//===- RecordSerialization.h ------------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_DEBUGINFO_CODEVIEW_RECORDSERIALIZATION_H
 
#define LLVM_DEBUGINFO_CODEVIEW_RECORDSERIALIZATION_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/DebugInfo/CodeView/CodeView.h"
 
#include "llvm/DebugInfo/CodeView/CodeViewError.h"
 
#include "llvm/Support/BinaryStreamReader.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/Error.h"
 
#include <cinttypes>
 
 
 
namespace llvm {
 
class APSInt;
 
namespace codeview {
 
using llvm::support::little32_t;
 
using llvm::support::ulittle16_t;
 
using llvm::support::ulittle32_t;
 
 
 
/// Limit on the size of all codeview symbol and type records, including the
 
/// RecordPrefix. MSVC does not emit any records larger than this.
 
enum : unsigned { MaxRecordLength = 0xFF00 };
 
 
 
struct RecordPrefix {
 
  RecordPrefix() = default;
 
  explicit RecordPrefix(uint16_t Kind) : RecordLen(2), RecordKind(Kind) {}
 
 
 
  ulittle16_t RecordLen;  // Record length, starting from &RecordKind.
 
  ulittle16_t RecordKind; // Record kind enum (SymRecordKind or TypeRecordKind)
 
};
 
 
 
/// Reinterpret a byte array as an array of characters. Does not interpret as
 
/// a C string, as StringRef has several helpers (split) that make that easy.
 
StringRef getBytesAsCharacters(ArrayRef<uint8_t> LeafData);
 
StringRef getBytesAsCString(ArrayRef<uint8_t> LeafData);
 
 
 
inline Error consume(BinaryStreamReader &Reader) { return Error::success(); }
 
 
 
/// Decodes a numeric "leaf" value. These are integer literals encountered in
 
/// the type stream. If the value is positive and less than LF_NUMERIC (1 <<
 
/// 15), it is emitted directly in Data. Otherwise, it has a tag like LF_CHAR
 
/// that indicates the bitwidth and sign of the numeric data.
 
Error consume(BinaryStreamReader &Reader, APSInt &Num);
 
 
 
/// Decodes a numeric leaf value that is known to be a particular type.
 
Error consume_numeric(BinaryStreamReader &Reader, uint64_t &Value);
 
 
 
/// Decodes signed and unsigned fixed-length integers.
 
Error consume(BinaryStreamReader &Reader, uint32_t &Item);
 
Error consume(BinaryStreamReader &Reader, int32_t &Item);
 
 
 
/// Decodes a null terminated string.
 
Error consume(BinaryStreamReader &Reader, StringRef &Item);
 
 
 
Error consume(StringRef &Data, APSInt &Num);
 
Error consume(StringRef &Data, uint32_t &Item);
 
 
 
/// Decodes an arbitrary object whose layout matches that of the underlying
 
/// byte sequence, and returns a pointer to the object.
 
template <typename T> Error consume(BinaryStreamReader &Reader, T *&Item) {
 
  return Reader.readObject(Item);
 
}
 
 
 
template <typename T, typename U> struct serialize_conditional_impl {
 
  serialize_conditional_impl(T &Item, U Func) : Item(Item), Func(Func) {}
 
 
 
  Error deserialize(BinaryStreamReader &Reader) const {
 
    if (!Func())
 
      return Error::success();
 
    return consume(Reader, Item);
 
  }
 
 
 
  T &Item;
 
  U Func;
 
};
 
 
 
template <typename T, typename U>
 
serialize_conditional_impl<T, U> serialize_conditional(T &Item, U Func) {
 
  return serialize_conditional_impl<T, U>(Item, Func);
 
}
 
 
 
template <typename T, typename U> struct serialize_array_impl {
 
  serialize_array_impl(ArrayRef<T> &Item, U Func) : Item(Item), Func(Func) {}
 
 
 
  Error deserialize(BinaryStreamReader &Reader) const {
 
    return Reader.readArray(Item, Func());
 
  }
 
 
 
  ArrayRef<T> &Item;
 
  U Func;
 
};
 
 
 
template <typename T> struct serialize_vector_tail_impl {
 
  serialize_vector_tail_impl(std::vector<T> &Item) : Item(Item) {}
 
 
 
  Error deserialize(BinaryStreamReader &Reader) const {
 
    T Field;
 
    // Stop when we run out of bytes or we hit record padding bytes.
 
