if (numLeft() < 2)
 
    return nullptr;
 
 
 
  // We can't use lower_bound as that can link to symbols in the C++ library,
 
  // and this must remain independant of that.
 
  size_t lower = 0u, upper = NumOps - 1; // Inclusive bounds.
 
  while (upper != lower) {
 
    size_t middle = (upper + lower) / 2;
 
    if (Ops[middle] < First)
 
      lower = middle + 1;
 
    else
 
      upper = middle;
 
  }
 
  if (Ops[lower] != First)
 
    return nullptr;
 
 
 
  First += 2;
 
  return &Ops[lower];
 
}
 
 
 
//   <operator-name> ::= See parseOperatorEncoding()
 
//                   ::= li <source-name>  # operator ""
 
//                   ::= v <digit> <source-name>  # vendor extended operator
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parseOperatorName(NameState *State) {
 
  if (const auto *Op = parseOperatorEncoding()) {
 
    if (Op->getKind() == OperatorInfo::CCast) {
 
      //              ::= cv <type>    # (cast)
 
      ScopedOverride<bool> SaveTemplate(TryToParseTemplateArgs, false);
 
      // If we're parsing an encoding, State != nullptr and the conversion
 
      // operators' <type> could have a <template-param> that refers to some
 
      // <template-arg>s further ahead in the mangled name.
 
      ScopedOverride<bool> SavePermit(PermitForwardTemplateReferences,
 
                                      PermitForwardTemplateReferences ||
 
                                          State != nullptr);
 
      Node *Ty = getDerived().parseType();
 
      if (Ty == nullptr)
 
        return nullptr;
 
      if (State) State->CtorDtorConversion = true;
 
      return make<ConversionOperatorType>(Ty);
 
    }
 
 
 
    if (Op->getKind() >= OperatorInfo::Unnameable)
 
      /* Not a nameable operator.  */
 
      return nullptr;
 
    if (Op->getKind() == OperatorInfo::Member && !Op->getFlag())
 
      /* Not a nameable MemberExpr */
 
      return nullptr;
 
 
 
    return make<NameType>(Op->getName());
 
  }
 
 
 
  if (consumeIf("li")) {
 
    //                   ::= li <source-name>  # operator ""
 
    Node *SN = getDerived().parseSourceName(State);
 
    if (SN == nullptr)
 
      return nullptr;
 
    return make<LiteralOperator>(SN);
 
  }
 
 
 
  if (consumeIf('v')) {
 
    // ::= v <digit> <source-name>        # vendor extended operator
 
    if (look() >= '0' && look() <= '9') {
 
      First++;
 
      Node *SN = getDerived().parseSourceName(State);
 
      if (SN == nullptr)
 
        return nullptr;
 
      return make<ConversionOperatorType>(SN);
 
    }
 
    return nullptr;
 
  }
 
 
 
  return nullptr;
 
}
 
 
 
// <ctor-dtor-name> ::= C1  # complete object constructor
 
//                  ::= C2  # base object constructor
 
//                  ::= C3  # complete object allocating constructor
 
//   extension      ::= C4  # gcc old-style "[unified]" constructor
 
//   extension      ::= C5  # the COMDAT used for ctors
 
//                  ::= D0  # deleting destructor
 
//                  ::= D1  # complete object destructor
 
//                  ::= D2  # base object destructor
 
//   extension      ::= D4  # gcc old-style "[unified]" destructor
 
//   extension      ::= D5  # the COMDAT used for dtors
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parseCtorDtorName(Node *&SoFar,
 
                                                          NameState *State) {
 
  if (SoFar->getKind() == Node::KSpecialSubstitution) {
 
    // Expand the special substitution.
 
    SoFar = make<ExpandedSpecialSubstitution>(
 
        static_cast<SpecialSubstitution *>(SoFar));
 
    if (!SoFar)
 
      return nullptr;
 
  }
 
 
 
  if (consumeIf('C')) {
 
    bool IsInherited = consumeIf('I');
 
    if (look() != '1' && look() != '2' && look() != '3' && look() != '4' &&
 
        look() != '5')
 
      return nullptr;
 
    int Variant = look() - '0';
 
    ++First;
 
    if (State) State->CtorDtorConversion = true;
 
    if (IsInherited) {
 
      if (getDerived().parseName(State) == nullptr)
 
        return nullptr;
 
    }
 
    return make<CtorDtorName>(SoFar, /*IsDtor=*/false, Variant);
 
  }
 
 
 
  if (look() == 'D' && (look(1) == '0' || look(1) == '1' || look(1) == '2' ||
 
                        look(1) == '4' || look(1) == '5')) {
 
    int Variant = look(1) - '0';
 
    First += 2;
 
    if (State) State->CtorDtorConversion = true;
 
    return make<CtorDtorName>(SoFar, /*IsDtor=*/true, Variant);
 
  }
 
 
 
  return nullptr;
 
}
 
 
 
// <nested-name> ::= N [<CV-Qualifiers>] [<ref-qualifier>] <prefix>
 
//                      <unqualified-name> E
 
//               ::= N [<CV-Qualifiers>] [<ref-qualifier>] <template-prefix>
 
//                      <template-args> E
 
//
 
// <prefix> ::= <prefix> <unqualified-name>
 
//          ::= <template-prefix> <template-args>
 
//          ::= <template-param>
 
//          ::= <decltype>
 
//          ::= # empty
 
//          ::= <substitution>
 
//          ::= <prefix> <data-member-prefix>
 
// [*] extension
 
//
 
// <data-member-prefix> := <member source-name> [<template-args>] M
 
//
 
// <template-prefix> ::= <prefix> <template unqualified-name>
 
//                   ::= <template-param>
 
//                   ::= <substitution>
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parseNestedName(NameState *State) {
 
  if (!consumeIf('N'))
 
    return nullptr;
 
 
 
  Qualifiers CVTmp = parseCVQualifiers();
 
  if (State) State->CVQualifiers = CVTmp;
 
 
 
  if (consumeIf('O')) {
 
    if (State) State->ReferenceQualifier = FrefQualRValue;
 
  } else if (consumeIf('R')) {
 
    if (State) State->ReferenceQualifier = FrefQualLValue;
 
  } else {
 
    if (State) State->ReferenceQualifier = FrefQualNone;
 
  }
 
 
 
  Node *SoFar = nullptr;
 
  while (!consumeIf('E')) {
 
    if (State)
 
      // Only set end-with-template on the case that does that.
 
      State->EndsWithTemplateArgs = false;
 
 
 
    if (look() == 'T') {
 
      //          ::= <template-param>
 
      if (SoFar != nullptr)
 
        return nullptr; // Cannot have a prefix.
 
      SoFar = getDerived().parseTemplateParam();
 
    } else if (look() == 'I') {
 
      //          ::= <template-prefix> <template-args>
 
      if (SoFar == nullptr)
 
        return nullptr; // Must have a prefix.
 
      Node *TA = getDerived().parseTemplateArgs(State != nullptr);
 
      if (TA == nullptr)
 
        return nullptr;
 
      if (SoFar->getKind() == Node::KNameWithTemplateArgs)
 
        // Semantically <template-args> <template-args> cannot be generated by a
 
        // C++ entity.  There will always be [something like] a name between
 
        // them.
 
        return nullptr;
 
      if (State)
 
        State->EndsWithTemplateArgs = true;
 
      SoFar = make<NameWithTemplateArgs>(SoFar, TA);
 
    } else if (look() == 'D' && (look(1) == 't' || look(1) == 'T')) {
 
      //          ::= <decltype>
 
      if (SoFar != nullptr)
 
        return nullptr; // Cannot have a prefix.
 
      SoFar = getDerived().parseDecltype();
 
    } else {
 
      ModuleName *Module = nullptr;
 
 
 
      if (look() == 'S') {
 
        //          ::= <substitution>
 
        Node *S = nullptr;
 
        if (look(1) == 't') {
 
          First += 2;
 
          S = make<NameType>("std");
 
        } else {
 
          S = getDerived().parseSubstitution();
 
        }
 
        if (!S)
 
          return nullptr;
 
        if (S->getKind() == Node::KModuleName) {
 
          Module = static_cast<ModuleName *>(S);
 
        } else if (SoFar != nullptr) {
 
          return nullptr; // Cannot have a prefix.
 
        } else {
 
          SoFar = S;
 
          continue; // Do not push a new substitution.
 
        }
 
      }
 
 
 
      //          ::= [<prefix>] <unqualified-name>
 
      SoFar = getDerived().parseUnqualifiedName(State, SoFar, Module);
 
    }
 
 
 
    if (SoFar == nullptr)
 
      return nullptr;
 
    Subs.push_back(SoFar);
 
 
 
    // No longer used.
 
    // <data-member-prefix> := <member source-name> [<template-args>] M
 
    consumeIf('M');
 
  }
 
 
 
  if (SoFar == nullptr || Subs.empty())
 
    return nullptr;
 
 
 
  Subs.pop_back();
 
  return SoFar;
 
}
 
 
 
// <simple-id> ::= <source-name> [ <template-args> ]
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseSimpleId() {
 
  Node *SN = getDerived().parseSourceName(/*NameState=*/nullptr);
 
  if (SN == nullptr)
 
    return nullptr;
 
  if (look() == 'I') {
 
    Node *TA = getDerived().parseTemplateArgs();
 
    if (TA == nullptr)
 
      return nullptr;
 
    return make<NameWithTemplateArgs>(SN, TA);
 
  }
 
  return SN;
 
}
 
 
 
// <destructor-name> ::= <unresolved-type>  # e.g., ~T or ~decltype(f())
 
//                   ::= <simple-id>        # e.g., ~A<2*N>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseDestructorName() {
 
  Node *Result;
 
  if (std::isdigit(look()))
 
    Result = getDerived().parseSimpleId();
 
  else
 
    Result = getDerived().parseUnresolvedType();
 
  if (Result == nullptr)
 
    return nullptr;
 
  return make<DtorName>(Result);
 
}
 
 
 
// <unresolved-type> ::= <template-param>
 
//                   ::= <decltype>
 
//                   ::= <substitution>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseUnresolvedType() {
 
  if (look() == 'T') {
 
    Node *TP = getDerived().parseTemplateParam();
 
    if (TP == nullptr)
 
      return nullptr;
 
    Subs.push_back(TP);
 
    return TP;
 
  }
 
  if (look() == 'D') {
 
    Node *DT = getDerived().parseDecltype();
 
    if (DT == nullptr)
 
      return nullptr;
 
    Subs.push_back(DT);
 
    return DT;
 
  }
 
  return getDerived().parseSubstitution();
 
}
 
 
 
// <base-unresolved-name> ::= <simple-id>                                # unresolved name
 
//          extension     ::= <operator-name>                            # unresolved operator-function-id
 
//          extension     ::= <operator-name> <template-args>            # unresolved operator template-id
 
//                        ::= on <operator-name>                         # unresolved operator-function-id
 
//                        ::= on <operator-name> <template-args>         # unresolved operator template-id
 
//                        ::= dn <destructor-name>                       # destructor or pseudo-destructor;
 
//                                                                         # e.g. ~X or ~X<N-1>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseBaseUnresolvedName() {
 
  if (std::isdigit(look()))
 
    return getDerived().parseSimpleId();
 
 
 
  if (consumeIf("dn"))
 
    return getDerived().parseDestructorName();
 
 
 
  consumeIf("on");
 
 
 
  Node *Oper = getDerived().parseOperatorName(/*NameState=*/nullptr);
 
  if (Oper == nullptr)
 
    return nullptr;
 
  if (look() == 'I') {
 
    Node *TA = getDerived().parseTemplateArgs();
 
    if (TA == nullptr)
 
      return nullptr;
 
    return make<NameWithTemplateArgs>(Oper, TA);
 
  }
 
  return Oper;
 
}
 
 
 
// <unresolved-name>
 
//  extension        ::= srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
 
//                   ::= [gs] <base-unresolved-name>                     # x or (with "gs") ::x
 
//                   ::= [gs] sr <unresolved-qualifier-level>+ E <base-unresolved-name>
 
//                                                                       # A::x, N::y, A<T>::z; "gs" means leading "::"
 
// [gs] has been parsed by caller.
 
