Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file describes the target machine instruction set to the code generator.
  10. //
  11. //===----------------------------------------------------------------------===//
  12.  
  13. #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
  14. #define LLVM_CODEGEN_TARGETINSTRINFO_H
  15.  
  16. #include "llvm/ADT/ArrayRef.h"
  17. #include "llvm/ADT/DenseMap.h"
  18. #include "llvm/ADT/DenseMapInfo.h"
  19. #include "llvm/ADT/Uniformity.h"
  20. #include "llvm/CodeGen/MIRFormatter.h"
  21. #include "llvm/CodeGen/MachineBasicBlock.h"
  22. #include "llvm/CodeGen/MachineFunction.h"
  23. #include "llvm/CodeGen/MachineInstr.h"
  24. #include "llvm/CodeGen/MachineInstrBuilder.h"
  25. #include "llvm/CodeGen/MachineOperand.h"
  26. #include "llvm/CodeGen/MachineOutliner.h"
  27. #include "llvm/CodeGen/RegisterClassInfo.h"
  28. #include "llvm/CodeGen/VirtRegMap.h"
  29. #include "llvm/MC/MCInstrInfo.h"
  30. #include "llvm/Support/BranchProbability.h"
  31. #include "llvm/Support/ErrorHandling.h"
  32. #include <cassert>
  33. #include <cstddef>
  34. #include <cstdint>
  35. #include <utility>
  36. #include <vector>
  37.  
  38. namespace llvm {
  39.  
  40. class DFAPacketizer;
  41. class InstrItineraryData;
  42. class LiveIntervals;
  43. class LiveVariables;
  44. class MachineLoop;
  45. class MachineMemOperand;
  46. class MachineRegisterInfo;
  47. class MCAsmInfo;
  48. class MCInst;
  49. struct MCSchedModel;
  50. class Module;
  51. class ScheduleDAG;
  52. class ScheduleDAGMI;
  53. class ScheduleHazardRecognizer;
  54. class SDNode;
  55. class SelectionDAG;
  56. class SMSchedule;
  57. class SwingSchedulerDAG;
  58. class RegScavenger;
  59. class TargetRegisterClass;
  60. class TargetRegisterInfo;
  61. class TargetSchedModel;
  62. class TargetSubtargetInfo;
  63. enum class MachineCombinerPattern;
  64.  
  65. template <class T> class SmallVectorImpl;
  66.  
  67. using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
  68.  
  69. struct DestSourcePair {
  70.   const MachineOperand *Destination;
  71.   const MachineOperand *Source;
  72.  
  73.   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
  74.       : Destination(&Dest), Source(&Src) {}
  75. };
  76.  
  77. /// Used to describe a register and immediate addition.
  78. struct RegImmPair {
  79.   Register Reg;
  80.   int64_t Imm;
  81.  
  82.   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
  83. };
  84.  
  85. /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
  86. /// It holds the register values, the scale value and the displacement.
  87. struct ExtAddrMode {
  88.   Register BaseReg;
  89.   Register ScaledReg;
  90.   int64_t Scale;
  91.   int64_t Displacement;
  92. };
  93.  
  94. //---------------------------------------------------------------------------
  95. ///
  96. /// TargetInstrInfo - Interface to description of machine instruction set
  97. ///
  98. class TargetInstrInfo : public MCInstrInfo {
  99. public:
  100.   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
  101.                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
  102.       : CallFrameSetupOpcode(CFSetupOpcode),
  103.         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
  104.         ReturnOpcode(ReturnOpcode) {}
  105.   TargetInstrInfo(const TargetInstrInfo &) = delete;
  106.   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
  107.   virtual ~TargetInstrInfo();
  108.  
  109.   static bool isGenericOpcode(unsigned Opc) {
  110.     return Opc <= TargetOpcode::GENERIC_OP_END;
  111.   }
  112.  
  113.   static bool isGenericAtomicRMWOpcode(unsigned Opc) {
  114.     return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
  115.            Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
  116.   }
  117.  
  118.   /// Given a machine instruction descriptor, returns the register
  119.   /// class constraint for OpNum, or NULL.
  120.   virtual
  121.   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
  122.                                          const TargetRegisterInfo *TRI,
  123.                                          const MachineFunction &MF) const;
  124.  
  125.   /// Return true if the instruction is trivially rematerializable, meaning it
  126.   /// has no side effects and requires no operands that aren't always available.
  127.   /// This means the only allowed uses are constants and unallocatable physical
  128.   /// registers so that the instructions result is independent of the place
  129.   /// in the function.
  130.   bool isTriviallyReMaterializable(const MachineInstr &MI) const {
  131.     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
  132.            (MI.getDesc().isRematerializable() &&
  133.             (isReallyTriviallyReMaterializable(MI) ||
  134.              isReallyTriviallyReMaterializableGeneric(MI)));
  135.   }
  136.  
  137.   /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
  138.   /// of instruction rematerialization or sinking.
  139.   virtual bool isIgnorableUse(const MachineOperand &MO) const {
  140.     return false;
  141.   }
  142.  
  143. protected:
  144.   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
  145.   /// set, this hook lets the target specify whether the instruction is actually
  146.   /// trivially rematerializable, taking into consideration its operands. This
  147.   /// predicate must return false if the instruction has any side effects other
  148.   /// than producing a value, or if it requres any address registers that are
  149.   /// not always available.
  150.   /// Requirements must be check as stated in isTriviallyReMaterializable() .
  151.   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const {
  152.     return false;
  153.   }
  154.  
  155.   /// This method commutes the operands of the given machine instruction MI.
  156.   /// The operands to be commuted are specified by their indices OpIdx1 and
  157.   /// OpIdx2.
  158.   ///
  159.   /// If a target has any instructions that are commutable but require
  160.   /// converting to different instructions or making non-trivial changes
  161.   /// to commute them, this method can be overloaded to do that.
  162.   /// The default implementation simply swaps the commutable operands.
  163.   ///
  164.   /// If NewMI is false, MI is modified in place and returned; otherwise, a
  165.   /// new machine instruction is created and returned.
  166.   ///
  167.   /// Do not call this method for a non-commutable instruction.
  168.   /// Even though the instruction is commutable, the method may still
  169.   /// fail to commute the operands, null pointer is returned in such cases.
  170.   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
  171.                                                unsigned OpIdx1,
  172.                                                unsigned OpIdx2) const;
  173.  
  174.   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
  175.   /// operand indices to (ResultIdx1, ResultIdx2).
  176.   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
  177.   /// predefined to some indices or be undefined (designated by the special
  178.   /// value 'CommuteAnyOperandIndex').
  179.   /// The predefined result indices cannot be re-defined.
  180.   /// The function returns true iff after the result pair redefinition
  181.   /// the fixed result pair is equal to or equivalent to the source pair of
  182.   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
  183.   /// the pairs (x,y) and (y,x) are equivalent.
  184.   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
  185.                                    unsigned CommutableOpIdx1,
  186.                                    unsigned CommutableOpIdx2);
  187.  
  188. private:
  189.   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
  190.   /// set and the target hook isReallyTriviallyReMaterializable returns false,
  191.   /// this function does target-independent tests to determine if the
  192.   /// instruction is really trivially rematerializable.
  193.   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI) const;
  194.  
  195. public:
  196.   /// These methods return the opcode of the frame setup/destroy instructions
  197.   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
  198.   /// order to abstract away the difference between operating with a frame
  199.   /// pointer and operating without, through the use of these two instructions.
  200.   ///
  201.   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
  202.   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
  203.  
  204.   /// Returns true if the argument is a frame pseudo instruction.
  205.   bool isFrameInstr(const MachineInstr &I) const {
  206.     return I.getOpcode() == getCallFrameSetupOpcode() ||
  207.            I.getOpcode() == getCallFrameDestroyOpcode();
  208.   }
  209.  
  210.   /// Returns true if the argument is a frame setup pseudo instruction.
  211.   bool isFrameSetup(const MachineInstr &I) const {
  212.     return I.getOpcode() == getCallFrameSetupOpcode();
  213.   }
  214.  
  215.   /// Returns size of the frame associated with the given frame instruction.
  216.   /// For frame setup instruction this is frame that is set up space set up
  217.   /// after the instruction. For frame destroy instruction this is the frame
  218.   /// freed by the caller.
  219.   /// Note, in some cases a call frame (or a part of it) may be prepared prior
  220.   /// to the frame setup instruction. It occurs in the calls that involve
  221.   /// inalloca arguments. This function reports only the size of the frame part
  222.   /// that is set up between the frame setup and destroy pseudo instructions.
  223.   int64_t getFrameSize(const MachineInstr &I) const {
  224.     assert(isFrameInstr(I) && "Not a frame instruction");
  225.     assert(I.getOperand(0).getImm() >= 0);
  226.     return I.getOperand(0).getImm();
  227.   }
  228.  
