//===- TargetPassConfig.h - Code Generation pass options --------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
/// Target-Independent Code Generator Pass Configuration Options pass.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_TARGETPASSCONFIG_H
 
#define LLVM_CODEGEN_TARGETPASSCONFIG_H
 
 
 
#include "llvm/Pass.h"
 
#include "llvm/Support/CodeGen.h"
 
#include <cassert>
 
#include <string>
 
 
 
namespace llvm {
 
 
 
class LLVMTargetMachine;
 
struct MachineSchedContext;
 
class PassConfigImpl;
 
class ScheduleDAGInstrs;
 
class CSEConfigBase;
 
class PassInstrumentationCallbacks;
 
 
 
// The old pass manager infrastructure is hidden in a legacy namespace now.
 
namespace legacy {
 
 
 
class PassManagerBase;
 
 
 
} // end namespace legacy
 
 
 
using legacy::PassManagerBase;
 
 
 
/// Discriminated union of Pass ID types.
 
///
 
/// The PassConfig API prefers dealing with IDs because they are safer and more
 
/// efficient. IDs decouple configuration from instantiation. This way, when a
 
/// pass is overriden, it isn't unnecessarily instantiated. It is also unsafe to
 
/// refer to a Pass pointer after adding it to a pass manager, which deletes
 
/// redundant pass instances.
 
///
 
/// However, it is convient to directly instantiate target passes with
 
/// non-default ctors. These often don't have a registered PassInfo. Rather than
 
/// force all target passes to implement the pass registry boilerplate, allow
 
/// the PassConfig API to handle either type.
 
///
 
/// AnalysisID is sadly char*, so PointerIntPair won't work.
 
class IdentifyingPassPtr {
 
  union {
 
    AnalysisID ID;
 
    Pass *P;
 
  };
 
  bool IsInstance = false;
 
 
 
public:
 
  IdentifyingPassPtr() : P(nullptr) {}
 
  IdentifyingPassPtr(AnalysisID IDPtr) : ID(IDPtr) {}
 
  IdentifyingPassPtr(Pass *InstancePtr) : P(InstancePtr), IsInstance(true) {}
 
 
 
  bool isValid() const { return P; }
 
  bool isInstance() const { return IsInstance; }
 
 
 
  AnalysisID getID() const {
 
    assert(!IsInstance && "Not a Pass ID");
 
    return ID;
 
  }
 
 
 
  Pass *getInstance() const {
 
    assert(IsInstance && "Not a Pass Instance");
 
    return P;
 
  }
 
};
 
 
 
 
 
/// Target-Independent Code Generator Pass Configuration Options.
 
///
 
/// This is an ImmutablePass solely for the purpose of exposing CodeGen options
 
/// to the internals of other CodeGen passes.
 
class TargetPassConfig : public ImmutablePass {
 
private:
 
  PassManagerBase *PM = nullptr;
 
  AnalysisID StartBefore = nullptr;
 
  AnalysisID StartAfter = nullptr;
 
  AnalysisID StopBefore = nullptr;
 
  AnalysisID StopAfter = nullptr;
 
 
 
  unsigned StartBeforeInstanceNum = 0;
 
  unsigned StartBeforeCount = 0;
 
 
 
  unsigned StartAfterInstanceNum = 0;
 
  unsigned StartAfterCount = 0;
 
 
 
  unsigned StopBeforeInstanceNum = 0;
 
  unsigned StopBeforeCount = 0;
 
 
 
  unsigned StopAfterInstanceNum = 0;
 
  unsigned StopAfterCount = 0;
 
 
 
  bool Started = true;
 
  bool Stopped = false;
 
  bool AddingMachinePasses = false;
 
  bool DebugifyIsSafe = true;
 
 
 
  /// Set the StartAfter, StartBefore and StopAfter passes to allow running only
 
  /// a portion of the normal code-gen pass sequence.
 