//                   ::= sr <unresolved-type> <base-unresolved-name>     # T::x / decltype(p)::x
 
//  extension        ::= sr <unresolved-type> <template-args> <base-unresolved-name>
 
//                                                                       # T::N::x /decltype(p)::N::x
 
//  (ignored)        ::= srN <unresolved-type>  <unresolved-qualifier-level>+ E <base-unresolved-name>
 
//
 
// <unresolved-qualifier-level> ::= <simple-id>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseUnresolvedName(bool Global) {
 
  Node *SoFar = nullptr;
 
 
 
  // srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
 
  // srN <unresolved-type>                   <unresolved-qualifier-level>+ E <base-unresolved-name>
 
  if (consumeIf("srN")) {
 
    SoFar = getDerived().parseUnresolvedType();
 
    if (SoFar == nullptr)
 
      return nullptr;
 
 
 
    if (look() == 'I') {
 
      Node *TA = getDerived().parseTemplateArgs();
 
      if (TA == nullptr)
 
        return nullptr;
 
      SoFar = make<NameWithTemplateArgs>(SoFar, TA);
 
      if (!SoFar)
 
        return nullptr;
 
    }
 
 
 
    while (!consumeIf('E')) {
 
      Node *Qual = getDerived().parseSimpleId();
 
      if (Qual == nullptr)
 
        return nullptr;
 
      SoFar = make<QualifiedName>(SoFar, Qual);
 
      if (!SoFar)
 
        return nullptr;
 
    }
 
 
 
    Node *Base = getDerived().parseBaseUnresolvedName();
 
    if (Base == nullptr)
 
      return nullptr;
 
    return make<QualifiedName>(SoFar, Base);
 
  }
 
 
 
  // [gs] <base-unresolved-name>                     # x or (with "gs") ::x
 
  if (!consumeIf("sr")) {
 
    SoFar = getDerived().parseBaseUnresolvedName();
 
    if (SoFar == nullptr)
 
      return nullptr;
 
    if (Global)
 
      SoFar = make<GlobalQualifiedName>(SoFar);
 
    return SoFar;
 
  }
 
 
 
  // [gs] sr <unresolved-qualifier-level>+ E   <base-unresolved-name>
 
  if (std::isdigit(look())) {
 
    do {
 
      Node *Qual = getDerived().parseSimpleId();
 
      if (Qual == nullptr)
 
        return nullptr;
 
      if (SoFar)
 
        SoFar = make<QualifiedName>(SoFar, Qual);
 
      else if (Global)
 
        SoFar = make<GlobalQualifiedName>(Qual);
 
      else
 
        SoFar = Qual;
 
      if (!SoFar)
 
        return nullptr;
 
    } while (!consumeIf('E'));
 
  }
 
  //      sr <unresolved-type>                 <base-unresolved-name>
 
  //      sr <unresolved-type> <template-args> <base-unresolved-name>
 
  else {
 
    SoFar = getDerived().parseUnresolvedType();
 
    if (SoFar == nullptr)
 
      return nullptr;
 
 
 
    if (look() == 'I') {
 
      Node *TA = getDerived().parseTemplateArgs();
 
      if (TA == nullptr)
 
        return nullptr;
 
      SoFar = make<NameWithTemplateArgs>(SoFar, TA);
 
      if (!SoFar)
 
        return nullptr;
 
    }
 
  }
 
 
 
  assert(SoFar != nullptr);
 
 
 
  Node *Base = getDerived().parseBaseUnresolvedName();
 
  if (Base == nullptr)
 
    return nullptr;
 
  return make<QualifiedName>(SoFar, Base);
 
}
 
 
 
// <abi-tags> ::= <abi-tag> [<abi-tags>]
 
// <abi-tag> ::= B <source-name>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseAbiTags(Node *N) {
 
  while (consumeIf('B')) {
 
    StringView SN = parseBareSourceName();
 
    if (SN.empty())
 
      return nullptr;
 
    N = make<AbiTagAttr>(N, SN);
 
    if (!N)
 
      return nullptr;
 
  }
 
  return N;
 
}
 
 
 
// <number> ::= [n] <non-negative decimal integer>
 
template <typename Alloc, typename Derived>
 
StringView
 
AbstractManglingParser<Alloc, Derived>::parseNumber(bool AllowNegative) {
 
  const char *Tmp = First;
 
  if (AllowNegative)
 
    consumeIf('n');
 
  if (numLeft() == 0 || !std::isdigit(*First))
 
    return StringView();
 
  while (numLeft() != 0 && std::isdigit(*First))
 
    ++First;
 
  return StringView(Tmp, First);
 
}
 
 
 
// <positive length number> ::= [0-9]*
 
template <typename Alloc, typename Derived>
 
bool AbstractManglingParser<Alloc, Derived>::parsePositiveInteger(size_t *Out) {
 
  *Out = 0;
 
  if (look() < '0' || look() > '9')
 
    return true;
 
  while (look() >= '0' && look() <= '9') {
 
    *Out *= 10;
 
    *Out += static_cast<size_t>(consume() - '0');
 
  }
 
  return false;
 
}
 
 
 
template <typename Alloc, typename Derived>
 
StringView AbstractManglingParser<Alloc, Derived>::parseBareSourceName() {
 
  size_t Int = 0;
 
  if (parsePositiveInteger(&Int) || numLeft() < Int)
 
    return StringView();
 
  StringView R(First, First + Int);
 
  First += Int;
 
  return R;
 
}
 
 
 
// <function-type> ::= [<CV-qualifiers>] [<exception-spec>] [Dx] F [Y] <bare-function-type> [<ref-qualifier>] E
 
//
 
// <exception-spec> ::= Do                # non-throwing exception-specification (e.g., noexcept, throw())
 
//                  ::= DO <expression> E # computed (instantiation-dependent) noexcept
 
//                  ::= Dw <type>+ E      # dynamic exception specification with instantiation-dependent types
 
//
 
// <ref-qualifier> ::= R                   # & ref-qualifier
 
// <ref-qualifier> ::= O                   # && ref-qualifier
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseFunctionType() {
 
  Qualifiers CVQuals = parseCVQualifiers();
 
 
 
  Node *ExceptionSpec = nullptr;
 
  if (consumeIf("Do")) {
 
    ExceptionSpec = make<NameType>("noexcept");
 
    if (!ExceptionSpec)
 
      return nullptr;
 
  } else if (consumeIf("DO")) {
 
    Node *E = getDerived().parseExpr();
 
    if (E == nullptr || !consumeIf('E'))
 
      return nullptr;
 
    ExceptionSpec = make<NoexceptSpec>(E);
 
    if (!ExceptionSpec)
 
      return nullptr;
 
  } else if (consumeIf("Dw")) {
 
    size_t SpecsBegin = Names.size();
 
    while (!consumeIf('E')) {
 
      Node *T = getDerived().parseType();
 
      if (T == nullptr)
 
        return nullptr;
 
      Names.push_back(T);
 
    }
 
    ExceptionSpec =
 
      make<DynamicExceptionSpec>(popTrailingNodeArray(SpecsBegin));
 
    if (!ExceptionSpec)
 
      return nullptr;
 
  }
 
 
 
  consumeIf("Dx"); // transaction safe
 
 
 
  if (!consumeIf('F'))
 
    return nullptr;
 
  consumeIf('Y'); // extern "C"
 
  Node *ReturnType = getDerived().parseType();
 
  if (ReturnType == nullptr)
 
    return nullptr;
 
 
 
  FunctionRefQual ReferenceQualifier = FrefQualNone;
 
  size_t ParamsBegin = Names.size();
 
  while (true) {
 
    if (consumeIf('E'))
 
      break;
 
    if (consumeIf('v'))
 
      continue;
 
    if (consumeIf("RE")) {
 
      ReferenceQualifier = FrefQualLValue;
 
      break;
 
    }
 
    if (consumeIf("OE")) {
 
      ReferenceQualifier = FrefQualRValue;
 
      break;
 
    }
 
    Node *T = getDerived().parseType();
 
    if (T == nullptr)
 
      return nullptr;
 
    Names.push_back(T);
 
  }
 
 
 
  NodeArray Params = popTrailingNodeArray(ParamsBegin);
 
  return make<FunctionType>(ReturnType, Params, CVQuals,
 
                            ReferenceQualifier, ExceptionSpec);
 
}
 
 
 
// extension:
 
// <vector-type>           ::= Dv <positive dimension number> _ <extended element type>
 
//                         ::= Dv [<dimension expression>] _ <element type>
 
// <extended element type> ::= <element type>
 
//                         ::= p # AltiVec vector pixel
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseVectorType() {
 
  if (!consumeIf("Dv"))
 
    return nullptr;
 
  if (look() >= '1' && look() <= '9') {
 
    Node *DimensionNumber = make<NameType>(parseNumber());
 
    if (!DimensionNumber)
 
      return nullptr;
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    if (consumeIf('p'))
 
      return make<PixelVectorType>(DimensionNumber);
 
    Node *ElemType = getDerived().parseType();
 
    if (ElemType == nullptr)
 
      return nullptr;
 
    return make<VectorType>(ElemType, DimensionNumber);
 
  }
 
 
 
  if (!consumeIf('_')) {
 
    Node *DimExpr = getDerived().parseExpr();
 
    if (!DimExpr)
 
      return nullptr;
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    Node *ElemType = getDerived().parseType();
 
    if (!ElemType)
 
      return nullptr;
 
    return make<VectorType>(ElemType, DimExpr);
 
  }
 
  Node *ElemType = getDerived().parseType();
 
  if (!ElemType)
 
    return nullptr;
 
  return make<VectorType>(ElemType, /*Dimension=*/nullptr);
 
}
 
 
 
// <decltype>  ::= Dt <expression> E  # decltype of an id-expression or class member access (C++0x)
 
//             ::= DT <expression> E  # decltype of an expression (C++0x)
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseDecltype() {
 
  if (!consumeIf('D'))
 
    return nullptr;
 
  if (!consumeIf('t') && !consumeIf('T'))
 
    return nullptr;
 
  Node *E = getDerived().parseExpr();
 
  if (E == nullptr)
 
    return nullptr;
 
  if (!consumeIf('E'))
 
    return nullptr;
 
  return make<EnclosingExpr>("decltype", E);
 
}
 
 
 
// <array-type> ::= A <positive dimension number> _ <element type>
 
//              ::= A [<dimension expression>] _ <element type>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseArrayType() {
 
  if (!consumeIf('A'))
 
    return nullptr;
 
 
 
  Node *Dimension = nullptr;
 
 
 
  if (std::isdigit(look())) {
 
    Dimension = make<NameType>(parseNumber());
 
    if (!Dimension)
 
      return nullptr;
 
    if (!consumeIf('_'))
 
      return nullptr;
 
  } else if (!consumeIf('_')) {
 
    Node *DimExpr = getDerived().parseExpr();
 
    if (DimExpr == nullptr)
 
      return nullptr;
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    Dimension = DimExpr;
 