  229.   /// Returns the total frame size, which is made up of the space set up inside
  230.   /// the pair of frame start-stop instructions and the space that is set up
  231.   /// prior to the pair.
  232.   int64_t getFrameTotalSize(const MachineInstr &I) const {
  233.     if (isFrameSetup(I)) {
  234.       assert(I.getOperand(1).getImm() >= 0 &&
  235.              "Frame size must not be negative");
  236.       return getFrameSize(I) + I.getOperand(1).getImm();
  237.     }
  238.     return getFrameSize(I);
  239.   }
  240.  
  241.   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
  242.   unsigned getReturnOpcode() const { return ReturnOpcode; }
  243.  
  244.   /// Returns the actual stack pointer adjustment made by an instruction
  245.   /// as part of a call sequence. By default, only call frame setup/destroy
  246.   /// instructions adjust the stack, but targets may want to override this
  247.   /// to enable more fine-grained adjustment, or adjust by a different value.
  248.   virtual int getSPAdjust(const MachineInstr &MI) const;
  249.  
  250.   /// Return true if the instruction is a "coalescable" extension instruction.
  251.   /// That is, it's like a copy where it's legal for the source to overlap the
  252.   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
  253.   /// expected the pre-extension value is available as a subreg of the result
  254.   /// register. This also returns the sub-register index in SubIdx.
  255.   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
  256.                                      Register &DstReg, unsigned &SubIdx) const {
  257.     return false;
  258.   }
  259.  
  260.   /// If the specified machine instruction is a direct
  261.   /// load from a stack slot, return the virtual or physical register number of
  262.   /// the destination along with the FrameIndex of the loaded stack slot.  If
  263.   /// not, return 0.  This predicate must return 0 if the instruction has
  264.   /// any side effects other than loading from the stack slot.
  265.   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
  266.                                        int &FrameIndex) const {
  267.     return 0;
  268.   }
  269.  
  270.   /// Optional extension of isLoadFromStackSlot that returns the number of
  271.   /// bytes loaded from the stack. This must be implemented if a backend
  272.   /// supports partial stack slot spills/loads to further disambiguate
  273.   /// what the load does.
  274.   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
  275.                                        int &FrameIndex,
  276.                                        unsigned &MemBytes) const {
  277.     MemBytes = 0;
  278.     return isLoadFromStackSlot(MI, FrameIndex);
  279.   }
  280.  
  281.   /// Check for post-frame ptr elimination stack locations as well.
  282.   /// This uses a heuristic so it isn't reliable for correctness.
  283.   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
  284.                                              int &FrameIndex) const {
  285.     return 0;
  286.   }
  287.  
  288.   /// If the specified machine instruction has a load from a stack slot,
  289.   /// return true along with the FrameIndices of the loaded stack slot and the
  290.   /// machine mem operands containing the reference.
  291.   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
  292.   /// any instructions that loads from the stack.  This is just a hint, as some
  293.   /// cases may be missed.
  294.   virtual bool hasLoadFromStackSlot(
  295.       const MachineInstr &MI,
  296.       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
  297.  
  298.   /// If the specified machine instruction is a direct
  299.   /// store to a stack slot, return the virtual or physical register number of
  300.   /// the source reg along with the FrameIndex of the loaded stack slot.  If
  301.   /// not, return 0.  This predicate must return 0 if the instruction has
  302.   /// any side effects other than storing to the stack slot.
  303.   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
  304.                                       int &FrameIndex) const {
  305.     return 0;
  306.   }
  307.  
  308.   /// Optional extension of isStoreToStackSlot that returns the number of
  309.   /// bytes stored to the stack. This must be implemented if a backend
  310.   /// supports partial stack slot spills/loads to further disambiguate
  311.   /// what the store does.
  312.   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
  313.                                       int &FrameIndex,
  314.                                       unsigned &MemBytes) const {
  315.     MemBytes = 0;
  316.     return isStoreToStackSlot(MI, FrameIndex);
  317.   }
  318.  
  319.   /// Check for post-frame ptr elimination stack locations as well.
  320.   /// This uses a heuristic, so it isn't reliable for correctness.
  321.   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
  322.                                             int &FrameIndex) const {
  323.     return 0;
  324.   }
  325.  
  326.   /// If the specified machine instruction has a store to a stack slot,
  327.   /// return true along with the FrameIndices of the loaded stack slot and the
  328.   /// machine mem operands containing the reference.
  329.   /// If not, return false.  Unlike isStoreToStackSlot,
  330.   /// this returns true for any instructions that stores to the
  331.   /// stack.  This is just a hint, as some cases may be missed.
  332.   virtual bool hasStoreToStackSlot(
  333.       const MachineInstr &MI,
  334.       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
  335.  
  336.   /// Return true if the specified machine instruction
  337.   /// is a copy of one stack slot to another and has no other effect.
  338.   /// Provide the identity of the two frame indices.
  339.   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
  340.                                int &SrcFrameIndex) const {
  341.     return false;
  342.   }
  343.  
  344.   /// Compute the size in bytes and offset within a stack slot of a spilled
  345.   /// register or subregister.
  346.   ///
  347.   /// \param [out] Size in bytes of the spilled value.
  348.   /// \param [out] Offset in bytes within the stack slot.
  349.   /// \returns true if both Size and Offset are successfully computed.
  350.   ///
  351.   /// Not all subregisters have computable spill slots. For example,
  352.   /// subregisters registers may not be byte-sized, and a pair of discontiguous
  353.   /// subregisters has no single offset.
  354.   ///
  355.   /// Targets with nontrivial bigendian implementations may need to override
  356.   /// this, particularly to support spilled vector registers.
  357.   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
  358.                                  unsigned &Size, unsigned &Offset,
  359.                                  const MachineFunction &MF) const;
  360.  
  361.   /// Return true if the given instruction is terminator that is unspillable,
  362.   /// according to isUnspillableTerminatorImpl.
  363.   bool isUnspillableTerminator(const MachineInstr *MI) const {
  364.     return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
  365.   }
  366.  
  367.   /// Returns the size in bytes of the specified MachineInstr, or ~0U
  368.   /// when this function is not implemented by a target.
  369.   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
  370.     return ~0U;
  371.   }
  372.  
  373.   /// Return true if the instruction is as cheap as a move instruction.
  374.   ///
  375.   /// Targets for different archs need to override this, and different
  376.   /// micro-architectures can also be finely tuned inside.
  377.   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
  378.     return MI.isAsCheapAsAMove();
  379.   }
  380.  
  381.   /// Return true if the instruction should be sunk by MachineSink.
  382.   ///
  383.   /// MachineSink determines on its own whether the instruction is safe to sink;
  384.   /// this gives the target a hook to override the default behavior with regards
  385.   /// to which instructions should be sunk.
  386.   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
  387.  
  388.   /// Return false if the instruction should not be hoisted by MachineLICM.
  389.   ///
  390.   /// MachineLICM determines on its own whether the instruction is safe to
  391.   /// hoist; this gives the target a hook to extend this assessment and prevent
  392.   /// an instruction being hoisted from a given loop for target specific
  393.   /// reasons.
  394.   virtual bool shouldHoist(const MachineInstr &MI,
  395.                            const MachineLoop *FromLoop) const {
  396.     return true;
  397.   }
  398.  
  399.   /// Re-issue the specified 'original' instruction at the
  400.   /// specific location targeting a new destination register.
  401.   /// The register in Orig->getOperand(0).getReg() will be substituted by
  402.   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
  403.   /// SubIdx.
  404.   virtual void reMaterialize(MachineBasicBlock &MBB,
  405.                              MachineBasicBlock::iterator MI, Register DestReg,
  406.                              unsigned SubIdx, const MachineInstr &Orig,
  407.                              const TargetRegisterInfo &TRI) const;
  408.  
  409.   /// Clones instruction or the whole instruction bundle \p Orig and
  410.   /// insert into \p MBB before \p InsertBefore. The target may update operands
  411.   /// that are required to be unique.
  412.   ///
  413.   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
  414.   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
  415.                                   MachineBasicBlock::iterator InsertBefore,
  416.                                   const MachineInstr &Orig) const;
  417.  
  418.   /// This method must be implemented by targets that
  419.   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  420.   /// may be able to convert a two-address instruction into one or more true
  421.   /// three-address instructions on demand.  This allows the X86 target (for
  422.   /// example) to convert ADD and SHL instructions into LEA instructions if they
  423.   /// would require register copies due to two-addressness.
  424.   ///
  425.   /// This method returns a null pointer if the transformation cannot be
  426.   /// performed, otherwise it returns the last new instruction.
  427.   ///
  428.   /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
  429.   /// replacing \p MI with new instructions, even though this function does not
  430.   /// remove MI.