  ///
 
  /// If the StartAfter and StartBefore pass ID is zero, then compilation will
 
  /// begin at the normal point; otherwise, clear the Started flag to indicate
 
  /// that passes should not be added until the starting pass is seen.  If the
 
  /// Stop pass ID is zero, then compilation will continue to the end.
 
  ///
 
  /// This function expects that at least one of the StartAfter or the
 
  /// StartBefore pass IDs is null.
 
  void setStartStopPasses();
 
 
 
protected:
 
  LLVMTargetMachine *TM;
 
  PassConfigImpl *Impl = nullptr; // Internal data structures
 
  bool Initialized = false; // Flagged after all passes are configured.
 
 
 
  // Target Pass Options
 
  // Targets provide a default setting, user flags override.
 
  bool DisableVerify = false;
 
 
 
  /// Default setting for -enable-tail-merge on this target.
 
  bool EnableTailMerge = true;
 
 
 
  /// Require processing of functions such that callees are generated before
 
  /// callers.
 
  bool RequireCodeGenSCCOrder = false;
 
 
 
  /// Add the actual instruction selection passes. This does not include
 
  /// preparation passes on IR.
 
  bool addCoreISelPasses();
 
 
 
public:
 
  TargetPassConfig(LLVMTargetMachine &TM, PassManagerBase &pm);
 
  // Dummy constructor.
 
  TargetPassConfig();
 
 
 
  ~TargetPassConfig() override;
 
 
 
  static char ID;
 
 
 
  /// Get the right type of TargetMachine for this target.
 
  template<typename TMC> TMC &getTM() const {
 
    return *static_cast<TMC*>(TM);
 
  }
 
 
 
  //
 
  void setInitialized() { Initialized = true; }
 
 
 
  CodeGenOpt::Level getOptLevel() const;
 
 
 
  /// Returns true if one of the `-start-after`, `-start-before`, `-stop-after`
 
  /// or `-stop-before` options is set.
 
  static bool hasLimitedCodeGenPipeline();
 
 
 
  /// Returns true if none of the `-stop-before` and `-stop-after` options is
 
  /// set.
 
  static bool willCompleteCodeGenPipeline();
 
 
 
  /// If hasLimitedCodeGenPipeline is true, this method
 
  /// returns a string with the name of the options, separated
 
  /// by \p Separator that caused this pipeline to be limited.
 
  static std::string
 
  getLimitedCodeGenPipelineReason(const char *Separator = "/");
 
 
 
  void setDisableVerify(bool Disable) { setOpt(DisableVerify, Disable); }
 
 
 
  bool getEnableTailMerge() const { return EnableTailMerge; }
 
  void setEnableTailMerge(bool Enable) { setOpt(EnableTailMerge, Enable); }
 
 
 
  bool requiresCodeGenSCCOrder() const { return RequireCodeGenSCCOrder; }
 
  void setRequiresCodeGenSCCOrder(bool Enable = true) {
 
    setOpt(RequireCodeGenSCCOrder, Enable);
 
  }
 
 
 
  /// Allow the target to override a specific pass without overriding the pass
 
  /// pipeline. When passes are added to the standard pipeline at the
 
  /// point where StandardID is expected, add TargetID in its place.
 
  void substitutePass(AnalysisID StandardID, IdentifyingPassPtr TargetID);
 
 
 
  /// Insert InsertedPassID pass after TargetPassID pass.
 
  void insertPass(AnalysisID TargetPassID, IdentifyingPassPtr InsertedPassID);
 
 
 
  /// Allow the target to enable a specific standard pass by default.
 
  void enablePass(AnalysisID PassID) { substitutePass(PassID, PassID); }
 
 
 
  /// Allow the target to disable a specific standard pass by default.
 
  void disablePass(AnalysisID PassID) {
 
    substitutePass(PassID, IdentifyingPassPtr());
 
  }
 
 
 
  /// Return the pass substituted for StandardID by the target.
 
  /// If no substitution exists, return StandardID.
 