  }
 
 
 
  Node *Ty = getDerived().parseType();
 
  if (Ty == nullptr)
 
    return nullptr;
 
  return make<ArrayType>(Ty, Dimension);
 
}
 
 
 
// <pointer-to-member-type> ::= M <class type> <member type>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parsePointerToMemberType() {
 
  if (!consumeIf('M'))
 
    return nullptr;
 
  Node *ClassType = getDerived().parseType();
 
  if (ClassType == nullptr)
 
    return nullptr;
 
  Node *MemberType = getDerived().parseType();
 
  if (MemberType == nullptr)
 
    return nullptr;
 
  return make<PointerToMemberType>(ClassType, MemberType);
 
}
 
 
 
// <class-enum-type> ::= <name>     # non-dependent type name, dependent type name, or dependent typename-specifier
 
//                   ::= Ts <name>  # dependent elaborated type specifier using 'struct' or 'class'
 
//                   ::= Tu <name>  # dependent elaborated type specifier using 'union'
 
//                   ::= Te <name>  # dependent elaborated type specifier using 'enum'
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseClassEnumType() {
 
  StringView ElabSpef;
 
  if (consumeIf("Ts"))
 
    ElabSpef = "struct";
 
  else if (consumeIf("Tu"))
 
    ElabSpef = "union";
 
  else if (consumeIf("Te"))
 
    ElabSpef = "enum";
 
 
 
  Node *Name = getDerived().parseName();
 
  if (Name == nullptr)
 
    return nullptr;
 
 
 
  if (!ElabSpef.empty())
 
    return make<ElaboratedTypeSpefType>(ElabSpef, Name);
 
 
 
  return Name;
 
}
 
 
 
// <qualified-type>     ::= <qualifiers> <type>
 
// <qualifiers> ::= <extended-qualifier>* <CV-qualifiers>
 
// <extended-qualifier> ::= U <source-name> [<template-args>] # vendor extended type qualifier
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseQualifiedType() {
 
  if (consumeIf('U')) {
 
    StringView Qual = parseBareSourceName();
 
    if (Qual.empty())
 
      return nullptr;
 
 
 
    // extension            ::= U <objc-name> <objc-type>  # objc-type<identifier>
 
    if (Qual.startsWith("objcproto")) {
 
      StringView ProtoSourceName = Qual.dropFront(std::strlen("objcproto"));
 
      StringView Proto;
 
      {
 
        ScopedOverride<const char *> SaveFirst(First, ProtoSourceName.begin()),
 
            SaveLast(Last, ProtoSourceName.end());
 
        Proto = parseBareSourceName();
 
      }
 
      if (Proto.empty())
 
        return nullptr;
 
      Node *Child = getDerived().parseQualifiedType();
 
      if (Child == nullptr)
 
        return nullptr;
 
      return make<ObjCProtoName>(Child, Proto);
 
    }
 
 
 
    Node *TA = nullptr;
 
    if (look() == 'I') {
 
      TA = getDerived().parseTemplateArgs();
 
      if (TA == nullptr)
 
        return nullptr;
 
    }
 
 
 
    Node *Child = getDerived().parseQualifiedType();
 
    if (Child == nullptr)
 
      return nullptr;
 
    return make<VendorExtQualType>(Child, Qual, TA);
 
  }
 
 
 
  Qualifiers Quals = parseCVQualifiers();
 
  Node *Ty = getDerived().parseType();
 
  if (Ty == nullptr)
 
    return nullptr;
 
  if (Quals != QualNone)
 
    Ty = make<QualType>(Ty, Quals);
 
  return Ty;
 
}
 
 
 
// <type>      ::= <builtin-type>
 
//             ::= <qualified-type>
 
//             ::= <function-type>
 
//             ::= <class-enum-type>
 
//             ::= <array-type>
 
//             ::= <pointer-to-member-type>
 
//             ::= <template-param>
 
//             ::= <template-template-param> <template-args>
 
//             ::= <decltype>
 
//             ::= P <type>        # pointer
 
//             ::= R <type>        # l-value reference
 
//             ::= O <type>        # r-value reference (C++11)
 
//             ::= C <type>        # complex pair (C99)
 
//             ::= G <type>        # imaginary (C99)
 
//             ::= <substitution>  # See Compression below
 
// extension   ::= U <objc-name> <objc-type>  # objc-type<identifier>
 
// extension   ::= <vector-type> # <vector-type> starts with Dv
 
//
 
// <objc-name> ::= <k0 number> objcproto <k1 number> <identifier>  # k0 = 9 + <number of digits in k1> + k1
 
// <objc-type> ::= <source-name>  # PU<11+>objcproto 11objc_object<source-name> 11objc_object -> id<source-name>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseType() {
 
  Node *Result = nullptr;
 
 
 
  switch (look()) {
 
  //             ::= <qualified-type>
 
  case 'r':
 
  case 'V':
 
  case 'K': {
 
    unsigned AfterQuals = 0;
 
    if (look(AfterQuals) == 'r') ++AfterQuals;
 
    if (look(AfterQuals) == 'V') ++AfterQuals;
 
    if (look(AfterQuals) == 'K') ++AfterQuals;
 
 
 
    if (look(AfterQuals) == 'F' ||
 
        (look(AfterQuals) == 'D' &&
 
         (look(AfterQuals + 1) == 'o' || look(AfterQuals + 1) == 'O' ||
 
          look(AfterQuals + 1) == 'w' || look(AfterQuals + 1) == 'x'))) {
 
      Result = getDerived().parseFunctionType();
 
      break;
 
    }
 
    DEMANGLE_FALLTHROUGH;
 
  }
 
  case 'U': {
 
    Result = getDerived().parseQualifiedType();
 
    break;
 
  }
 
  // <builtin-type> ::= v    # void
 
  case 'v':
 
    ++First;
 
    return make<NameType>("void");
 
  //                ::= w    # wchar_t
 
  case 'w':
 
    ++First;
 
    return make<NameType>("wchar_t");
 
  //                ::= b    # bool
 
  case 'b':
 
    ++First;
 
    return make<NameType>("bool");
 
  //                ::= c    # char
 
  case 'c':
 
    ++First;
 
    return make<NameType>("char");
 
  //                ::= a    # signed char
 
  case 'a':
 
    ++First;
 
    return make<NameType>("signed char");
 
  //                ::= h    # unsigned char
 
  case 'h':
 
    ++First;
 
    return make<NameType>("unsigned char");
 
  //                ::= s    # short
 
  case 's':
 
    ++First;
 
    return make<NameType>("short");
 
  //                ::= t    # unsigned short
 
  case 't':
 
    ++First;
 
    return make<NameType>("unsigned short");
 
  //                ::= i    # int
 
  case 'i':
 
    ++First;
 
    return make<NameType>("int");
 
  //                ::= j    # unsigned int
 
  case 'j':
 
    ++First;
 
    return make<NameType>("unsigned int");
 
  //                ::= l    # long
 
  case 'l':
 
    ++First;
 
    return make<NameType>("long");
 
  //                ::= m    # unsigned long
 
  case 'm':
 
    ++First;
 
    return make<NameType>("unsigned long");
 
  //                ::= x    # long long, __int64
 
  case 'x':
 
    ++First;
 
    return make<NameType>("long long");
 
  //                ::= y    # unsigned long long, __int64
 
  case 'y':
 
    ++First;
 
    return make<NameType>("unsigned long long");
 
  //                ::= n    # __int128
 
  case 'n':
 
    ++First;
 
    return make<NameType>("__int128");
 
  //                ::= o    # unsigned __int128
 
  case 'o':
 
    ++First;
 
    return make<NameType>("unsigned __int128");
 
  //                ::= f    # float
 
  case 'f':
 
    ++First;
 
    return make<NameType>("float");
 
  //                ::= d    # double
 
  case 'd':
 
    ++First;
 
    return make<NameType>("double");
 
  //                ::= e    # long double, __float80
 
  case 'e':
 
    ++First;
 
    return make<NameType>("long double");
 
  //                ::= g    # __float128
 
  case 'g':
 
    ++First;
 
    return make<NameType>("__float128");
 
  //                ::= z    # ellipsis
 
  case 'z':
 
    ++First;
 
    return make<NameType>("...");
 
 
 
  // <builtin-type> ::= u <source-name>    # vendor extended type
 
  case 'u': {
 
    ++First;
 
    StringView Res = parseBareSourceName();
 
    if (Res.empty())
 
      return nullptr;
 
    // Typically, <builtin-type>s are not considered substitution candidates,
 
    // but the exception to that exception is vendor extended types (Itanium C++
 
    // ABI 5.9.1).
 
    Result = make<NameType>(Res);
 
    break;
 
  }
 
  case 'D':
 
    switch (look(1)) {
 
    //                ::= Dd   # IEEE 754r decimal floating point (64 bits)
 
    case 'd':
 
      First += 2;
 
      return make<NameType>("decimal64");
 
    //                ::= De   # IEEE 754r decimal floating point (128 bits)
 
    case 'e':
 
      First += 2;
 
      return make<NameType>("decimal128");
 
    //                ::= Df   # IEEE 754r decimal floating point (32 bits)
 
    case 'f':
 
      First += 2;
 
      return make<NameType>("decimal32");
 
    //                ::= Dh   # IEEE 754r half-precision floating point (16 bits)
 
    case 'h':
 
      First += 2;
 
      return make<NameType>("half");
 
    //                ::= DF <number> _ # ISO/IEC TS 18661 binary floating point (N bits)
 
    case 'F': {
 
      First += 2;
 
      Node *DimensionNumber = make<NameType>(parseNumber());
 
      if (!DimensionNumber)
 
        return nullptr;
 
      if (!consumeIf('_'))
 
        return nullptr;
 
      return make<BinaryFPType>(DimensionNumber);
 
    }
 
    //                ::= DB <number> _                             # C23 signed _BitInt(N)
 
    //                ::= DB <instantiation-dependent expression> _ # C23 signed _BitInt(N)
 
    //                ::= DU <number> _                             # C23 unsigned _BitInt(N)
 
    //                ::= DU <instantiation-dependent expression> _ # C23 unsigned _BitInt(N)
 
    case 'B':
 
    case 'U': {
 
      bool Signed = look(1) == 'B';
 
      First += 2;
 
      Node *Size = std::isdigit(look()) ? make<NameType>(parseNumber())
 
                                        : getDerived().parseExpr();
 
      if (!Size)
 
        return nullptr;
 
      if (!consumeIf('_'))
 
        return nullptr;
 
      return make<BitIntType>(Size, Signed);
 
    }
 
    //                ::= Di   # char32_t
 
    case 'i':
 
      First += 2;
 
      return make<NameType>("char32_t");
 
    //                ::= Ds   # char16_t
 
    case 's':
 
      First += 2;
 
      return make<NameType>("char16_t");
 
    //                ::= Du   # char8_t (C++2a, not yet in the Itanium spec)
 
    case 'u':
 
      First += 2;
 
      return make<NameType>("char8_t");
 
    //                ::= Da   # auto (in dependent new-expressions)
 
    case 'a':
 
      First += 2;
 
      return make<NameType>("auto");
 
    //                ::= Dc   # decltype(auto)
 
    case 'c':
 
      First += 2;
 
      return make<NameType>("decltype(auto)");
 
    //                ::= Dn   # std::nullptr_t (i.e., decltype(nullptr))
 
    case 'n':
 
      First += 2;
 
      return make<NameType>("std::nullptr_t");
 
 
 