  431.   virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
  432.                                               LiveVariables *LV,
  433.                                               LiveIntervals *LIS) const {
  434.     return nullptr;
  435.   }
  436.  
  437.   // This constant can be used as an input value of operand index passed to
  438.   // the method findCommutedOpIndices() to tell the method that the
  439.   // corresponding operand index is not pre-defined and that the method
  440.   // can pick any commutable operand.
  441.   static const unsigned CommuteAnyOperandIndex = ~0U;
  442.  
  443.   /// This method commutes the operands of the given machine instruction MI.
  444.   ///
  445.   /// The operands to be commuted are specified by their indices OpIdx1 and
  446.   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
  447.   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
  448.   /// any arbitrarily chosen commutable operand. If both arguments are set to
  449.   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
  450.   /// operands; then commutes them if such operands could be found.
  451.   ///
  452.   /// If NewMI is false, MI is modified in place and returned; otherwise, a
  453.   /// new machine instruction is created and returned.
  454.   ///
  455.   /// Do not call this method for a non-commutable instruction or
  456.   /// for non-commuable operands.
  457.   /// Even though the instruction is commutable, the method may still
  458.   /// fail to commute the operands, null pointer is returned in such cases.
  459.   MachineInstr *
  460.   commuteInstruction(MachineInstr &MI, bool NewMI = false,
  461.                      unsigned OpIdx1 = CommuteAnyOperandIndex,
  462.                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
  463.  
  464.   /// Returns true iff the routine could find two commutable operands in the
  465.   /// given machine instruction.
  466.   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
  467.   /// If any of the INPUT values is set to the special value
  468.   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
  469.   /// operand, then returns its index in the corresponding argument.
  470.   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
  471.   /// looks for 2 commutable operands.
  472.   /// If INPUT values refer to some operands of MI, then the method simply
  473.   /// returns true if the corresponding operands are commutable and returns
  474.   /// false otherwise.
  475.   ///
  476.   /// For example, calling this method this way:
  477.   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
  478.   ///     findCommutedOpIndices(MI, Op1, Op2);
  479.   /// can be interpreted as a query asking to find an operand that would be
  480.   /// commutable with the operand#1.
  481.   virtual bool findCommutedOpIndices(const MachineInstr &MI,
  482.                                      unsigned &SrcOpIdx1,
  483.                                      unsigned &SrcOpIdx2) const;
  484.  
  485.   /// Returns true if the target has a preference on the operands order of
  486.   /// the given machine instruction. And specify if \p Commute is required to
  487.   /// get the desired operands order.
  488.   virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
  489.     return false;
  490.   }
  491.  
  492.   /// A pair composed of a register and a sub-register index.
  493.   /// Used to give some type checking when modeling Reg:SubReg.
  494.   struct RegSubRegPair {
  495.     Register Reg;
  496.     unsigned SubReg;
  497.  
  498.     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
  499.         : Reg(Reg), SubReg(SubReg) {}
  500.  
  501.     bool operator==(const RegSubRegPair& P) const {
  502.       return Reg == P.Reg && SubReg == P.SubReg;
  503.     }
  504.     bool operator!=(const RegSubRegPair& P) const {
  505.       return !(*this == P);
  506.     }
  507.   };
  508.  
  509.   /// A pair composed of a pair of a register and a sub-register index,
  510.   /// and another sub-register index.
  511.   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
  512.   struct RegSubRegPairAndIdx : RegSubRegPair {
  513.     unsigned SubIdx;
  514.  
  515.     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
  516.                         unsigned SubIdx = 0)
  517.         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
  518.   };
  519.  
  520.   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
  521.   /// and \p DefIdx.
  522.   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
  523.   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
  524.   /// flag are not added to this list.
  525.   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
  526.   /// two elements:
  527.   /// - %1:sub1, sub0
  528.   /// - %2<:0>, sub1
  529.   ///
  530.   /// \returns true if it is possible to build such an input sequence
  531.   /// with the pair \p MI, \p DefIdx. False otherwise.
  532.   ///
  533.   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
  534.   ///
  535.   /// \note The generic implementation does not provide any support for
  536.   /// MI.isRegSequenceLike(). In other words, one has to override
  537.   /// getRegSequenceLikeInputs for target specific instructions.
  538.   bool
  539.   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
  540.                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
  541.  
  542.   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
  543.   /// and \p DefIdx.
  544.   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
  545.   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
  546.   /// - %1:sub1, sub0
  547.   ///
  548.   /// \returns true if it is possible to build such an input sequence
  549.   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
  550.   /// False otherwise.
  551.   ///
  552.   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
  553.   ///
  554.   /// \note The generic implementation does not provide any support for
  555.   /// MI.isExtractSubregLike(). In other words, one has to override
  556.   /// getExtractSubregLikeInputs for target specific instructions.
  557.   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
  558.                               RegSubRegPairAndIdx &InputReg) const;
  559.  
  560.   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
  561.   /// and \p DefIdx.
  562.   /// \p [out] BaseReg and \p [out] InsertedReg contain
  563.   /// the equivalent inputs of INSERT_SUBREG.
  564.   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
  565.   /// - BaseReg: %0:sub0
  566.   /// - InsertedReg: %1:sub1, sub3
  567.   ///
  568.   /// \returns true if it is possible to build such an input sequence
  569.   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
  570.   /// False otherwise.
  571.   ///
  572.   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
  573.   ///
  574.   /// \note The generic implementation does not provide any support for
  575.   /// MI.isInsertSubregLike(). In other words, one has to override
  576.   /// getInsertSubregLikeInputs for target specific instructions.
  577.   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
  578.                              RegSubRegPair &BaseReg,
  579.                              RegSubRegPairAndIdx &InsertedReg) const;
  580.  
  581.   /// Return true if two machine instructions would produce identical values.
  582.   /// By default, this is only true when the two instructions
  583.   /// are deemed identical except for defs. If this function is called when the
  584.   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
  585.   /// aggressive checks.
  586.   virtual bool produceSameValue(const MachineInstr &MI0,
  587.                                 const MachineInstr &MI1,
  588.                                 const MachineRegisterInfo *MRI = nullptr) const;
  589.  
  590.   /// \returns true if a branch from an instruction with opcode \p BranchOpc
  591.   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
  592.   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
  593.                                      int64_t BrOffset) const {
  594.     llvm_unreachable("target did not implement");
  595.   }
  596.  
  597.   /// \returns The block that branch instruction \p MI jumps to.
  598.   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
  599.     llvm_unreachable("target did not implement");
  600.   }
  601.  
  602.   /// Insert an unconditional indirect branch at the end of \p MBB to \p
  603.   /// NewDestBB. Optionally, insert the clobbered register restoring in \p
  604.   /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
  605.   /// the offset of the position to insert the new branch.
  606.   virtual void insertIndirectBranch(MachineBasicBlock &MBB,
  607.                                     MachineBasicBlock &NewDestBB,
  608.                                     MachineBasicBlock &RestoreBB,
  609.                                     const DebugLoc &DL, int64_t BrOffset = 0,
  610.                                     RegScavenger *RS = nullptr) const {
  611.     llvm_unreachable("target did not implement");
  612.   }
  613.  
  614.   /// Analyze the branching code at the end of MBB, returning
  615.   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
  616.   /// implemented for a target).  Upon success, this returns false and returns
  617.   /// with the following information in various cases:
  618.   ///
  619.   /// 1. If this block ends with no branches (it just falls through to its succ)
  620.   ///    just return false, leaving TBB/FBB null.
  621.   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
  622.   ///    the destination block.
  623.   /// 3. If this block ends with a conditional branch and it falls through to a
  624.   ///    successor block, it sets TBB to be the branch destination block and a
  625.   ///    list of operands that evaluate the condition. These operands can be
  626.   ///    passed to other TargetInstrInfo methods to create new branches.
  627.   /// 4. If this block ends with a conditional branch followed by an
  628.   ///    unconditional branch, it returns the 'true' destination in TBB, the
  629.   ///    'false' destination in FBB, and a list of operands that evaluate the
  630.   ///    condition.  These operands can be passed to other TargetInstrInfo
  631.   ///    methods to create new branches.
  632.   ///
  633.   /// Note that removeBranch and insertBranch must be implemented to support
  634.   /// cases where this method returns success.
  635.   ///
  636.   /// If AllowModify is true, then this routine is allowed to modify the basic
  637.   /// block (e.g. delete instructions after the unconditional branch).
  638.   ///
  639.   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
  640.   /// before calling this function.
  641.   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
  642.                              MachineBasicBlock *&FBB,
  643.                              SmallVectorImpl<MachineOperand> &Cond,
  644.                              bool AllowModify = false) const {
  645.     return true;
  646.   }
  647.  