  IdentifyingPassPtr getPassSubstitution(AnalysisID StandardID) const;
 
 
 
  /// Return true if the pass has been substituted by the target or
 
  /// overridden on the command line.
 
  bool isPassSubstitutedOrOverridden(AnalysisID ID) const;
 
 
 
  /// Return true if the optimized regalloc pipeline is enabled.
 
  bool getOptimizeRegAlloc() const;
 
 
 
  /// Return true if the default global register allocator is in use and
 
  /// has not be overriden on the command line with '-regalloc=...'
 
  bool usingDefaultRegAlloc() const;
 
 
 
  /// High level function that adds all passes necessary to go from llvm IR
 
  /// representation to the MI representation.
 
  /// Adds IR based lowering and target specific optimization passes and finally
 
  /// the core instruction selection passes.
 
  /// \returns true if an error occurred, false otherwise.
 
  bool addISelPasses();
 
 
 
  /// Add common target configurable passes that perform LLVM IR to IR
 
  /// transforms following machine independent optimization.
 
  virtual void addIRPasses();
 
 
 
  /// Add passes to lower exception handling for the code generator.
 
  void addPassesToHandleExceptions();
 
 
 
  /// Add pass to prepare the LLVM IR for code generation. This should be done
 
  /// before exception handling preparation passes.
 
  virtual void addCodeGenPrepare();
 
 
 
  /// Add common passes that perform LLVM IR to IR transforms in preparation for
 
  /// instruction selection.
 
  virtual void addISelPrepare();
 
 
 
  /// addInstSelector - This method should install an instruction selector pass,
 
  /// which converts from LLVM code to machine instructions.
 
  virtual bool addInstSelector() {
 
    return true;
 
  }
 
 
 
  /// This method should install an IR translator pass, which converts from
 
  /// LLVM code to machine instructions with possibly generic opcodes.
 
  virtual bool addIRTranslator() { return true; }
 
 
 
  /// This method may be implemented by targets that want to run passes
 
  /// immediately before legalization.
 
  virtual void addPreLegalizeMachineIR() {}
 
 
 
  /// This method should install a legalize pass, which converts the instruction
 
  /// sequence into one that can be selected by the target.
 
  virtual bool addLegalizeMachineIR() { return true; }
 
 
 
  /// This method may be implemented by targets that want to run passes
 
  /// immediately before the register bank selection.
 
  virtual void addPreRegBankSelect() {}
 
 
 
  /// This method should install a register bank selector pass, which
 
  /// assigns register banks to virtual registers without a register
 
  /// class or register banks.
 
  virtual bool addRegBankSelect() { return true; }
 
 
 
  /// This method may be implemented by targets that want to run passes
 
  /// immediately before the (global) instruction selection.
 
  virtual void addPreGlobalInstructionSelect() {}
 
 
 
  /// This method should install a (global) instruction selector pass, which
 
  /// converts possibly generic instructions to fully target-specific
 
  /// instructions, thereby constraining all generic virtual registers to
 
  /// register classes.
 
  virtual bool addGlobalInstructionSelect() { return true; }
 
 
 
  /// Add the complete, standard set of LLVM CodeGen passes.
 
  /// Fully developed targets will not generally override this.
 
  virtual void addMachinePasses();
 
 
 
  /// Create an instance of ScheduleDAGInstrs to be run within the standard
 
  /// MachineScheduler pass for this function and target at the current
 
  /// optimization level.
 
  ///
 
  /// This can also be used to plug a new MachineSchedStrategy into an instance
 
  /// of the standard ScheduleDAGMI:
 
  ///   return new ScheduleDAGMI(C, std::make_unique<MyStrategy>(C), /*RemoveKillFlags=*/false)
 
  ///
 
  /// Return NULL to select the default (generic) machine scheduler.
 
  virtual ScheduleDAGInstrs *
 
  createMachineScheduler(MachineSchedContext *C) const {
 
    return nullptr;
 
  }
 
 
 
  /// Similar to createMachineScheduler but used when postRA machine scheduling
 
  /// is enabled.
 
  virtual ScheduleDAGInstrs *
 
  createPostMachineScheduler(MachineSchedContext *C) const {
 
    return nullptr;
 