    //             ::= <decltype>
 
    case 't':
 
    case 'T': {
 
      Result = getDerived().parseDecltype();
 
      break;
 
    }
 
    // extension   ::= <vector-type> # <vector-type> starts with Dv
 
    case 'v': {
 
      Result = getDerived().parseVectorType();
 
      break;
 
    }
 
    //           ::= Dp <type>       # pack expansion (C++0x)
 
    case 'p': {
 
      First += 2;
 
      Node *Child = getDerived().parseType();
 
      if (!Child)
 
        return nullptr;
 
      Result = make<ParameterPackExpansion>(Child);
 
      break;
 
    }
 
    // Exception specifier on a function type.
 
    case 'o':
 
    case 'O':
 
    case 'w':
 
    // Transaction safe function type.
 
    case 'x':
 
      Result = getDerived().parseFunctionType();
 
      break;
 
    }
 
    break;
 
  //             ::= <function-type>
 
  case 'F': {
 
    Result = getDerived().parseFunctionType();
 
    break;
 
  }
 
  //             ::= <array-type>
 
  case 'A': {
 
    Result = getDerived().parseArrayType();
 
    break;
 
  }
 
  //             ::= <pointer-to-member-type>
 
  case 'M': {
 
    Result = getDerived().parsePointerToMemberType();
 
    break;
 
  }
 
  //             ::= <template-param>
 
  case 'T': {
 
    // This could be an elaborate type specifier on a <class-enum-type>.
 
    if (look(1) == 's' || look(1) == 'u' || look(1) == 'e') {
 
      Result = getDerived().parseClassEnumType();
 
      break;
 
    }
 
 
 
    Result = getDerived().parseTemplateParam();
 
    if (Result == nullptr)
 
      return nullptr;
 
 
 
    // Result could be either of:
 
    //   <type>        ::= <template-param>
 
    //   <type>        ::= <template-template-param> <template-args>
 
    //
 
    //   <template-template-param> ::= <template-param>
 
    //                             ::= <substitution>
 
    //
 
    // If this is followed by some <template-args>, and we're permitted to
 
    // parse them, take the second production.
 
 
 
    if (TryToParseTemplateArgs && look() == 'I') {
 
      Node *TA = getDerived().parseTemplateArgs();
 
      if (TA == nullptr)
 
        return nullptr;
 
      Result = make<NameWithTemplateArgs>(Result, TA);
 
    }
 
    break;
 
  }
 
  //             ::= P <type>        # pointer
 
  case 'P': {
 
    ++First;
 
    Node *Ptr = getDerived().parseType();
 
    if (Ptr == nullptr)
 
      return nullptr;
 
    Result = make<PointerType>(Ptr);
 
    break;
 
  }
 
  //             ::= R <type>        # l-value reference
 
  case 'R': {
 
    ++First;
 
    Node *Ref = getDerived().parseType();
 
    if (Ref == nullptr)
 
      return nullptr;
 
    Result = make<ReferenceType>(Ref, ReferenceKind::LValue);
 
    break;
 
  }
 
  //             ::= O <type>        # r-value reference (C++11)
 
  case 'O': {
 
    ++First;
 
    Node *Ref = getDerived().parseType();
 
    if (Ref == nullptr)
 
      return nullptr;
 
    Result = make<ReferenceType>(Ref, ReferenceKind::RValue);
 
    break;
 
  }
 
  //             ::= C <type>        # complex pair (C99)
 
  case 'C': {
 
    ++First;
 
    Node *P = getDerived().parseType();
 
    if (P == nullptr)
 
      return nullptr;
 
    Result = make<PostfixQualifiedType>(P, " complex");
 
    break;
 
  }
 
  //             ::= G <type>        # imaginary (C99)
 
  case 'G': {
 
    ++First;
 
    Node *P = getDerived().parseType();
 
    if (P == nullptr)
 
      return P;
 
    Result = make<PostfixQualifiedType>(P, " imaginary");
 
    break;
 
  }
 
  //             ::= <substitution>  # See Compression below
 
  case 'S': {
 
    if (look(1) != 't') {
 
      bool IsSubst = false;
 
      Result = getDerived().parseUnscopedName(nullptr, &IsSubst);
 
      if (!Result)
 
        return nullptr;
 
 
 
      // Sub could be either of:
 
      //   <type>        ::= <substitution>
 
      //   <type>        ::= <template-template-param> <template-args>
 
      //
 
      //   <template-template-param> ::= <template-param>
 
      //                             ::= <substitution>
 
      //
 
      // If this is followed by some <template-args>, and we're permitted to
 
      // parse them, take the second production.
 
 
 
      if (look() == 'I' && (!IsSubst || TryToParseTemplateArgs)) {
 
        if (!IsSubst)
 
          Subs.push_back(Result);
 
        Node *TA = getDerived().parseTemplateArgs();
 
        if (TA == nullptr)
 
          return nullptr;
 
        Result = make<NameWithTemplateArgs>(Result, TA);
 
      } else if (IsSubst) {
 
        // If all we parsed was a substitution, don't re-insert into the
 
        // substitution table.
 
        return Result;
 
      }
 
      break;
 
    }
 
    DEMANGLE_FALLTHROUGH;
 
  }
 
  //        ::= <class-enum-type>
 
  default: {
 
    Result = getDerived().parseClassEnumType();
 
    break;
 
  }
 
  }
 
 
 
  // If we parsed a type, insert it into the substitution table. Note that all
 
  // <builtin-type>s and <substitution>s have already bailed out, because they
 
  // don't get substitutions.
 
  if (Result != nullptr)
 
    Subs.push_back(Result);
 
  return Result;
 
}
 
 
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parsePrefixExpr(StringView Kind,
 
                                                              Node::Prec Prec) {
 
  Node *E = getDerived().parseExpr();
 
  if (E == nullptr)
 
    return nullptr;
 
  return make<PrefixExpr>(Kind, E, Prec);
 
}
 
 
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseBinaryExpr(StringView Kind,
 
                                                              Node::Prec Prec) {
 
  Node *LHS = getDerived().parseExpr();
 
  if (LHS == nullptr)
 
    return nullptr;
 
  Node *RHS = getDerived().parseExpr();
 
  if (RHS == nullptr)
 
    return nullptr;
 
  return make<BinaryExpr>(LHS, Kind, RHS, Prec);
 
}
 
 
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parseIntegerLiteral(StringView Lit) {
 
  StringView Tmp = parseNumber(true);
 
  if (!Tmp.empty() && consumeIf('E'))
 
    return make<IntegerLiteral>(Lit, Tmp);
 
  return nullptr;
 
}
 
 
 
// <CV-Qualifiers> ::= [r] [V] [K]
 
template <typename Alloc, typename Derived>
 
Qualifiers AbstractManglingParser<Alloc, Derived>::parseCVQualifiers() {
 
  Qualifiers CVR = QualNone;
 
  if (consumeIf('r'))
 
    CVR |= QualRestrict;
 
  if (consumeIf('V'))
 
    CVR |= QualVolatile;
 
  if (consumeIf('K'))
 
    CVR |= QualConst;
 
  return CVR;
 
}
 
 
 
// <function-param> ::= fp <top-level CV-Qualifiers> _                                     # L == 0, first parameter
 
//                  ::= fp <top-level CV-Qualifiers> <parameter-2 non-negative number> _   # L == 0, second and later parameters
 
//                  ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> _         # L > 0, first parameter
 
//                  ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> <parameter-2 non-negative number> _   # L > 0, second and later parameters
 
//                  ::= fpT      # 'this' expression (not part of standard?)
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseFunctionParam() {
 
  if (consumeIf("fpT"))
 
    return make<NameType>("this");
 
  if (consumeIf("fp")) {
 
    parseCVQualifiers();
 
    StringView Num = parseNumber();
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    return make<FunctionParam>(Num);
 
  }
 
  if (consumeIf("fL")) {
 
    if (parseNumber().empty())
 
      return nullptr;
 
    if (!consumeIf('p'))
 
      return nullptr;
 
    parseCVQualifiers();
 
    StringView Num = parseNumber();
 
    if (!consumeIf('_'))
 
      return nullptr;
 
    return make<FunctionParam>(Num);
 
  }
 
  return nullptr;
 
}
 
 
 
// cv <type> <expression>                               # conversion with one argument
 
// cv <type> _ <expression>* E                          # conversion with a different number of arguments
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseConversionExpr() {
 
  if (!consumeIf("cv"))
 
    return nullptr;
 
  Node *Ty;
 
  {
 
    ScopedOverride<bool> SaveTemp(TryToParseTemplateArgs, false);
 
    Ty = getDerived().parseType();
 
  }
 
 
 
  if (Ty == nullptr)
 
    return nullptr;
 
 
 
  if (consumeIf('_')) {
 
    size_t ExprsBegin = Names.size();
 
    while (!consumeIf('E')) {
 
      Node *E = getDerived().parseExpr();
 
      if (E == nullptr)
 
        return E;
 
      Names.push_back(E);
 
    }
 
    NodeArray Exprs = popTrailingNodeArray(ExprsBegin);
 
    return make<ConversionExpr>(Ty, Exprs);
 
  }
 
 
 
  Node *E[1] = {getDerived().parseExpr()};
 
  if (E[0] == nullptr)
 
    return nullptr;
 
  return make<ConversionExpr>(Ty, makeNodeArray(E, E + 1));
 
}
 
 
 
// <expr-primary> ::= L <type> <value number> E                          # integer literal
 
//                ::= L <type> <value float> E                           # floating literal
 
//                ::= L <string type> E                                  # string literal
 
//                ::= L <nullptr type> E                                 # nullptr literal (i.e., "LDnE")
 
//                ::= L <lambda type> E                                  # lambda expression
 
// FIXME:         ::= L <type> <real-part float> _ <imag-part float> E   # complex floating point literal (C 2000)
 
//                ::= L <mangled-name> E                                 # external name
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseExprPrimary() {
 
  if (!consumeIf('L'))
 
    return nullptr;
 
  switch (look()) {
 
  case 'w':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("wchar_t");
 
  case 'b':
 
    if (consumeIf("b0E"))
 
      return make<BoolExpr>(0);
 
    if (consumeIf("b1E"))
 
      return make<BoolExpr>(1);
 
    return nullptr;
 
  case 'c':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("char");
 
  case 'a':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("signed char");
 
  case 'h':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("unsigned char");
 
  case 's':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("short");
 
  case 't':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("unsigned short");
 
  case 'i':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("");
 
  case 'j':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("u");
 
  case 'l':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("l");
 
  case 'm':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("ul");
 
  case 'x':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("ll");
 
  case 'y':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("ull");
 
  case 'n':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("__int128");
 
  case 'o':
 
    ++First;
 
    return getDerived().parseIntegerLiteral("unsigned __int128");
 
  case 'f':
 
    ++First;
 
    return getDerived().template parseFloatingLiteral<float>();
 
  case 'd':
 
    ++First;
 
    return getDerived().template parseFloatingLiteral<double>();
 
  case 'e':
 
    ++First;
 
#if defined(__powerpc__) || defined(__s390__)
 
    // Handle cases where long doubles encoded with e have the same size
 
    // and representation as doubles.
 
    return getDerived().template parseFloatingLiteral<double>();
 
#else
 
    return getDerived().template parseFloatingLiteral<long double>();
 
#endif
 
  case '_':
 
    if (consumeIf("_Z")) {
 
      Node *R = getDerived().parseEncoding();
 
      if (R != nullptr && consumeIf('E'))
 
        return R;
 