  648.   /// Represents a predicate at the MachineFunction level.  The control flow a
  649.   /// MachineBranchPredicate represents is:
  650.   ///
  651.   ///  Reg = LHS `Predicate` RHS         == ConditionDef
  652.   ///  if Reg then goto TrueDest else goto FalseDest
  653.   ///
  654.   struct MachineBranchPredicate {
  655.     enum ComparePredicate {
  656.       PRED_EQ,     // True if two values are equal
  657.       PRED_NE,     // True if two values are not equal
  658.       PRED_INVALID // Sentinel value
  659.     };
  660.  
  661.     ComparePredicate Predicate = PRED_INVALID;
  662.     MachineOperand LHS = MachineOperand::CreateImm(0);
  663.     MachineOperand RHS = MachineOperand::CreateImm(0);
  664.     MachineBasicBlock *TrueDest = nullptr;
  665.     MachineBasicBlock *FalseDest = nullptr;
  666.     MachineInstr *ConditionDef = nullptr;
  667.  
  668.     /// SingleUseCondition is true if ConditionDef is dead except for the
  669.     /// branch(es) at the end of the basic block.
  670.     ///
  671.     bool SingleUseCondition = false;
  672.  
  673.     explicit MachineBranchPredicate() = default;
  674.   };
  675.  
  676.   /// Analyze the branching code at the end of MBB and parse it into the
  677.   /// MachineBranchPredicate structure if possible.  Returns false on success
  678.   /// and true on failure.
  679.   ///
  680.   /// If AllowModify is true, then this routine is allowed to modify the basic
  681.   /// block (e.g. delete instructions after the unconditional branch).
  682.   ///
  683.   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
  684.                                       MachineBranchPredicate &MBP,
  685.                                       bool AllowModify = false) const {
  686.     return true;
  687.   }
  688.  
  689.   /// Remove the branching code at the end of the specific MBB.
  690.   /// This is only invoked in cases where analyzeBranch returns success. It
  691.   /// returns the number of instructions that were removed.
  692.   /// If \p BytesRemoved is non-null, report the change in code size from the
  693.   /// removed instructions.
  694.   virtual unsigned removeBranch(MachineBasicBlock &MBB,
  695.                                 int *BytesRemoved = nullptr) const {
  696.     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
  697.   }
  698.  
  699.   /// Insert branch code into the end of the specified MachineBasicBlock. The
  700.   /// operands to this method are the same as those returned by analyzeBranch.
  701.   /// This is only invoked in cases where analyzeBranch returns success. It
  702.   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
  703.   /// report the change in code size from the added instructions.
  704.   ///
  705.   /// It is also invoked by tail merging to add unconditional branches in
  706.   /// cases where analyzeBranch doesn't apply because there was no original
  707.   /// branch to analyze.  At least this much must be implemented, else tail
  708.   /// merging needs to be disabled.
  709.   ///
  710.   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
  711.   /// before calling this function.
  712.   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
  713.                                 MachineBasicBlock *FBB,
  714.                                 ArrayRef<MachineOperand> Cond,
  715.                                 const DebugLoc &DL,
  716.                                 int *BytesAdded = nullptr) const {
  717.     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
  718.   }
  719.  
  720.   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
  721.                                      MachineBasicBlock *DestBB,
  722.                                      const DebugLoc &DL,
  723.                                      int *BytesAdded = nullptr) const {
  724.     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
  725.                         BytesAdded);
  726.   }
  727.  
  728.   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
  729.   /// implementations to query attributes of the loop being pipelined and to
  730.   /// apply target-specific updates to the loop once pipelining is complete.
  731.   class PipelinerLoopInfo {
  732.   public:
  733.     virtual ~PipelinerLoopInfo();
  734.     /// Return true if the given instruction should not be pipelined and should
  735.     /// be ignored. An example could be a loop comparison, or induction variable
  736.     /// update with no users being pipelined.
  737.     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
  738.  
  739.     /// Return true if the proposed schedule should used.  Otherwise return
  740.     /// false to not pipeline the loop. This function should be used to ensure
  741.     /// that pipelined loops meet target-specific quality heuristics.
  742.     virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
  743.       return true;
  744.     }
  745.  
  746.     /// Create a condition to determine if the trip count of the loop is greater
  747.     /// than TC, where TC is always one more than for the previous prologue or
  748.     /// 0 if this is being called for the outermost prologue.
  749.     ///
  750.     /// If the trip count is statically known to be greater than TC, return
  751.     /// true. If the trip count is statically known to be not greater than TC,
  752.     /// return false. Otherwise return nullopt and fill out Cond with the test
  753.     /// condition.
  754.     ///
  755.     /// Note: This hook is guaranteed to be called from the innermost to the
  756.     /// outermost prologue of the loop being software pipelined.
  757.     virtual std::optional<bool>
  758.     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
  759.                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
  760.  
  761.     /// Modify the loop such that the trip count is
  762.     /// OriginalTC + TripCountAdjust.
  763.     virtual void adjustTripCount(int TripCountAdjust) = 0;
  764.  
  765.     /// Called when the loop's preheader has been modified to NewPreheader.
  766.     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
  767.  
  768.     /// Called when the loop is being removed. Any instructions in the preheader
  769.     /// should be removed.
  770.     ///
  771.     /// Once this function is called, no other functions on this object are
  772.     /// valid; the loop has been removed.
  773.     virtual void disposed() = 0;
  774.   };
  775.  
  776.   /// Analyze loop L, which must be a single-basic-block loop, and if the
  777.   /// conditions can be understood enough produce a PipelinerLoopInfo object.
  778.   virtual std::unique_ptr<PipelinerLoopInfo>
  779.   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
  780.     return nullptr;
  781.   }
  782.  
  783.   /// Analyze the loop code, return true if it cannot be understood. Upon
  784.   /// success, this function returns false and returns information about the
  785.   /// induction variable and compare instruction used at the end.
  786.   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
  787.                            MachineInstr *&CmpInst) const {
  788.     return true;
  789.   }
  790.  
  791.   /// Generate code to reduce the loop iteration by one and check if the loop
  792.   /// is finished.  Return the value/register of the new loop count.  We need
  793.   /// this function when peeling off one or more iterations of a loop. This
  794.   /// function assumes the nth iteration is peeled first.
  795.   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
  796.                                    MachineBasicBlock &PreHeader,
  797.                                    MachineInstr *IndVar, MachineInstr &Cmp,
  798.                                    SmallVectorImpl<MachineOperand> &Cond,
  799.                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
  800.                                    unsigned Iter, unsigned MaxIter) const {
  801.     llvm_unreachable("Target didn't implement ReduceLoopCount");
  802.   }
  803.  
  804.   /// Delete the instruction OldInst and everything after it, replacing it with
  805.   /// an unconditional branch to NewDest. This is used by the tail merging pass.
  806.   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
  807.                                        MachineBasicBlock *NewDest) const;
  808.  
  809.   /// Return true if it's legal to split the given basic
  810.   /// block at the specified instruction (i.e. instruction would be the start
  811.   /// of a new basic block).
  812.   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
  813.                                    MachineBasicBlock::iterator MBBI) const {
  814.     return true;
  815.   }
  816.  
  817.   /// Return true if it's profitable to predicate
  818.   /// instructions with accumulated instruction latency of "NumCycles"
  819.   /// of the specified basic block, where the probability of the instructions
  820.   /// being executed is given by Probability, and Confidence is a measure
  821.   /// of our confidence that it will be properly predicted.
  822.   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
  823.                                    unsigned ExtraPredCycles,
  824.                                    BranchProbability Probability) const {
  825.     return false;
  826.   }
  827.  
  828.   /// Second variant of isProfitableToIfCvt. This one
  829.   /// checks for the case where two basic blocks from true and false path
  830.   /// of a if-then-else (diamond) are predicated on mutually exclusive
  831.   /// predicates, where the probability of the true path being taken is given
  832.   /// by Probability, and Confidence is a measure of our confidence that it
  833.   /// will be properly predicted.
  834.   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
  835.                                    unsigned ExtraTCycles,
  836.                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
  837.                                    unsigned ExtraFCycles,
  838.                                    BranchProbability Probability) const {
  839.     return false;
  840.   }
  841.  
  842.   /// Return true if it's profitable for if-converter to duplicate instructions
  843.   /// of specified accumulated instruction latencies in the specified MBB to
  844.   /// enable if-conversion.
  845.   /// The probability of the instructions being executed is given by
  846.   /// Probability, and Confidence is a measure of our confidence that it
  847.   /// will be properly predicted.
  848.   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
  849.                                          unsigned NumCycles,
  850.                                          BranchProbability Probability) const {
  851.     return false;
  852.   }
  853.  
  854.   /// Return the increase in code size needed to predicate a contiguous run of
  855.   /// NumInsts instructions.
  856.   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
  857.                                                     unsigned NumInsts) const {
  858.     return 0;
  859.   }
  860.  