  }
 
 
 
  /// printAndVerify - Add a pass to dump then verify the machine function, if
 
  /// those steps are enabled.
 
  void printAndVerify(const std::string &Banner);
 
 
 
  /// Add a pass to print the machine function if printing is enabled.
 
  void addPrintPass(const std::string &Banner);
 
 
 
  /// Add a pass to perform basic verification of the machine function if
 
  /// verification is enabled.
 
  void addVerifyPass(const std::string &Banner);
 
 
 
  /// Add a pass to add synthesized debug info to the MIR.
 
  void addDebugifyPass();
 
 
 
  /// Add a pass to remove debug info from the MIR.
 
  void addStripDebugPass();
 
 
 
  /// Add a pass to check synthesized debug info for MIR.
 
  void addCheckDebugPass();
 
 
 
  /// Add standard passes before a pass that's about to be added. For example,
 
  /// the DebugifyMachineModulePass if it is enabled.
 
  void addMachinePrePasses(bool AllowDebugify = true);
 
 
 
  /// Add standard passes after a pass that has just been added. For example,
 
  /// the MachineVerifier if it is enabled.
 
  void addMachinePostPasses(const std::string &Banner);
 
 
 
  /// Check whether or not GlobalISel should abort on error.
 
  /// When this is disabled, GlobalISel will fall back on SDISel instead of
 
  /// erroring out.
 
  bool isGlobalISelAbortEnabled() const;
 
 
 
  /// Check whether or not a diagnostic should be emitted when GlobalISel
 
  /// uses the fallback path. In other words, it will emit a diagnostic
 
  /// when GlobalISel failed and isGlobalISelAbortEnabled is false.
 
  virtual bool reportDiagnosticWhenGlobalISelFallback() const;
 
 
 
  /// Check whether continuous CSE should be enabled in GISel passes.
 
  /// By default, it's enabled for non O0 levels.
 
  virtual bool isGISelCSEEnabled() const;
 
 
 
  /// Returns the CSEConfig object to use for the current optimization level.
 
  virtual std::unique_ptr<CSEConfigBase> getCSEConfig() const;
 
 
 
protected:
 
  // Helper to verify the analysis is really immutable.
 
  void setOpt(bool &Opt, bool Val);
 
 
 
  /// Return true if register allocator is specified by -regalloc=override.
 
  bool isCustomizedRegAlloc();
 
 
 
  /// Methods with trivial inline returns are convenient points in the common
 
  /// codegen pass pipeline where targets may insert passes. Methods with
 
  /// out-of-line standard implementations are major CodeGen stages called by
 
  /// addMachinePasses. Some targets may override major stages when inserting
 
  /// passes is insufficient, but maintaining overriden stages is more work.
 
  ///
 
 
 
  /// addPreISelPasses - This method should add any "last minute" LLVM->LLVM
 
  /// passes (which are run just before instruction selector).
 
  virtual bool addPreISel() {
 
    return true;
 
  }
 
 
 
  /// addMachineSSAOptimization - Add standard passes that optimize machine
 
  /// instructions in SSA form.
 
  virtual void addMachineSSAOptimization();
 
 
 
  /// Add passes that optimize instruction level parallelism for out-of-order
 
  /// targets. These passes are run while the machine code is still in SSA
 
  /// form, so they can use MachineTraceMetrics to control their heuristics.
 
  ///
 
  /// All passes added here should preserve the MachineDominatorTree,
 
  /// MachineLoopInfo, and MachineTraceMetrics analyses.
 
  virtual bool addILPOpts() {
 
    return false;
 
  }
 
 
 
  /// This method may be implemented by targets that want to run passes
 
  /// immediately before register allocation.
 
  virtual void addPreRegAlloc() { }
 
 
 
  /// createTargetRegisterAllocator - Create the register allocator pass for
 
  /// this target at the current optimization level.
 
  virtual FunctionPass *createTargetRegisterAllocator(bool Optimized);
 
 
 
  /// addFastRegAlloc - Add the minimum set of target-independent passes that
 
  /// are required for fast register allocation.
 
  virtual void addFastRegAlloc();
 
 
 
  /// addOptimizedRegAlloc - Add passes related to register allocation.
 