    }
 
    return nullptr;
 
  case 'A': {
 
    Node *T = getDerived().parseType();
 
    if (T == nullptr)
 
      return nullptr;
 
    // FIXME: We need to include the string contents in the mangling.
 
    if (consumeIf('E'))
 
      return make<StringLiteral>(T);
 
    return nullptr;
 
  }
 
  case 'D':
 
    if (consumeIf("Dn") && (consumeIf('0'), consumeIf('E')))
 
      return make<NameType>("nullptr");
 
    return nullptr;
 
  case 'T':
 
    // Invalid mangled name per
 
    //   http://sourcerytools.com/pipermail/cxx-abi-dev/2011-August/002422.html
 
    return nullptr;
 
  case 'U': {
 
    // FIXME: Should we support LUb... for block literals?
 
    if (look(1) != 'l')
 
      return nullptr;
 
    Node *T = parseUnnamedTypeName(nullptr);
 
    if (!T || !consumeIf('E'))
 
      return nullptr;
 
    return make<LambdaExpr>(T);
 
  }
 
  default: {
 
    // might be named type
 
    Node *T = getDerived().parseType();
 
    if (T == nullptr)
 
      return nullptr;
 
    StringView N = parseNumber(/*AllowNegative=*/true);
 
    if (N.empty())
 
      return nullptr;
 
    if (!consumeIf('E'))
 
      return nullptr;
 
    return make<EnumLiteral>(T, N);
 
  }
 
  }
 
}
 
 
 
// <braced-expression> ::= <expression>
 
//                     ::= di <field source-name> <braced-expression>    # .name = expr
 
//                     ::= dx <index expression> <braced-expression>     # [expr] = expr
 
//                     ::= dX <range begin expression> <range end expression> <braced-expression>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseBracedExpr() {
 
  if (look() == 'd') {
 
    switch (look(1)) {
 
    case 'i': {
 
      First += 2;
 
      Node *Field = getDerived().parseSourceName(/*NameState=*/nullptr);
 
      if (Field == nullptr)
 
        return nullptr;
 
      Node *Init = getDerived().parseBracedExpr();
 
      if (Init == nullptr)
 
        return nullptr;
 
      return make<BracedExpr>(Field, Init, /*isArray=*/false);
 
    }
 
    case 'x': {
 
      First += 2;
 
      Node *Index = getDerived().parseExpr();
 
      if (Index == nullptr)
 
        return nullptr;
 
      Node *Init = getDerived().parseBracedExpr();
 
      if (Init == nullptr)
 
        return nullptr;
 
      return make<BracedExpr>(Index, Init, /*isArray=*/true);
 
    }
 
    case 'X': {
 
      First += 2;
 
      Node *RangeBegin = getDerived().parseExpr();
 
      if (RangeBegin == nullptr)
 
        return nullptr;
 
      Node *RangeEnd = getDerived().parseExpr();
 
      if (RangeEnd == nullptr)
 
        return nullptr;
 
      Node *Init = getDerived().parseBracedExpr();
 
      if (Init == nullptr)
 
        return nullptr;
 
      return make<BracedRangeExpr>(RangeBegin, RangeEnd, Init);
 
    }
 
    }
 
  }
 
  return getDerived().parseExpr();
 
}
 
 
 
// (not yet in the spec)
 
// <fold-expr> ::= fL <binary-operator-name> <expression> <expression>
 
//             ::= fR <binary-operator-name> <expression> <expression>
 
//             ::= fl <binary-operator-name> <expression>
 
//             ::= fr <binary-operator-name> <expression>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseFoldExpr() {
 
  if (!consumeIf('f'))
 
    return nullptr;
 
 
 
  bool IsLeftFold = false, HasInitializer = false;
 
  switch (look()) {
 
  default:
 
    return nullptr;
 
  case 'L':
 
    IsLeftFold = true;
 
    HasInitializer = true;
 
    break;
 
  case 'R':
 
    HasInitializer = true;
 
    break;
 
  case 'l':
 
    IsLeftFold = true;
 
    break;
 
  case 'r':
 
    break;
 
  }
 
  ++First;
 
 
 
  const auto *Op = parseOperatorEncoding();
 
  if (!Op)
 
    return nullptr;
 
  if (!(Op->getKind() == OperatorInfo::Binary
 
        || (Op->getKind() == OperatorInfo::Member
 
            && Op->getName().back() == '*')))
 
    return nullptr;
 
 
 
  Node *Pack = getDerived().parseExpr();
 
  if (Pack == nullptr)
 
    return nullptr;
 
 
 
  Node *Init = nullptr;
 
  if (HasInitializer) {
 
    Init = getDerived().parseExpr();
 
    if (Init == nullptr)
 
      return nullptr;
 
  }
 
 
 
  if (IsLeftFold && Init)
 
    std::swap(Pack, Init);
 
 
 
  return make<FoldExpr>(IsLeftFold, Op->getSymbol(), Pack, Init);
 
}
 
 
 
// <expression> ::= mc <parameter type> <expr> [<offset number>] E
 
//
 
// Not yet in the spec: https://github.com/itanium-cxx-abi/cxx-abi/issues/47
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parsePointerToMemberConversionExpr(
 
    Node::Prec Prec) {
 
  Node *Ty = getDerived().parseType();
 
  if (!Ty)
 
    return nullptr;
 
  Node *Expr = getDerived().parseExpr();
 
  if (!Expr)
 
    return nullptr;
 
  StringView Offset = getDerived().parseNumber(true);
 
  if (!consumeIf('E'))
 
    return nullptr;
 
  return make<PointerToMemberConversionExpr>(Ty, Expr, Offset, Prec);
 
}
 
 
 
// <expression> ::= so <referent type> <expr> [<offset number>] <union-selector>* [p] E
 
// <union-selector> ::= _ [<number>]
 
//
 
// Not yet in the spec: https://github.com/itanium-cxx-abi/cxx-abi/issues/47
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseSubobjectExpr() {
 
  Node *Ty = getDerived().parseType();
 
  if (!Ty)
 
    return nullptr;
 
  Node *Expr = getDerived().parseExpr();
 
  if (!Expr)
 
    return nullptr;
 
  StringView Offset = getDerived().parseNumber(true);
 
  size_t SelectorsBegin = Names.size();
 
  while (consumeIf('_')) {
 
    Node *Selector = make<NameType>(parseNumber());
 
    if (!Selector)
 
      return nullptr;
 
    Names.push_back(Selector);
 
  }
 
  bool OnePastTheEnd = consumeIf('p');
 
  if (!consumeIf('E'))
 
    return nullptr;
 
  return make<SubobjectExpr>(
 
      Ty, Expr, Offset, popTrailingNodeArray(SelectorsBegin), OnePastTheEnd);
 
}
 
 
 
// <expression> ::= <unary operator-name> <expression>
 
//              ::= <binary operator-name> <expression> <expression>
 
//              ::= <ternary operator-name> <expression> <expression> <expression>
 
//              ::= cl <expression>+ E                                   # call
 
//              ::= cv <type> <expression>                               # conversion with one argument
 
//              ::= cv <type> _ <expression>* E                          # conversion with a different number of arguments
 
//              ::= [gs] nw <expression>* _ <type> E                     # new (expr-list) type
 
//              ::= [gs] nw <expression>* _ <type> <initializer>         # new (expr-list) type (init)
 
//              ::= [gs] na <expression>* _ <type> E                     # new[] (expr-list) type
 
//              ::= [gs] na <expression>* _ <type> <initializer>         # new[] (expr-list) type (init)
 
//              ::= [gs] dl <expression>                                 # delete expression
 
//              ::= [gs] da <expression>                                 # delete[] expression
 
//              ::= pp_ <expression>                                     # prefix ++
 
//              ::= mm_ <expression>                                     # prefix --
 
//              ::= ti <type>                                            # typeid (type)
 
//              ::= te <expression>                                      # typeid (expression)
 
//              ::= dc <type> <expression>                               # dynamic_cast<type> (expression)
 
//              ::= sc <type> <expression>                               # static_cast<type> (expression)
 
//              ::= cc <type> <expression>                               # const_cast<type> (expression)
 
//              ::= rc <type> <expression>                               # reinterpret_cast<type> (expression)
 
//              ::= st <type>                                            # sizeof (a type)
 
//              ::= sz <expression>                                      # sizeof (an expression)
 
//              ::= at <type>                                            # alignof (a type)
 
//              ::= az <expression>                                      # alignof (an expression)
 
//              ::= nx <expression>                                      # noexcept (expression)
 
//              ::= <template-param>
 
//              ::= <function-param>
 
//              ::= dt <expression> <unresolved-name>                    # expr.name
 
//              ::= pt <expression> <unresolved-name>                    # expr->name
 
//              ::= ds <expression> <expression>                         # expr.*expr
 
//              ::= sZ <template-param>                                  # size of a parameter pack
 
//              ::= sZ <function-param>                                  # size of a function parameter pack
 
//              ::= sP <template-arg>* E                                 # sizeof...(T), size of a captured template parameter pack from an alias template
 
//              ::= sp <expression>                                      # pack expansion
 
//              ::= tw <expression>                                      # throw expression
 
//              ::= tr                                                   # throw with no operand (rethrow)
 
//              ::= <unresolved-name>                                    # f(p), N::f(p), ::f(p),
 
//                                                                       # freestanding dependent name (e.g., T::x),
 
//                                                                       # objectless nonstatic member reference
 
//              ::= fL <binary-operator-name> <expression> <expression>
 
//              ::= fR <binary-operator-name> <expression> <expression>
 
//              ::= fl <binary-operator-name> <expression>
 
//              ::= fr <binary-operator-name> <expression>
 
//              ::= <expr-primary>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseExpr() {
 
  bool Global = consumeIf("gs");
 
 
 
  const auto *Op = parseOperatorEncoding();
 
  if (Op) {
 
    auto Sym = Op->getSymbol();
 
    switch (Op->getKind()) {
 
    case OperatorInfo::Binary:
 
      // Binary operator: lhs @ rhs
 
      return getDerived().parseBinaryExpr(Sym, Op->getPrecedence());
 
    case OperatorInfo::Prefix:
 
      // Prefix unary operator: @ expr
 
      return getDerived().parsePrefixExpr(Sym, Op->getPrecedence());
 
    case OperatorInfo::Postfix: {
 
      // Postfix unary operator: expr @
 
      if (consumeIf('_'))
 
        return getDerived().parsePrefixExpr(Sym, Op->getPrecedence());
 
      Node *Ex = getDerived().parseExpr();
 
      if (Ex == nullptr)
 
        return nullptr;
 
      return make<PostfixExpr>(Ex, Sym, Op->getPrecedence());
 
    }
 
    case OperatorInfo::Array: {
 
      // Array Index:  lhs [ rhs ]
 
      Node *Base = getDerived().parseExpr();
 
      if (Base == nullptr)
 
        return nullptr;
 
      Node *Index = getDerived().parseExpr();
 
      if (Index == nullptr)
 
        return nullptr;
 
      return make<ArraySubscriptExpr>(Base, Index, Op->getPrecedence());
 
    }
 
    case OperatorInfo::Member: {
 
      // Member access lhs @ rhs
 
      Node *LHS = getDerived().parseExpr();
 
      if (LHS == nullptr)
 
        return nullptr;
 
      Node *RHS = getDerived().parseExpr();
 
      if (RHS == nullptr)
 
        return nullptr;
 
      return make<MemberExpr>(LHS, Sym, RHS, Op->getPrecedence());
 
    }
 
    case OperatorInfo::New: {
 
      // New
 
      // # new (expr-list) type [(init)]
 