  861.   /// Return an estimate for the code size reduction (in bytes) which will be
  862.   /// caused by removing the given branch instruction during if-conversion.
  863.   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
  864.     return getInstSizeInBytes(MI);
  865.   }
  866.  
  867.   /// Return true if it's profitable to unpredicate
  868.   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
  869.   /// exclusive predicates.
  870.   /// e.g.
  871.   ///   subeq  r0, r1, #1
  872.   ///   addne  r0, r1, #1
  873.   /// =>
  874.   ///   sub    r0, r1, #1
  875.   ///   addne  r0, r1, #1
  876.   ///
  877.   /// This may be profitable is conditional instructions are always executed.
  878.   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
  879.                                          MachineBasicBlock &FMBB) const {
  880.     return false;
  881.   }
  882.  
  883.   /// Return true if it is possible to insert a select
  884.   /// instruction that chooses between TrueReg and FalseReg based on the
  885.   /// condition code in Cond.
  886.   ///
  887.   /// When successful, also return the latency in cycles from TrueReg,
  888.   /// FalseReg, and Cond to the destination register. In most cases, a select
  889.   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
  890.   ///
  891.   /// Some x86 implementations have 2-cycle cmov instructions.
  892.   ///
  893.   /// @param MBB         Block where select instruction would be inserted.
  894.   /// @param Cond        Condition returned by analyzeBranch.
  895.   /// @param DstReg      Virtual dest register that the result should write to.
  896.   /// @param TrueReg     Virtual register to select when Cond is true.
  897.   /// @param FalseReg    Virtual register to select when Cond is false.
  898.   /// @param CondCycles  Latency from Cond+Branch to select output.
  899.   /// @param TrueCycles  Latency from TrueReg to select output.
  900.   /// @param FalseCycles Latency from FalseReg to select output.
  901.   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
  902.                                ArrayRef<MachineOperand> Cond, Register DstReg,
  903.                                Register TrueReg, Register FalseReg,
  904.                                int &CondCycles, int &TrueCycles,
  905.                                int &FalseCycles) const {
  906.     return false;
  907.   }
  908.  
  909.   /// Insert a select instruction into MBB before I that will copy TrueReg to
  910.   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
  911.   ///
  912.   /// This function can only be called after canInsertSelect() returned true.
  913.   /// The condition in Cond comes from analyzeBranch, and it can be assumed
  914.   /// that the same flags or registers required by Cond are available at the
  915.   /// insertion point.
  916.   ///
  917.   /// @param MBB      Block where select instruction should be inserted.
  918.   /// @param I        Insertion point.
  919.   /// @param DL       Source location for debugging.
  920.   /// @param DstReg   Virtual register to be defined by select instruction.
  921.   /// @param Cond     Condition as computed by analyzeBranch.
  922.   /// @param TrueReg  Virtual register to copy when Cond is true.
  923.   /// @param FalseReg Virtual register to copy when Cons is false.
  924.   virtual void insertSelect(MachineBasicBlock &MBB,
  925.                             MachineBasicBlock::iterator I, const DebugLoc &DL,
  926.                             Register DstReg, ArrayRef<MachineOperand> Cond,
  927.                             Register TrueReg, Register FalseReg) const {
  928.     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
  929.   }
  930.  
  931.   /// Analyze the given select instruction, returning true if
  932.   /// it cannot be understood. It is assumed that MI->isSelect() is true.
  933.   ///
  934.   /// When successful, return the controlling condition and the operands that
  935.   /// determine the true and false result values.
  936.   ///
  937.   ///   Result = SELECT Cond, TrueOp, FalseOp
  938.   ///
  939.   /// Some targets can optimize select instructions, for example by predicating
  940.   /// the instruction defining one of the operands. Such targets should set
  941.   /// Optimizable.
  942.   ///
  943.   /// @param         MI Select instruction to analyze.
  944.   /// @param Cond    Condition controlling the select.
  945.   /// @param TrueOp  Operand number of the value selected when Cond is true.
  946.   /// @param FalseOp Operand number of the value selected when Cond is false.
  947.   /// @param Optimizable Returned as true if MI is optimizable.
  948.   /// @returns False on success.
  949.   virtual bool analyzeSelect(const MachineInstr &MI,
  950.                              SmallVectorImpl<MachineOperand> &Cond,
  951.                              unsigned &TrueOp, unsigned &FalseOp,
  952.                              bool &Optimizable) const {
  953.     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
  954.     return true;
  955.   }
  956.  
  957.   /// Given a select instruction that was understood by
  958.   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
  959.   /// merging it with one of its operands. Returns NULL on failure.
  960.   ///
  961.   /// When successful, returns the new select instruction. The client is
  962.   /// responsible for deleting MI.
  963.   ///
  964.   /// If both sides of the select can be optimized, PreferFalse is used to pick
  965.   /// a side.
  966.   ///
  967.   /// @param MI          Optimizable select instruction.
  968.   /// @param NewMIs     Set that record all MIs in the basic block up to \p
  969.   /// MI. Has to be updated with any newly created MI or deleted ones.
  970.   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
  971.   /// @returns Optimized instruction or NULL.
  972.   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
  973.                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
  974.                                        bool PreferFalse = false) const {
  975.     // This function must be implemented if Optimizable is ever set.
  976.     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
  977.   }
  978.  
  979.   /// Emit instructions to copy a pair of physical registers.
  980.   ///
  981.   /// This function should support copies within any legal register class as
  982.   /// well as any cross-class copies created during instruction selection.
  983.   ///
  984.   /// The source and destination registers may overlap, which may require a
  985.   /// careful implementation when multiple copy instructions are required for
  986.   /// large registers. See for example the ARM target.
  987.   virtual void copyPhysReg(MachineBasicBlock &MBB,
  988.                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
  989.                            MCRegister DestReg, MCRegister SrcReg,
  990.                            bool KillSrc) const {
  991.     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
  992.   }
  993.  
  994.   /// Allow targets to tell MachineVerifier whether a specific register
  995.   /// MachineOperand can be used as part of PC-relative addressing.
  996.   /// PC-relative addressing modes in many CISC architectures contain
  997.   /// (non-PC) registers as offsets or scaling values, which inherently
  998.   /// tags the corresponding MachineOperand with OPERAND_PCREL.
  999.   ///
  1000.   /// @param MO The MachineOperand in question. MO.isReg() should always
  1001.   /// be true.
  1002.   /// @return Whether this operand is allowed to be used PC-relatively.
  1003.   virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
  1004.     return false;
  1005.   }
  1006.  
  1007. protected:
  1008.   /// Target-dependent implementation for IsCopyInstr.
  1009.   /// If the specific machine instruction is a instruction that moves/copies
  1010.   /// value from one register to another register return destination and source
  1011.   /// registers as machine operands.
  1012.   virtual std::optional<DestSourcePair>
  1013.   isCopyInstrImpl(const MachineInstr &MI) const {
  1014.     return std::nullopt;
  1015.   }
  1016.  
  1017.   /// Return true if the given terminator MI is not expected to spill. This
  1018.   /// sets the live interval as not spillable and adjusts phi node lowering to
  1019.   /// not introduce copies after the terminator. Use with care, these are
  1020.   /// currently used for hardware loop intrinsics in very controlled situations,
  1021.   /// created prior to registry allocation in loops that only have single phi
  1022.   /// users for the terminators value. They may run out of registers if not used
  1023.   /// carefully.
  1024.   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
  1025.     return false;
  1026.   }
  1027.  
  1028. public:
  1029.   /// If the specific machine instruction is a instruction that moves/copies
  1030.   /// value from one register to another register return destination and source
  1031.   /// registers as machine operands.
  1032.   /// For COPY-instruction the method naturally returns destination and source
  1033.   /// registers as machine operands, for all other instructions the method calls
  1034.   /// target-dependent implementation.
  1035.   std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
  1036.     if (MI.isCopy()) {
  1037.       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
  1038.     }
  1039.     return isCopyInstrImpl(MI);
  1040.   }
  1041.  
  1042.   /// If the specific machine instruction is an instruction that adds an
  1043.   /// immediate value and a physical register, and stores the result in
  1044.   /// the given physical register \c Reg, return a pair of the source
  1045.   /// register and the offset which has been added.
  1046.   virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
  1047.                                                    Register Reg) const {
  1048.     return std::nullopt;
  1049.   }
  1050.  
  1051.   /// Returns true if MI is an instruction that defines Reg to have a constant
  1052.   /// value and the value is recorded in ImmVal. The ImmVal is a result that
  1053.   /// should be interpreted as modulo size of Reg.
  1054.   virtual bool getConstValDefinedInReg(const MachineInstr &MI,
  1055.                                        const Register Reg,
  1056.                                        int64_t &ImmVal) const {
  1057.     return false;
  1058.   }
  1059.  