    while (!Reader.empty() && Reader.peek() < LF_PAD0) {
 
      if (auto EC = consume(Reader, Field))
 
        return EC;
 
      Item.push_back(Field);
 
    }
 
    return Error::success();
 
  }
 
 
 
  std::vector<T> &Item;
 
};
 
 
 
struct serialize_null_term_string_array_impl {
 
  serialize_null_term_string_array_impl(std::vector<StringRef> &Item)
 
      : Item(Item) {}
 
 
 
  Error deserialize(BinaryStreamReader &Reader) const {
 
    if (Reader.empty())
 
      return make_error<CodeViewError>(cv_error_code::insufficient_buffer,
 
                                       "Null terminated string is empty!");
 
 
 
    while (Reader.peek() != 0) {
 
      StringRef Field;
 
      if (auto EC = Reader.readCString(Field))
 
        return EC;
 
      Item.push_back(Field);
 
    }
 
    return Reader.skip(1);
 
  }
 
 
 
  std::vector<StringRef> &Item;
 
};
 
 
 
template <typename T> struct serialize_arrayref_tail_impl {
 
  serialize_arrayref_tail_impl(ArrayRef<T> &Item) : Item(Item) {}
 
 
 
  Error deserialize(BinaryStreamReader &Reader) const {
 
    uint32_t Count = Reader.bytesRemaining() / sizeof(T);
 
    return Reader.readArray(Item, Count);
 
  }
 
 
 
  ArrayRef<T> &Item;
 
};
 
 
 
template <typename T> struct serialize_numeric_impl {
 
  serialize_numeric_impl(T &Item) : Item(Item) {}
 
 
 
  Error deserialize(BinaryStreamReader &Reader) const {
 
    return consume_numeric(Reader, Item);
 
  }
 
 
 
  T &Item;
 
};
 
 
 
template <typename T, typename U>
 
serialize_array_impl<T, U> serialize_array(ArrayRef<T> &Item, U Func) {
 
  return serialize_array_impl<T, U>(Item, Func);
 
}
 
 
 
inline serialize_null_term_string_array_impl
 
serialize_null_term_string_array(std::vector<StringRef> &Item) {
 
  return serialize_null_term_string_array_impl(Item);
 
}
 
 
 
template <typename T>
 
serialize_vector_tail_impl<T> serialize_array_tail(std::vector<T> &Item) {
 
  return serialize_vector_tail_impl<T>(Item);
 
}
 
 
 
template <typename T>
 
serialize_arrayref_tail_impl<T> serialize_array_tail(ArrayRef<T> &Item) {
 
  return serialize_arrayref_tail_impl<T>(Item);
 
}
 
 
 
template <typename T> serialize_numeric_impl<T> serialize_numeric(T &Item) {
 
  return serialize_numeric_impl<T>(Item);
 
}
 
 
 
template <typename T, typename U>
 
Error consume(BinaryStreamReader &Reader,
 
              const serialize_conditional_impl<T, U> &Item) {
 
  return Item.deserialize(Reader);
 
}
 
 
 
template <typename T, typename U>
 
Error consume(BinaryStreamReader &Reader,
 
              const serialize_array_impl<T, U> &Item) {
 
  return Item.deserialize(Reader);
 
}
 
 
 
inline Error consume(BinaryStreamReader &Reader,
 
                     const serialize_null_term_string_array_impl &Item) {
 
  return Item.deserialize(Reader);
 
}
 
 
 
template <typename T>
 
Error consume(BinaryStreamReader &Reader,
 
              const serialize_vector_tail_impl<T> &Item) {
 
  return Item.deserialize(Reader);
 
}
 
 
 
template <typename T>
 
Error consume(BinaryStreamReader &Reader,
 
              const serialize_arrayref_tail_impl<T> &Item) {
 
  return Item.deserialize(Reader);
 
}
 
 
 
template <typename T>
 
Error consume(BinaryStreamReader &Reader,
 
              const serialize_numeric_impl<T> &Item) {
 
  return Item.deserialize(Reader);
 
}
 
 
 
template <typename T, typename U, typename... Args>
 
Error consume(BinaryStreamReader &Reader, T &&X, U &&Y, Args &&... Rest) {
 
  if (auto EC = consume(Reader, X))
 
    return EC;
 
  return consume(Reader, Y, std::forward<Args>(Rest)...);
 
}
 
 
 
}
 
}
 
 
 
#endif