      // [gs] nw <expression>* _ <type> [pi <expression>*] E
 
      // # new[] (expr-list) type [(init)]
 
      // [gs] na <expression>* _ <type> [pi <expression>*] E
 
      size_t Exprs = Names.size();
 
      while (!consumeIf('_')) {
 
        Node *Ex = getDerived().parseExpr();
 
        if (Ex == nullptr)
 
          return nullptr;
 
        Names.push_back(Ex);
 
      }
 
      NodeArray ExprList = popTrailingNodeArray(Exprs);
 
      Node *Ty = getDerived().parseType();
 
      if (Ty == nullptr)
 
        return nullptr;
 
      bool HaveInits = consumeIf("pi");
 
      size_t InitsBegin = Names.size();
 
      while (!consumeIf('E')) {
 
        if (!HaveInits)
 
          return nullptr;
 
        Node *Init = getDerived().parseExpr();
 
        if (Init == nullptr)
 
          return Init;
 
        Names.push_back(Init);
 
      }
 
      NodeArray Inits = popTrailingNodeArray(InitsBegin);
 
      return make<NewExpr>(ExprList, Ty, Inits, Global,
 
                           /*IsArray=*/Op->getFlag(), Op->getPrecedence());
 
    }
 
    case OperatorInfo::Del: {
 
      // Delete
 
      Node *Ex = getDerived().parseExpr();
 
      if (Ex == nullptr)
 
        return nullptr;
 
      return make<DeleteExpr>(Ex, Global, /*IsArray=*/Op->getFlag(),
 
                              Op->getPrecedence());
 
    }
 
    case OperatorInfo::Call: {
 
      // Function Call
 
      Node *Callee = getDerived().parseExpr();
 
      if (Callee == nullptr)
 
        return nullptr;
 
      size_t ExprsBegin = Names.size();
 
      while (!consumeIf('E')) {
 
        Node *E = getDerived().parseExpr();
 
        if (E == nullptr)
 
          return nullptr;
 
        Names.push_back(E);
 
      }
 
      return make<CallExpr>(Callee, popTrailingNodeArray(ExprsBegin),
 
                            Op->getPrecedence());
 
    }
 
    case OperatorInfo::CCast: {
 
      // C Cast: (type)expr
 
      Node *Ty;
 
      {
 
        ScopedOverride<bool> SaveTemp(TryToParseTemplateArgs, false);
 
        Ty = getDerived().parseType();
 
      }
 
      if (Ty == nullptr)
 
        return nullptr;
 
 
 
      size_t ExprsBegin = Names.size();
 
      bool IsMany = consumeIf('_');
 
      while (!consumeIf('E')) {
 
        Node *E = getDerived().parseExpr();
 
        if (E == nullptr)
 
          return E;
 
        Names.push_back(E);
 
        if (!IsMany)
 
          break;
 
      }
 
      NodeArray Exprs = popTrailingNodeArray(ExprsBegin);
 
      if (!IsMany && Exprs.size() != 1)
 
        return nullptr;
 
      return make<ConversionExpr>(Ty, Exprs, Op->getPrecedence());
 
    }
 
    case OperatorInfo::Conditional: {
 
      // Conditional operator: expr ? expr : expr
 
      Node *Cond = getDerived().parseExpr();
 
      if (Cond == nullptr)
 
        return nullptr;
 
      Node *LHS = getDerived().parseExpr();
 
      if (LHS == nullptr)
 
        return nullptr;
 
      Node *RHS = getDerived().parseExpr();
 
      if (RHS == nullptr)
 
        return nullptr;
 
      return make<ConditionalExpr>(Cond, LHS, RHS, Op->getPrecedence());
 
    }
 
    case OperatorInfo::NamedCast: {
 
      // Named cast operation, @<type>(expr)
 
      Node *Ty = getDerived().parseType();
 
      if (Ty == nullptr)
 
        return nullptr;
 
      Node *Ex = getDerived().parseExpr();
 
      if (Ex == nullptr)
 
        return nullptr;
 
      return make<CastExpr>(Sym, Ty, Ex, Op->getPrecedence());
 
    }
 
    case OperatorInfo::OfIdOp: {
 
      // [sizeof/alignof/typeid] ( <type>|<expr> )
 
      Node *Arg =
 
          Op->getFlag() ? getDerived().parseType() : getDerived().parseExpr();
 
      if (!Arg)
 
        return nullptr;
 
      return make<EnclosingExpr>(Sym, Arg, Op->getPrecedence());
 
    }
 
    case OperatorInfo::NameOnly: {
 
      // Not valid as an expression operand.
 
      return nullptr;
 
    }
 
    }
 
    DEMANGLE_UNREACHABLE;
 
  }
 
 
 
  if (numLeft() < 2)
 
    return nullptr;
 
 
 
  if (look() == 'L')
 
    return getDerived().parseExprPrimary();
 
  if (look() == 'T')
 
    return getDerived().parseTemplateParam();
 
  if (look() == 'f') {
 
    // Disambiguate a fold expression from a <function-param>.
 
    if (look(1) == 'p' || (look(1) == 'L' && std::isdigit(look(2))))
 
      return getDerived().parseFunctionParam();
 
    return getDerived().parseFoldExpr();
 
  }
 
  if (consumeIf("il")) {
 
    size_t InitsBegin = Names.size();
 
    while (!consumeIf('E')) {
 
      Node *E = getDerived().parseBracedExpr();
 
      if (E == nullptr)
 
        return nullptr;
 
      Names.push_back(E);
 
    }
 
    return make<InitListExpr>(nullptr, popTrailingNodeArray(InitsBegin));
 
  }
 
  if (consumeIf("mc"))
 
    return parsePointerToMemberConversionExpr(Node::Prec::Unary);
 
  if (consumeIf("nx")) {
 
    Node *Ex = getDerived().parseExpr();
 
    if (Ex == nullptr)
 
      return Ex;
 
    return make<EnclosingExpr>("noexcept ", Ex, Node::Prec::Unary);
 
  }
 
  if (consumeIf("so"))
 
    return parseSubobjectExpr();
 
  if (consumeIf("sp")) {
 
    Node *Child = getDerived().parseExpr();
 
    if (Child == nullptr)
 
      return nullptr;
 
    return make<ParameterPackExpansion>(Child);
 
  }
 
  if (consumeIf("sZ")) {
 
    if (look() == 'T') {
 
      Node *R = getDerived().parseTemplateParam();
 
      if (R == nullptr)
 
        return nullptr;
 
      return make<SizeofParamPackExpr>(R);
 
    }
 
    Node *FP = getDerived().parseFunctionParam();
 
    if (FP == nullptr)
 
      return nullptr;
 
    return make<EnclosingExpr>("sizeof... ", FP);
 
  }
 
  if (consumeIf("sP")) {
 
    size_t ArgsBegin = Names.size();
 
    while (!consumeIf('E')) {
 
      Node *Arg = getDerived().parseTemplateArg();
 
      if (Arg == nullptr)
 
        return nullptr;
 
      Names.push_back(Arg);
 
    }
 
    auto *Pack = make<NodeArrayNode>(popTrailingNodeArray(ArgsBegin));
 
    if (!Pack)
 
      return nullptr;
 
    return make<EnclosingExpr>("sizeof... ", Pack);
 
  }
 
  if (consumeIf("tl")) {
 
    Node *Ty = getDerived().parseType();
 
    if (Ty == nullptr)
 
      return nullptr;
 
    size_t InitsBegin = Names.size();
 
    while (!consumeIf('E')) {
 
      Node *E = getDerived().parseBracedExpr();
 
      if (E == nullptr)
 
        return nullptr;
 
      Names.push_back(E);
 
    }
 
    return make<InitListExpr>(Ty, popTrailingNodeArray(InitsBegin));
 
  }
 
  if (consumeIf("tr"))
 
    return make<NameType>("throw");
 
  if (consumeIf("tw")) {
 
    Node *Ex = getDerived().parseExpr();
 
    if (Ex == nullptr)
 
      return nullptr;
 
    return make<ThrowExpr>(Ex);
 
  }
 
  if (consumeIf('u')) {
 
    Node *Name = getDerived().parseSourceName(/*NameState=*/nullptr);
 
    if (!Name)
 
      return nullptr;
 
    // Special case legacy __uuidof mangling. The 't' and 'z' appear where the
 
    // standard encoding expects a <template-arg>, and would be otherwise be
 
    // interpreted as <type> node 'short' or 'ellipsis'. However, neither
 
    // __uuidof(short) nor __uuidof(...) can actually appear, so there is no
 
    // actual conflict here.
 
    bool IsUUID = false;
 
    Node *UUID = nullptr;
 
    if (Name->getBaseName() == "__uuidof") {
 
      if (consumeIf('t')) {
 
        UUID = getDerived().parseType();
 
        IsUUID = true;
 
      } else if (consumeIf('z')) {
 
        UUID = getDerived().parseExpr();
 
        IsUUID = true;
 
      }
 
    }
 
    size_t ExprsBegin = Names.size();
 
    if (IsUUID) {
 
      if (UUID == nullptr)
 
        return nullptr;
 
      Names.push_back(UUID);
 
    } else {
 
      while (!consumeIf('E')) {
 
        Node *E = getDerived().parseTemplateArg();
 
        if (E == nullptr)
 
          return E;
 
        Names.push_back(E);
 
      }
 
    }
 
    return make<CallExpr>(Name, popTrailingNodeArray(ExprsBegin),
 
                          Node::Prec::Postfix);
 
  }
 
 
 
  // Only unresolved names remain.
 
  return getDerived().parseUnresolvedName(Global);
 
}
 
 
 
// <call-offset> ::= h <nv-offset> _
 
//               ::= v <v-offset> _
 
//
 
// <nv-offset> ::= <offset number>
 
//               # non-virtual base override
 
//
 
// <v-offset>  ::= <offset number> _ <virtual offset number>
 
//               # virtual base override, with vcall offset
 
template <typename Alloc, typename Derived>
 
bool AbstractManglingParser<Alloc, Derived>::parseCallOffset() {
 
  // Just scan through the call offset, we never add this information into the
 
  // output.
 
  if (consumeIf('h'))
 
    return parseNumber(true).empty() || !consumeIf('_');
 
  if (consumeIf('v'))
 
    return parseNumber(true).empty() || !consumeIf('_') ||
 
           parseNumber(true).empty() || !consumeIf('_');
 
  return true;
 
}
 
 
 
// <special-name> ::= TV <type>    # virtual table
 
//                ::= TT <type>    # VTT structure (construction vtable index)
 
//                ::= TI <type>    # typeinfo structure
 
//                ::= TS <type>    # typeinfo name (null-terminated byte string)
 
//                ::= Tc <call-offset> <call-offset> <base encoding>
 
//                    # base is the nominal target function of thunk
 
//                    # first call-offset is 'this' adjustment
 
//                    # second call-offset is result adjustment
 
//                ::= T <call-offset> <base encoding>
 
//                    # base is the nominal target function of thunk
 
//                # Guard variable for one-time initialization
 
//                ::= GV <object name>
 
//                                     # No <type>
 
//                ::= TW <object name> # Thread-local wrapper
 
//                ::= TH <object name> # Thread-local initialization
 
//                ::= GR <object name> _             # First temporary
 
//                ::= GR <object name> <seq-id> _    # Subsequent temporaries
 
//                # construction vtable for second-in-first
 
//      extension ::= TC <first type> <number> _ <second type>
 
//      extension ::= GR <object name> # reference temporary for object
 
//      extension ::= GI <module name> # module global initializer
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseSpecialName() {
 
  switch (look()) {
 
  case 'T':
 
    switch (look(1)) {
 
    // TA <template-arg>    # template parameter object
 
    //
 
    // Not yet in the spec: https://github.com/itanium-cxx-abi/cxx-abi/issues/63
 
    case 'A': {
 
      First += 2;
 