  1060.   /// Store the specified register of the given register class to the specified
  1061.   /// stack frame index. The store instruction is to be added to the given
  1062.   /// machine basic block before the specified machine instruction. If isKill
  1063.   /// is true, the register operand is the last use and must be marked kill. If
  1064.   /// \p SrcReg is being directly spilled as part of assigning a virtual
  1065.   /// register, \p VReg is the register being assigned. This additional register
  1066.   /// argument is needed for certain targets when invoked from RegAllocFast to
  1067.   /// map the spilled physical register to its virtual register. A null register
  1068.   /// can be passed elsewhere.
  1069.   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
  1070.                                    MachineBasicBlock::iterator MI,
  1071.                                    Register SrcReg, bool isKill, int FrameIndex,
  1072.                                    const TargetRegisterClass *RC,
  1073.                                    const TargetRegisterInfo *TRI,
  1074.                                    Register VReg) const {
  1075.     llvm_unreachable("Target didn't implement "
  1076.                      "TargetInstrInfo::storeRegToStackSlot!");
  1077.   }
  1078.  
  1079.   /// Load the specified register of the given register class from the specified
  1080.   /// stack frame index. The load instruction is to be added to the given
  1081.   /// machine basic block before the specified machine instruction. If \p
  1082.   /// DestReg is being directly reloaded as part of assigning a virtual
  1083.   /// register, \p VReg is the register being assigned. This additional register
  1084.   /// argument is needed for certain targets when invoked from RegAllocFast to
  1085.   /// map the loaded physical register to its virtual register. A null register
  1086.   /// can be passed elsewhere.
  1087.   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
  1088.                                     MachineBasicBlock::iterator MI,
  1089.                                     Register DestReg, int FrameIndex,
  1090.                                     const TargetRegisterClass *RC,
  1091.                                     const TargetRegisterInfo *TRI,
  1092.                                     Register VReg) const {
  1093.     llvm_unreachable("Target didn't implement "
  1094.                      "TargetInstrInfo::loadRegFromStackSlot!");
  1095.   }
  1096.  
  1097.   /// This function is called for all pseudo instructions
  1098.   /// that remain after register allocation. Many pseudo instructions are
  1099.   /// created to help register allocation. This is the place to convert them
  1100.   /// into real instructions. The target can edit MI in place, or it can insert
  1101.   /// new instructions and erase MI. The function should return true if
  1102.   /// anything was changed.
  1103.   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
  1104.  
  1105.   /// Check whether the target can fold a load that feeds a subreg operand
  1106.   /// (or a subreg operand that feeds a store).
  1107.   /// For example, X86 may want to return true if it can fold
  1108.   /// movl (%esp), %eax
  1109.   /// subb, %al, ...
  1110.   /// Into:
  1111.   /// subb (%esp), ...
  1112.   ///
  1113.   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
  1114.   /// reject subregs - but since this behavior used to be enforced in the
  1115.   /// target-independent code, moving this responsibility to the targets
  1116.   /// has the potential of causing nasty silent breakage in out-of-tree targets.
  1117.   virtual bool isSubregFoldable() const { return false; }
  1118.  
  1119.   /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
  1120.   /// operands which can't be folded into stack references. Operands outside
  1121.   /// of the range are most likely foldable but it is not guaranteed.
  1122.   /// These instructions are unique in that stack references for some operands
  1123.   /// have the same execution cost (e.g. none) as the unfolded register forms.
  1124.   /// The ranged return is guaranteed to include all operands which can't be
  1125.   /// folded at zero cost.
  1126.   virtual std::pair<unsigned, unsigned>
  1127.   getPatchpointUnfoldableRange(const MachineInstr &MI) const;
  1128.  
  1129.   /// Attempt to fold a load or store of the specified stack
  1130.   /// slot into the specified machine instruction for the specified operand(s).
  1131.   /// If this is possible, a new instruction is returned with the specified
  1132.   /// operand folded, otherwise NULL is returned.
  1133.   /// The new instruction is inserted before MI, and the client is responsible
  1134.   /// for removing the old instruction.
  1135.   /// If VRM is passed, the assigned physregs can be inspected by target to
  1136.   /// decide on using an opcode (note that those assignments can still change).
  1137.   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
  1138.                                   int FI,
  1139.                                   LiveIntervals *LIS = nullptr,
  1140.                                   VirtRegMap *VRM = nullptr) const;
  1141.  
  1142.   /// Same as the previous version except it allows folding of any load and
  1143.   /// store from / to any address, not just from a specific stack slot.
  1144.   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
  1145.                                   MachineInstr &LoadMI,
  1146.                                   LiveIntervals *LIS = nullptr) const;
  1147.  
  1148.   /// Return true when there is potentially a faster code sequence
  1149.   /// for an instruction chain ending in \p Root. All potential patterns are
  1150.   /// returned in the \p Pattern vector. Pattern should be sorted in priority
  1151.   /// order since the pattern evaluator stops checking as soon as it finds a
  1152.   /// faster sequence.
  1153.   /// \param Root - Instruction that could be combined with one of its operands
  1154.   /// \param Patterns - Vector of possible combination patterns
  1155.   virtual bool
  1156.   getMachineCombinerPatterns(MachineInstr &Root,
  1157.                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
  1158.                              bool DoRegPressureReduce) const;
  1159.  
  1160.   /// Return true if target supports reassociation of instructions in machine
  1161.   /// combiner pass to reduce register pressure for a given BB.
  1162.   virtual bool
  1163.   shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
  1164.                                const RegisterClassInfo *RegClassInfo) const {
  1165.     return false;
  1166.   }
  1167.  
  1168.   /// Fix up the placeholder we may add in genAlternativeCodeSequence().
  1169.   virtual void
  1170.   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
  1171.                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
  1172.  
  1173.   /// Return true when a code sequence can improve throughput. It
  1174.   /// should be called only for instructions in loops.
  1175.   /// \param Pattern - combiner pattern
  1176.   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
  1177.  
  1178.   /// Return true if the input \P Inst is part of a chain of dependent ops
  1179.   /// that are suitable for reassociation, otherwise return false.
  1180.   /// If the instruction's operands must be commuted to have a previous
  1181.   /// instruction of the same type define the first source operand, \P Commuted
  1182.   /// will be set to true.
  1183.   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
  1184.  
  1185.   /// Return true when \P Inst is both associative and commutative. If \P Invert
  1186.   /// is true, then the inverse of \P Inst operation must be tested.
  1187.   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
  1188.                                            bool Invert = false) const {
  1189.     return false;
  1190.   }
  1191.  
  1192.   /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
  1193.   /// for sub and vice versa).
  1194.   virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
  1195.     return std::nullopt;
  1196.   }
  1197.  
  1198.   /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
  1199.   bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
  1200.  
  1201.   /// Return true when \P Inst has reassociable operands in the same \P MBB.
  1202.   virtual bool hasReassociableOperands(const MachineInstr &Inst,
  1203.                                        const MachineBasicBlock *MBB) const;
  1204.  
  1205.   /// Return true when \P Inst has reassociable sibling.
  1206.   virtual bool hasReassociableSibling(const MachineInstr &Inst,
  1207.                                       bool &Commuted) const;
  1208.  
  1209.   /// When getMachineCombinerPatterns() finds patterns, this function generates
  1210.   /// the instructions that could replace the original code sequence. The client
  1211.   /// has to decide whether the actual replacement is beneficial or not.
  1212.   /// \param Root - Instruction that could be combined with one of its operands
  1213.   /// \param Pattern - Combination pattern for Root
  1214.   /// \param InsInstrs - Vector of new instructions that implement P
  1215.   /// \param DelInstrs - Old instructions, including Root, that could be
  1216.   /// replaced by InsInstr
  1217.   /// \param InstIdxForVirtReg - map of virtual register to instruction in
  1218.   /// InsInstr that defines it
  1219.   virtual void genAlternativeCodeSequence(
  1220.       MachineInstr &Root, MachineCombinerPattern Pattern,
  1221.       SmallVectorImpl<MachineInstr *> &InsInstrs,
  1222.       SmallVectorImpl<MachineInstr *> &DelInstrs,
  1223.       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
  1224.  
  1225.   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
  1226.   /// reduce critical path length.
  1227.   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
  1228.                       MachineCombinerPattern Pattern,
  1229.                       SmallVectorImpl<MachineInstr *> &InsInstrs,
  1230.                       SmallVectorImpl<MachineInstr *> &DelInstrs,
  1231.                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
  1232.  
  1233.   /// Reassociation of some instructions requires inverse operations (e.g.
  1234.   /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
  1235.   /// (new root opcode, new prev opcode) that must be used to reassociate \P
  1236.   /// Root and \P Prev accoring to \P Pattern.
  1237.   std::pair<unsigned, unsigned>
  1238.   getReassociationOpcodes(MachineCombinerPattern Pattern,
  1239.                           const MachineInstr &Root,
  1240.                           const MachineInstr &Prev) const;
  1241.  