  /// LLVMTargetMachine provides standard regalloc passes for most targets.
 
  virtual void addOptimizedRegAlloc();
 
 
 
  /// addPreRewrite - Add passes to the optimized register allocation pipeline
 
  /// after register allocation is complete, but before virtual registers are
 
  /// rewritten to physical registers.
 
  ///
 
  /// These passes must preserve VirtRegMap and LiveIntervals, and when running
 
  /// after RABasic or RAGreedy, they should take advantage of LiveRegMatrix.
 
  /// When these passes run, VirtRegMap contains legal physreg assignments for
 
  /// all virtual registers.
 
  ///
 
  /// Note if the target overloads addRegAssignAndRewriteOptimized, this may not
 
  /// be honored. This is also not generally used for the the fast variant,
 
  /// where the allocation and rewriting are done in one pass.
 
  virtual bool addPreRewrite() {
 
    return false;
 
  }
 
 
 
  /// addPostFastRegAllocRewrite - Add passes to the optimized register
 
  /// allocation pipeline after fast register allocation is complete.
 
  virtual bool addPostFastRegAllocRewrite() { return false; }
 
 
 
  /// Add passes to be run immediately after virtual registers are rewritten
 
  /// to physical registers.
 
  virtual void addPostRewrite() { }
 
 
 
  /// This method may be implemented by targets that want to run passes after
 
  /// register allocation pass pipeline but before prolog-epilog insertion.
 
  virtual void addPostRegAlloc() { }
 
 
 
  /// Add passes that optimize machine instructions after register allocation.
 
  virtual void addMachineLateOptimization();
 
 
 
  /// This method may be implemented by targets that want to run passes after
 
  /// prolog-epilog insertion and before the second instruction scheduling pass.
 
  virtual void addPreSched2() { }
 
 
 
  /// addGCPasses - Add late codegen passes that analyze code for garbage
 
  /// collection. This should return true if GC info should be printed after
 
  /// these passes.
 
  virtual bool addGCPasses();
 
 
 
  /// Add standard basic block placement passes.
 
  virtual void addBlockPlacement();
 
 
 
  /// This pass may be implemented by targets that want to run passes
 
  /// immediately before machine code is emitted.
 
  virtual void addPreEmitPass() { }
 
 
 
  /// Targets may add passes immediately before machine code is emitted in this
 
  /// callback. This is called even later than `addPreEmitPass`.
 
  // FIXME: Rename `addPreEmitPass` to something more sensible given its actual
 
  // position and remove the `2` suffix here as this callback is what
 
  // `addPreEmitPass` *should* be but in reality isn't.
 
  virtual void addPreEmitPass2() {}
 
 
 
  /// Utilities for targets to add passes to the pass manager.
 
  ///
 
 
 
  /// Add a CodeGen pass at this point in the pipeline after checking overrides.
 
  /// Return the pass that was added, or zero if no pass was added.
 
  AnalysisID addPass(AnalysisID PassID);
 
 
 
  /// Add a pass to the PassManager if that pass is supposed to be run, as
 
  /// determined by the StartAfter and StopAfter options. Takes ownership of the
 
  /// pass.
 
  void addPass(Pass *P);
 
 
 
  /// addMachinePasses helper to create the target-selected or overriden
 
  /// regalloc pass.
 
  virtual FunctionPass *createRegAllocPass(bool Optimized);
 
 
 
  /// Add core register allocator passes which do the actual register assignment
 
  /// and rewriting. \returns true if any passes were added.
 
  virtual bool addRegAssignAndRewriteFast();
 
  virtual bool addRegAssignAndRewriteOptimized();
 
};
 
 
 
void registerCodeGenCallback(PassInstrumentationCallbacks &PIC,
 
                             LLVMTargetMachine &);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_TARGETPASSCONFIG_H