      Node *Arg = getDerived().parseTemplateArg();
 
      if (Arg == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("template parameter object for ", Arg);
 
    }
 
    // TV <type>    # virtual table
 
    case 'V': {
 
      First += 2;
 
      Node *Ty = getDerived().parseType();
 
      if (Ty == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("vtable for ", Ty);
 
    }
 
    // TT <type>    # VTT structure (construction vtable index)
 
    case 'T': {
 
      First += 2;
 
      Node *Ty = getDerived().parseType();
 
      if (Ty == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("VTT for ", Ty);
 
    }
 
    // TI <type>    # typeinfo structure
 
    case 'I': {
 
      First += 2;
 
      Node *Ty = getDerived().parseType();
 
      if (Ty == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("typeinfo for ", Ty);
 
    }
 
    // TS <type>    # typeinfo name (null-terminated byte string)
 
    case 'S': {
 
      First += 2;
 
      Node *Ty = getDerived().parseType();
 
      if (Ty == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("typeinfo name for ", Ty);
 
    }
 
    // Tc <call-offset> <call-offset> <base encoding>
 
    case 'c': {
 
      First += 2;
 
      if (parseCallOffset() || parseCallOffset())
 
        return nullptr;
 
      Node *Encoding = getDerived().parseEncoding();
 
      if (Encoding == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("covariant return thunk to ", Encoding);
 
    }
 
    // extension ::= TC <first type> <number> _ <second type>
 
    //               # construction vtable for second-in-first
 
    case 'C': {
 
      First += 2;
 
      Node *FirstType = getDerived().parseType();
 
      if (FirstType == nullptr)
 
        return nullptr;
 
      if (parseNumber(true).empty() || !consumeIf('_'))
 
        return nullptr;
 
      Node *SecondType = getDerived().parseType();
 
      if (SecondType == nullptr)
 
        return nullptr;
 
      return make<CtorVtableSpecialName>(SecondType, FirstType);
 
    }
 
    // TW <object name> # Thread-local wrapper
 
    case 'W': {
 
      First += 2;
 
      Node *Name = getDerived().parseName();
 
      if (Name == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("thread-local wrapper routine for ", Name);
 
    }
 
    // TH <object name> # Thread-local initialization
 
    case 'H': {
 
      First += 2;
 
      Node *Name = getDerived().parseName();
 
      if (Name == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("thread-local initialization routine for ", Name);
 
    }
 
    // T <call-offset> <base encoding>
 
    default: {
 
      ++First;
 
      bool IsVirt = look() == 'v';
 
      if (parseCallOffset())
 
        return nullptr;
 
      Node *BaseEncoding = getDerived().parseEncoding();
 
      if (BaseEncoding == nullptr)
 
        return nullptr;
 
      if (IsVirt)
 
        return make<SpecialName>("virtual thunk to ", BaseEncoding);
 
      else
 
        return make<SpecialName>("non-virtual thunk to ", BaseEncoding);
 
    }
 
    }
 
  case 'G':
 
    switch (look(1)) {
 
    // GV <object name> # Guard variable for one-time initialization
 
    case 'V': {
 
      First += 2;
 
      Node *Name = getDerived().parseName();
 
      if (Name == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("guard variable for ", Name);
 
    }
 
    // GR <object name> # reference temporary for object
 
    // GR <object name> _             # First temporary
 
    // GR <object name> <seq-id> _    # Subsequent temporaries
 
    case 'R': {
 
      First += 2;
 
      Node *Name = getDerived().parseName();
 
      if (Name == nullptr)
 
        return nullptr;
 
      size_t Count;
 
      bool ParsedSeqId = !parseSeqId(&Count);
 
      if (!consumeIf('_') && ParsedSeqId)
 
        return nullptr;
 
      return make<SpecialName>("reference temporary for ", Name);
 
    }
 
    // GI <module-name> v
 
    case 'I': {
 
      First += 2;
 
      ModuleName *Module = nullptr;
 
      if (getDerived().parseModuleNameOpt(Module))
 
        return nullptr;
 
      if (Module == nullptr)
 
        return nullptr;
 
      return make<SpecialName>("initializer for module ", Module);
 
    }
 
    }
 
  }
 
  return nullptr;
 
}
 
 
 
// <encoding> ::= <function name> <bare-function-type>
 
//            ::= <data name>
 
//            ::= <special-name>
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseEncoding() {
 
  // The template parameters of an encoding are unrelated to those of the
 
  // enclosing context.
 
  class SaveTemplateParams {
 
    AbstractManglingParser *Parser;
 
    decltype(TemplateParams) OldParams;
 
    decltype(OuterTemplateParams) OldOuterParams;
 
 
 
  public:
 
    SaveTemplateParams(AbstractManglingParser *TheParser) : Parser(TheParser) {
 
      OldParams = std::move(Parser->TemplateParams);
 
      OldOuterParams = std::move(Parser->OuterTemplateParams);
 
      Parser->TemplateParams.clear();
 
      Parser->OuterTemplateParams.clear();
 
    }
 
    ~SaveTemplateParams() {
 
      Parser->TemplateParams = std::move(OldParams);
 
      Parser->OuterTemplateParams = std::move(OldOuterParams);
 
    }
 
  } SaveTemplateParams(this);
 
 
 
  if (look() == 'G' || look() == 'T')
 
    return getDerived().parseSpecialName();
 
 
 
  auto IsEndOfEncoding = [&] {
 
    // The set of chars that can potentially follow an <encoding> (none of which
 
    // can start a <type>). Enumerating these allows us to avoid speculative
 
    // parsing.
 
    return numLeft() == 0 || look() == 'E' || look() == '.' || look() == '_';
 
  };
 
 
 
  NameState NameInfo(this);
 
  Node *Name = getDerived().parseName(&NameInfo);
 
  if (Name == nullptr)
 
    return nullptr;
 
 
 
  if (resolveForwardTemplateRefs(NameInfo))
 
    return nullptr;
 
 
 
  if (IsEndOfEncoding())
 
    return Name;
 
 
 
  Node *Attrs = nullptr;
 
  if (consumeIf("Ua9enable_ifI")) {
 
    size_t BeforeArgs = Names.size();
 
    while (!consumeIf('E')) {
 
      Node *Arg = getDerived().parseTemplateArg();
 
      if (Arg == nullptr)
 
        return nullptr;
 
      Names.push_back(Arg);
 
    }
 
    Attrs = make<EnableIfAttr>(popTrailingNodeArray(BeforeArgs));
 
    if (!Attrs)
 
      return nullptr;
 
  }
 
 
 
  Node *ReturnType = nullptr;
 
  if (!NameInfo.CtorDtorConversion && NameInfo.EndsWithTemplateArgs) {
 
    ReturnType = getDerived().parseType();
 
    if (ReturnType == nullptr)
 
      return nullptr;
 
  }
 
 
 
  if (consumeIf('v'))
 
    return make<FunctionEncoding>(ReturnType, Name, NodeArray(),
 
                                  Attrs, NameInfo.CVQualifiers,
 
                                  NameInfo.ReferenceQualifier);
 
 
 
  size_t ParamsBegin = Names.size();
 
  do {
 
    Node *Ty = getDerived().parseType();
 
    if (Ty == nullptr)
 
      return nullptr;
 
    Names.push_back(Ty);
 
  } while (!IsEndOfEncoding());
 
 
 
  return make<FunctionEncoding>(ReturnType, Name,
 
                                popTrailingNodeArray(ParamsBegin),
 
                                Attrs, NameInfo.CVQualifiers,
 
                                NameInfo.ReferenceQualifier);
 
}
 
 
 
template <class Float>
 
struct FloatData;
 
 
 
template <>
 
struct FloatData<float>
 
{
 
    static const size_t mangled_size = 8;
 
    static const size_t max_demangled_size = 24;
 
    static constexpr const char* spec = "%af";
 
};
 
 
 
template <>
 
struct FloatData<double>
 
{
 
    static const size_t mangled_size = 16;
 
    static const size_t max_demangled_size = 32;
 
    static constexpr const char* spec = "%a";
 
};
 
 
 
template <>
 
struct FloatData<long double>
 
{
 
#if defined(__mips__) && defined(__mips_n64) || defined(__aarch64__) || \
 
    defined(__wasm__) || defined(__riscv) || defined(__loongarch__)
 
    static const size_t mangled_size = 32;
 
#elif defined(__arm__) || defined(__mips__) || defined(__hexagon__)
 
    static const size_t mangled_size = 16;
 
#else
 
    static const size_t mangled_size = 20;  // May need to be adjusted to 16 or 24 on other platforms
 
#endif
 
    // `-0x1.ffffffffffffffffffffffffffffp+16383` + 'L' + '\0' == 42 bytes.
 
    // 28 'f's * 4 bits == 112 bits, which is the number of mantissa bits.
 
    // Negatives are one character longer than positives.
 
    // `0x1.` and `p` are constant, and exponents `+16383` and `-16382` are the
 
    // same length. 1 sign bit, 112 mantissa bits, and 15 exponent bits == 128.
 
    static const size_t max_demangled_size = 42;
 
    static constexpr const char *spec = "%LaL";
 
};
 
 
 
template <typename Alloc, typename Derived>
 
template <class Float>
 
Node *AbstractManglingParser<Alloc, Derived>::parseFloatingLiteral() {
 
  const size_t N = FloatData<Float>::mangled_size;
 
  if (numLeft() <= N)
 
    return nullptr;
 
  StringView Data(First, First + N);
 
  for (char C : Data)
 
    if (!std::isxdigit(C))
 
      return nullptr;
 
  First += N;
 
  if (!consumeIf('E'))
 
    return nullptr;
 
  return make<FloatLiteralImpl<Float>>(Data);
 
}
 
 
 
// <seq-id> ::= <0-9A-Z>+
 
template <typename Alloc, typename Derived>
 
bool AbstractManglingParser<Alloc, Derived>::parseSeqId(size_t *Out) {
 
  if (!(look() >= '0' && look() <= '9') &&
 
      !(look() >= 'A' && look() <= 'Z'))
 
    return true;
 
 
 
  size_t Id = 0;
 
  while (true) {
 
    if (look() >= '0' && look() <= '9') {
 
      Id *= 36;
 
      Id += static_cast<size_t>(look() - '0');
 
    } else if (look() >= 'A' && look() <= 'Z') {
 
      Id *= 36;
 
      Id += static_cast<size_t>(look() - 'A') + 10;
 
    } else {
 
      *Out = Id;
 
      return false;
 
    }
 
    ++First;
 
  }
 
}
 
 
 
// <substitution> ::= S <seq-id> _
 
//                ::= S_
 
// <substitution> ::= Sa # ::std::allocator
 
// <substitution> ::= Sb # ::std::basic_string
 
// <substitution> ::= Ss # ::std::basic_string < char,
 
//                                               ::std::char_traits<char>,
 
//                                               ::std::allocator<char> >
 
// <substitution> ::= Si # ::std::basic_istream<char,  std::char_traits<char> >
 
// <substitution> ::= So # ::std::basic_ostream<char,  std::char_traits<char> >
 
// <substitution> ::= Sd # ::std::basic_iostream<char, std::char_traits<char> >
 
// The St case is handled specially in parseNestedName.
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseSubstitution() {
 
  if (!consumeIf('S'))
 
    return nullptr;
 
 
 
  if (look() >= 'a' && look() <= 'z') {
 
    SpecialSubKind Kind;
 
    switch (look()) {
 
    case 'a':
 
      Kind = SpecialSubKind::allocator;
 
      break;
 
    case 'b':
 
      Kind = SpecialSubKind::basic_string;
 
      break;
 
    case 'd':
 
      Kind = SpecialSubKind::iostream;
 
      break;
 
    case 'i':
 
      Kind = SpecialSubKind::istream;
 
      break;
 
    case 'o':
 
      Kind = SpecialSubKind::ostream;
 
      break;
 
    case 's':
 
      Kind = SpecialSubKind::string;
 
      break;
 
    default:
 
      return nullptr;
 
    }
 
    ++First;
 
    auto *SpecialSub = make<SpecialSubstitution>(Kind);
 
    if (!SpecialSub)
 
      return nullptr;
 
 
 
    // Itanium C++ ABI 5.1.2: If a name that would use a built-in <substitution>
 
    // has ABI tags, the tags are appended to the substitution; the result is a
 
    // substitutable component.
 