  1242.   /// The limit on resource length extension we accept in MachineCombiner Pass.
  1243.   virtual int getExtendResourceLenLimit() const { return 0; }
  1244.  
  1245.   /// This is an architecture-specific helper function of reassociateOps.
  1246.   /// Set special operand attributes for new instructions after reassociation.
  1247.   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
  1248.                                      MachineInstr &NewMI1,
  1249.                                      MachineInstr &NewMI2) const {}
  1250.  
  1251.   /// Return true when a target supports MachineCombiner.
  1252.   virtual bool useMachineCombiner() const { return false; }
  1253.  
  1254.   /// Return true if the given SDNode can be copied during scheduling
  1255.   /// even if it has glue.
  1256.   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
  1257.  
  1258. protected:
  1259.   /// Target-dependent implementation for foldMemoryOperand.
  1260.   /// Target-independent code in foldMemoryOperand will
  1261.   /// take care of adding a MachineMemOperand to the newly created instruction.
  1262.   /// The instruction and any auxiliary instructions necessary will be inserted
  1263.   /// at InsertPt.
  1264.   virtual MachineInstr *
  1265.   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
  1266.                         ArrayRef<unsigned> Ops,
  1267.                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
  1268.                         LiveIntervals *LIS = nullptr,
  1269.                         VirtRegMap *VRM = nullptr) const {
  1270.     return nullptr;
  1271.   }
  1272.  
  1273.   /// Target-dependent implementation for foldMemoryOperand.
  1274.   /// Target-independent code in foldMemoryOperand will
  1275.   /// take care of adding a MachineMemOperand to the newly created instruction.
  1276.   /// The instruction and any auxiliary instructions necessary will be inserted
  1277.   /// at InsertPt.
  1278.   virtual MachineInstr *foldMemoryOperandImpl(
  1279.       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
  1280.       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
  1281.       LiveIntervals *LIS = nullptr) const {
  1282.     return nullptr;
  1283.   }
  1284.  
  1285.   /// Target-dependent implementation of getRegSequenceInputs.
  1286.   ///
  1287.   /// \returns true if it is possible to build the equivalent
  1288.   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
  1289.   ///
  1290.   /// \pre MI.isRegSequenceLike().
  1291.   ///
  1292.   /// \see TargetInstrInfo::getRegSequenceInputs.
  1293.   virtual bool getRegSequenceLikeInputs(
  1294.       const MachineInstr &MI, unsigned DefIdx,
  1295.       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
  1296.     return false;
  1297.   }
  1298.  
  1299.   /// Target-dependent implementation of getExtractSubregInputs.
  1300.   ///
  1301.   /// \returns true if it is possible to build the equivalent
  1302.   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
  1303.   ///
  1304.   /// \pre MI.isExtractSubregLike().
  1305.   ///
  1306.   /// \see TargetInstrInfo::getExtractSubregInputs.
  1307.   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
  1308.                                           unsigned DefIdx,
  1309.                                           RegSubRegPairAndIdx &InputReg) const {
  1310.     return false;
  1311.   }
  1312.  
  1313.   /// Target-dependent implementation of getInsertSubregInputs.
  1314.   ///
  1315.   /// \returns true if it is possible to build the equivalent
  1316.   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
  1317.   ///
  1318.   /// \pre MI.isInsertSubregLike().
  1319.   ///
  1320.   /// \see TargetInstrInfo::getInsertSubregInputs.
  1321.   virtual bool
  1322.   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
  1323.                             RegSubRegPair &BaseReg,
  1324.                             RegSubRegPairAndIdx &InsertedReg) const {
  1325.     return false;
  1326.   }
  1327.  
  1328. public:
  1329.   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
  1330.   /// a store or a load and a store into two or more instruction. If this is
  1331.   /// possible, returns true as well as the new instructions by reference.
  1332.   virtual bool
  1333.   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
  1334.                       bool UnfoldLoad, bool UnfoldStore,
  1335.                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
  1336.     return false;
  1337.   }
  1338.  
  1339.   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
  1340.                                    SmallVectorImpl<SDNode *> &NewNodes) const {
  1341.     return false;
  1342.   }
  1343.  
  1344.   /// Returns the opcode of the would be new
  1345.   /// instruction after load / store are unfolded from an instruction of the
  1346.   /// specified opcode. It returns zero if the specified unfolding is not
  1347.   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
  1348.   /// index of the operand which will hold the register holding the loaded
  1349.   /// value.
  1350.   virtual unsigned
  1351.   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
  1352.                              unsigned *LoadRegIndex = nullptr) const {
  1353.     return 0;
  1354.   }
  1355.  
  1356.   /// This is used by the pre-regalloc scheduler to determine if two loads are
  1357.   /// loading from the same base address. It should only return true if the base
  1358.   /// pointers are the same and the only differences between the two addresses
  1359.   /// are the offset. It also returns the offsets by reference.
  1360.   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
  1361.                                        int64_t &Offset1,
  1362.                                        int64_t &Offset2) const {
  1363.     return false;
  1364.   }
  1365.  
  1366.   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
  1367.   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
  1368.   /// On some targets if two loads are loading from
  1369.   /// addresses in the same cache line, it's better if they are scheduled
  1370.   /// together. This function takes two integers that represent the load offsets
  1371.   /// from the common base address. It returns true if it decides it's desirable
  1372.   /// to schedule the two loads together. "NumLoads" is the number of loads that
  1373.   /// have already been scheduled after Load1.
  1374.   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
  1375.                                        int64_t Offset1, int64_t Offset2,
  1376.                                        unsigned NumLoads) const {
  1377.     return false;
  1378.   }
  1379.  
  1380.   /// Get the base operand and byte offset of an instruction that reads/writes
  1381.   /// memory. This is a convenience function for callers that are only prepared
  1382.   /// to handle a single base operand.
  1383.   bool getMemOperandWithOffset(const MachineInstr &MI,
  1384.                                const MachineOperand *&BaseOp, int64_t &Offset,
  1385.                                bool &OffsetIsScalable,
  1386.                                const TargetRegisterInfo *TRI) const;
  1387.  
  1388.   /// Get zero or more base operands and the byte offset of an instruction that
  1389.   /// reads/writes memory. Note that there may be zero base operands if the
  1390.   /// instruction accesses a constant address.
  1391.   /// It returns false if MI does not read/write memory.
  1392.   /// It returns false if base operands and offset could not be determined.
  1393.   /// It is not guaranteed to always recognize base operands and offsets in all
  1394.   /// cases.
  1395.   virtual bool getMemOperandsWithOffsetWidth(
  1396.       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
  1397.       int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
  1398.       const TargetRegisterInfo *TRI) const {
  1399.     return false;
  1400.   }
  1401.  
  1402.   /// Return true if the instruction contains a base register and offset. If
  1403.   /// true, the function also sets the operand position in the instruction
  1404.   /// for the base register and offset.
  1405.   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
  1406.                                         unsigned &BasePos,
  1407.                                         unsigned &OffsetPos) const {
  1408.     return false;
  1409.   }
  1410.  
  1411.   /// Target dependent implementation to get the values constituting the address
  1412.   /// MachineInstr that is accessing memory. These values are returned as a
  1413.   /// struct ExtAddrMode which contains all relevant information to make up the
  1414.   /// address.
  1415.   virtual std::optional<ExtAddrMode>
  1416.   getAddrModeFromMemoryOp(const MachineInstr &MemI,
  1417.                           const TargetRegisterInfo *TRI) const {
  1418.     return std::nullopt;
  1419.   }
  1420.  
  1421.   /// Returns true if MI's Def is NullValueReg, and the MI
  1422.   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
  1423.   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
  1424.   /// function can return true even if becomes zero. Specifically cases such as
  1425.   /// NullValueReg = shl NullValueReg, 63.
  1426.   virtual bool preservesZeroValueInReg(const MachineInstr *MI,
  1427.                                        const Register NullValueReg,
  1428.                                        const TargetRegisterInfo *TRI) const {
  1429.     return false;
  1430.   }
  1431.  
  1432.   /// If the instruction is an increment of a constant value, return the amount.
  1433.   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
  1434.     return false;
  1435.   }
  1436.  
  1437.   /// Returns true if the two given memory operations should be scheduled
  1438.   /// adjacent. Note that you have to add:
  1439.   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
  1440.   /// or
  1441.   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
  1442.   /// to TargetPassConfig::createMachineScheduler() to have an effect.
  1443.   ///
  1444.   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
  1445.   /// \p NumLoads is the number of loads that will be in the cluster if this
  1446.   /// hook returns true.
  1447.   /// \p NumBytes is the number of bytes that will be loaded from all the
  1448.   /// clustered loads if this hook returns true.