    Node *WithTags = getDerived().parseAbiTags(SpecialSub);
 
    if (WithTags != SpecialSub) {
 
      Subs.push_back(WithTags);
 
      SpecialSub = WithTags;
 
    }
 
    return SpecialSub;
 
  }
 
 
 
  //                ::= S_
 
  if (consumeIf('_')) {
 
    if (Subs.empty())
 
      return nullptr;
 
    return Subs[0];
 
  }
 
 
 
  //                ::= S <seq-id> _
 
  size_t Index = 0;
 
  if (parseSeqId(&Index))
 
    return nullptr;
 
  ++Index;
 
  if (!consumeIf('_') || Index >= Subs.size())
 
    return nullptr;
 
  return Subs[Index];
 
}
 
 
 
// <template-param> ::= T_    # first template parameter
 
//                  ::= T <parameter-2 non-negative number> _
 
//                  ::= TL <level-1> __
 
//                  ::= TL <level-1> _ <parameter-2 non-negative number> _
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseTemplateParam() {
 
  if (!consumeIf('T'))
 
    return nullptr;
 
 
 
  size_t Level = 0;
 
  if (consumeIf('L')) {
 
    if (parsePositiveInteger(&Level))
 
      return nullptr;
 
    ++Level;
 
    if (!consumeIf('_'))
 
      return nullptr;
 
  }
 
 
 
  size_t Index = 0;
 
  if (!consumeIf('_')) {
 
    if (parsePositiveInteger(&Index))
 
      return nullptr;
 
    ++Index;
 
    if (!consumeIf('_'))
 
      return nullptr;
 
  }
 
 
 
  // If we're in a context where this <template-param> refers to a
 
  // <template-arg> further ahead in the mangled name (currently just conversion
 
  // operator types), then we should only look it up in the right context.
 
  // This can only happen at the outermost level.
 
  if (PermitForwardTemplateReferences && Level == 0) {
 
    Node *ForwardRef = make<ForwardTemplateReference>(Index);
 
    if (!ForwardRef)
 
      return nullptr;
 
    assert(ForwardRef->getKind() == Node::KForwardTemplateReference);
 
    ForwardTemplateRefs.push_back(
 
        static_cast<ForwardTemplateReference *>(ForwardRef));
 
    return ForwardRef;
 
  }
 
 
 
  if (Level >= TemplateParams.size() || !TemplateParams[Level] ||
 
      Index >= TemplateParams[Level]->size()) {
 
    // Itanium ABI 5.1.8: In a generic lambda, uses of auto in the parameter
 
    // list are mangled as the corresponding artificial template type parameter.
 
    if (ParsingLambdaParamsAtLevel == Level && Level <= TemplateParams.size()) {
 
      // This will be popped by the ScopedTemplateParamList in
 
      // parseUnnamedTypeName.
 
      if (Level == TemplateParams.size())
 
        TemplateParams.push_back(nullptr);
 
      return make<NameType>("auto");
 
    }
 
 
 
    return nullptr;
 
  }
 
 
 
  return (*TemplateParams[Level])[Index];
 
}
 
 
 
// <template-param-decl> ::= Ty                          # type parameter
 
//                       ::= Tn <type>                   # non-type parameter
 
//                       ::= Tt <template-param-decl>* E # template parameter
 
//                       ::= Tp <template-param-decl>    # parameter pack
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseTemplateParamDecl() {
 
  auto InventTemplateParamName = [&](TemplateParamKind Kind) {
 
    unsigned Index = NumSyntheticTemplateParameters[(int)Kind]++;
 
    Node *N = make<SyntheticTemplateParamName>(Kind, Index);
 
    if (N) TemplateParams.back()->push_back(N);
 
    return N;
 
  };
 
 
 
  if (consumeIf("Ty")) {
 
    Node *Name = InventTemplateParamName(TemplateParamKind::Type);
 
    if (!Name)
 
      return nullptr;
 
    return make<TypeTemplateParamDecl>(Name);
 
  }
 
 
 
  if (consumeIf("Tn")) {
 
    Node *Name = InventTemplateParamName(TemplateParamKind::NonType);
 
    if (!Name)
 
      return nullptr;
 
    Node *Type = parseType();
 
    if (!Type)
 
      return nullptr;
 
    return make<NonTypeTemplateParamDecl>(Name, Type);
 
  }
 
 
 
  if (consumeIf("Tt")) {
 
    Node *Name = InventTemplateParamName(TemplateParamKind::Template);
 
    if (!Name)
 
      return nullptr;
 
    size_t ParamsBegin = Names.size();
 
    ScopedTemplateParamList TemplateTemplateParamParams(this);
 
    while (!consumeIf("E")) {
 
      Node *P = parseTemplateParamDecl();
 
      if (!P)
 
        return nullptr;
 
      Names.push_back(P);
 
    }
 
    NodeArray Params = popTrailingNodeArray(ParamsBegin);
 
    return make<TemplateTemplateParamDecl>(Name, Params);
 
  }
 
 
 
  if (consumeIf("Tp")) {
 
    Node *P = parseTemplateParamDecl();
 
    if (!P)
 
      return nullptr;
 
    return make<TemplateParamPackDecl>(P);
 
  }
 
 
 
  return nullptr;
 
}
 
 
 
// <template-arg> ::= <type>                    # type or template
 
//                ::= X <expression> E          # expression
 
//                ::= <expr-primary>            # simple expressions
 
//                ::= J <template-arg>* E       # argument pack
 
//                ::= LZ <encoding> E           # extension
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parseTemplateArg() {
 
  switch (look()) {
 
  case 'X': {
 
    ++First;
 
    Node *Arg = getDerived().parseExpr();
 
    if (Arg == nullptr || !consumeIf('E'))
 
      return nullptr;
 
    return Arg;
 
  }
 
  case 'J': {
 
    ++First;
 
    size_t ArgsBegin = Names.size();
 
    while (!consumeIf('E')) {
 
      Node *Arg = getDerived().parseTemplateArg();
 
      if (Arg == nullptr)
 
        return nullptr;
 
      Names.push_back(Arg);
 
    }
 
    NodeArray Args = popTrailingNodeArray(ArgsBegin);
 
    return make<TemplateArgumentPack>(Args);
 
  }
 
  case 'L': {
 
    //                ::= LZ <encoding> E           # extension
 
    if (look(1) == 'Z') {
 
      First += 2;
 
      Node *Arg = getDerived().parseEncoding();
 
      if (Arg == nullptr || !consumeIf('E'))
 
        return nullptr;
 
      return Arg;
 
    }
 
    //                ::= <expr-primary>            # simple expressions
 
    return getDerived().parseExprPrimary();
 
  }
 
  default:
 
    return getDerived().parseType();
 
  }
 
}
 
 
 
// <template-args> ::= I <template-arg>* E
 
//     extension, the abi says <template-arg>+
 
template <typename Derived, typename Alloc>
 
Node *
 
AbstractManglingParser<Derived, Alloc>::parseTemplateArgs(bool TagTemplates) {
 
  if (!consumeIf('I'))
 
    return nullptr;
 
 
 
  // <template-params> refer to the innermost <template-args>. Clear out any
 
  // outer args that we may have inserted into TemplateParams.
 
  if (TagTemplates) {
 
    TemplateParams.clear();
 
    TemplateParams.push_back(&OuterTemplateParams);
 
    OuterTemplateParams.clear();
 
  }
 
 
 
  size_t ArgsBegin = Names.size();
 
  while (!consumeIf('E')) {
 
    if (TagTemplates) {
 
      auto OldParams = std::move(TemplateParams);
 
      Node *Arg = getDerived().parseTemplateArg();
 
      TemplateParams = std::move(OldParams);
 
      if (Arg == nullptr)
 
        return nullptr;
 
      Names.push_back(Arg);
 
      Node *TableEntry = Arg;
 
      if (Arg->getKind() == Node::KTemplateArgumentPack) {
 
        TableEntry = make<ParameterPack>(
 
            static_cast<TemplateArgumentPack*>(TableEntry)->getElements());
 
        if (!TableEntry)
 
          return nullptr;
 
      }
 
      TemplateParams.back()->push_back(TableEntry);
 
    } else {
 
      Node *Arg = getDerived().parseTemplateArg();
 
      if (Arg == nullptr)
 
        return nullptr;
 
      Names.push_back(Arg);
 
    }
 
  }
 
  return make<TemplateArgs>(popTrailingNodeArray(ArgsBegin));
 
}
 
 
 
// <mangled-name> ::= _Z <encoding>
 
//                ::= <type>
 
// extension      ::= ___Z <encoding> _block_invoke
 
// extension      ::= ___Z <encoding> _block_invoke<decimal-digit>+
 
// extension      ::= ___Z <encoding> _block_invoke_<decimal-digit>+
 
template <typename Derived, typename Alloc>
 
Node *AbstractManglingParser<Derived, Alloc>::parse() {
 
  if (consumeIf("_Z") || consumeIf("__Z")) {
 
    Node *Encoding = getDerived().parseEncoding();
 
    if (Encoding == nullptr)
 
      return nullptr;
 
    if (look() == '.') {
 
      Encoding = make<DotSuffix>(Encoding, StringView(First, Last));
 
      First = Last;
 
    }
 
    if (numLeft() != 0)
 
      return nullptr;
 
    return Encoding;
 
  }
 
 
 
  if (consumeIf("___Z") || consumeIf("____Z")) {
 
    Node *Encoding = getDerived().parseEncoding();
 
    if (Encoding == nullptr || !consumeIf("_block_invoke"))
 
      return nullptr;
 
    bool RequireNumber = consumeIf('_');
 
    if (parseNumber().empty() && RequireNumber)
 
      return nullptr;
 
    if (look() == '.')
 
      First = Last;
 
    if (numLeft() != 0)
 
      return nullptr;
 
    return make<SpecialName>("invocation function for block in ", Encoding);
 
  }
 
 
 
  Node *Ty = getDerived().parseType();
 
  if (numLeft() != 0)
 
    return nullptr;
 
  return Ty;
 
}
 
 
 
template <typename Alloc>
 
struct ManglingParser : AbstractManglingParser<ManglingParser<Alloc>, Alloc> {
 
  using AbstractManglingParser<ManglingParser<Alloc>,
 
                               Alloc>::AbstractManglingParser;
 
};
 
 
 
DEMANGLE_NAMESPACE_END
 
 
 
#endif // DEMANGLE_ITANIUMDEMANGLE_H