  1449.   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
  1450.                                    ArrayRef<const MachineOperand *> BaseOps2,
  1451.                                    unsigned NumLoads, unsigned NumBytes) const {
  1452.     llvm_unreachable("target did not implement shouldClusterMemOps()");
  1453.   }
  1454.  
  1455.   /// Reverses the branch condition of the specified condition list,
  1456.   /// returning false on success and true if it cannot be reversed.
  1457.   virtual bool
  1458.   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  1459.     return true;
  1460.   }
  1461.  
  1462.   /// Insert a noop into the instruction stream at the specified point.
  1463.   virtual void insertNoop(MachineBasicBlock &MBB,
  1464.                           MachineBasicBlock::iterator MI) const;
  1465.  
  1466.   /// Insert noops into the instruction stream at the specified point.
  1467.   virtual void insertNoops(MachineBasicBlock &MBB,
  1468.                            MachineBasicBlock::iterator MI,
  1469.                            unsigned Quantity) const;
  1470.  
  1471.   /// Return the noop instruction to use for a noop.
  1472.   virtual MCInst getNop() const;
  1473.  
  1474.   /// Return true for post-incremented instructions.
  1475.   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
  1476.  
  1477.   /// Returns true if the instruction is already predicated.
  1478.   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
  1479.  
  1480.   /// Assumes the instruction is already predicated and returns true if the
  1481.   /// instruction can be predicated again.
  1482.   virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
  1483.     assert(isPredicated(MI) && "Instruction is not predicated");
  1484.     return false;
  1485.   }
  1486.  
  1487.   // Returns a MIRPrinter comment for this machine operand.
  1488.   virtual std::string
  1489.   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
  1490.                           unsigned OpIdx, const TargetRegisterInfo *TRI) const;
  1491.  
  1492.   /// Returns true if the instruction is a
  1493.   /// terminator instruction that has not been predicated.
  1494.   bool isUnpredicatedTerminator(const MachineInstr &MI) const;
  1495.  
  1496.   /// Returns true if MI is an unconditional tail call.
  1497.   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
  1498.     return false;
  1499.   }
  1500.  
  1501.   /// Returns true if the tail call can be made conditional on BranchCond.
  1502.   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
  1503.                                           const MachineInstr &TailCall) const {
  1504.     return false;
  1505.   }
  1506.  
  1507.   /// Replace the conditional branch in MBB with a conditional tail call.
  1508.   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
  1509.                                          SmallVectorImpl<MachineOperand> &Cond,
  1510.                                          const MachineInstr &TailCall) const {
  1511.     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
  1512.   }
  1513.  
  1514.   /// Convert the instruction into a predicated instruction.
  1515.   /// It returns true if the operation was successful.
  1516.   virtual bool PredicateInstruction(MachineInstr &MI,
  1517.                                     ArrayRef<MachineOperand> Pred) const;
  1518.  
  1519.   /// Returns true if the first specified predicate
  1520.   /// subsumes the second, e.g. GE subsumes GT.
  1521.   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
  1522.                                  ArrayRef<MachineOperand> Pred2) const {
  1523.     return false;
  1524.   }
  1525.  
  1526.   /// If the specified instruction defines any predicate
  1527.   /// or condition code register(s) used for predication, returns true as well
  1528.   /// as the definition predicate(s) by reference.
  1529.   /// SkipDead should be set to false at any point that dead
  1530.   /// predicate instructions should be considered as being defined.
  1531.   /// A dead predicate instruction is one that is guaranteed to be removed
  1532.   /// after a call to PredicateInstruction.
  1533.   virtual bool ClobbersPredicate(MachineInstr &MI,
  1534.                                  std::vector<MachineOperand> &Pred,
  1535.                                  bool SkipDead) const {
  1536.     return false;
  1537.   }
  1538.  
  1539.   /// Return true if the specified instruction can be predicated.
  1540.   /// By default, this returns true for every instruction with a
  1541.   /// PredicateOperand.
  1542.   virtual bool isPredicable(const MachineInstr &MI) const {
  1543.     return MI.getDesc().isPredicable();
  1544.   }
  1545.  
  1546.   /// Return true if it's safe to move a machine
  1547.   /// instruction that defines the specified register class.
  1548.   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
  1549.     return true;
  1550.   }
  1551.  
  1552.   /// Test if the given instruction should be considered a scheduling boundary.
  1553.   /// This primarily includes labels and terminators.
  1554.   virtual bool isSchedulingBoundary(const MachineInstr &MI,
  1555.                                     const MachineBasicBlock *MBB,
  1556.                                     const MachineFunction &MF) const;
  1557.  
  1558.   /// Measure the specified inline asm to determine an approximation of its
  1559.   /// length.
  1560.   virtual unsigned getInlineAsmLength(
  1561.     const char *Str, const MCAsmInfo &MAI,
  1562.     const TargetSubtargetInfo *STI = nullptr) const;
  1563.  
  1564.   /// Allocate and return a hazard recognizer to use for this target when
  1565.   /// scheduling the machine instructions before register allocation.
  1566.   virtual ScheduleHazardRecognizer *
  1567.   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
  1568.                                const ScheduleDAG *DAG) const;
  1569.  
  1570.   /// Allocate and return a hazard recognizer to use for this target when
  1571.   /// scheduling the machine instructions before register allocation.
  1572.   virtual ScheduleHazardRecognizer *
  1573.   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
  1574.                                  const ScheduleDAGMI *DAG) const;
  1575.  
  1576.   /// Allocate and return a hazard recognizer to use for this target when
  1577.   /// scheduling the machine instructions after register allocation.
  1578.   virtual ScheduleHazardRecognizer *
  1579.   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
  1580.                                      const ScheduleDAG *DAG) const;
  1581.  
  1582.   /// Allocate and return a hazard recognizer to use for by non-scheduling
  1583.   /// passes.
  1584.   virtual ScheduleHazardRecognizer *
  1585.   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
  1586.     return nullptr;
  1587.   }
  1588.  
  1589.   /// Provide a global flag for disabling the PreRA hazard recognizer that
  1590.   /// targets may choose to honor.
  1591.   bool usePreRAHazardRecognizer() const;
  1592.  
  1593.   /// For a comparison instruction, return the source registers
  1594.   /// in SrcReg and SrcReg2 if having two register operands, and the value it
  1595.   /// compares against in CmpValue. Return true if the comparison instruction
  1596.   /// can be analyzed.
  1597.   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
  1598.                               Register &SrcReg2, int64_t &Mask,
  1599.                               int64_t &Value) const {
  1600.     return false;
  1601.   }
  1602.  
  1603.   /// See if the comparison instruction can be converted
  1604.   /// into something more efficient. E.g., on ARM most instructions can set the
  1605.   /// flags register, obviating the need for a separate CMP.
  1606.   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
  1607.                                     Register SrcReg2, int64_t Mask,
  1608.                                     int64_t Value,
  1609.                                     const MachineRegisterInfo *MRI) const {
  1610.     return false;
  1611.   }
  1612.   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
  1613.  
  1614.   /// Try to remove the load by folding it to a register operand at the use.
  1615.   /// We fold the load instructions if and only if the
  1616.   /// def and use are in the same BB. We only look at one load and see
  1617.   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
  1618.   /// defined by the load we are trying to fold. DefMI returns the machine
  1619.   /// instruction that defines FoldAsLoadDefReg, and the function returns
  1620.   /// the machine instruction generated due to folding.
  1621.   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
  1622.                                           const MachineRegisterInfo *MRI,
  1623.                                           Register &FoldAsLoadDefReg,
  1624.                                           MachineInstr *&DefMI) const {
  1625.     return nullptr;
  1626.   }
  1627.  
  1628.   /// 'Reg' is known to be defined by a move immediate instruction,
  1629.   /// try to fold the immediate into the use instruction.
  1630.   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
  1631.   /// then the caller may assume that DefMI has been erased from its parent
  1632.   /// block. The caller may assume that it will not be erased by this
  1633.   /// function otherwise.
  1634.   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
  1635.                              Register Reg, MachineRegisterInfo *MRI) const {
  1636.     return false;
  1637.   }
  1638.  
  1639.   /// Return the number of u-operations the given machine
  1640.   /// instruction will be decoded to on the target cpu. The itinerary's
  1641.   /// IssueWidth is the number of microops that can be dispatched each
  1642.   /// cycle. An instruction with zero microops takes no dispatch resources.
  1643.   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
  1644.                                   const MachineInstr &MI) const;
  1645.  
  1646.   /// Return true for pseudo instructions that don't consume any
  1647.   /// machine resources in their current form. These are common cases that the
  1648.   /// scheduler should consider free, rather than conservatively handling them
  1649.   /// as instructions with no itinerary.
  1650.   bool isZeroCost(unsigned Opcode) const {
  1651.     return Opcode <= TargetOpcode::COPY;
  1652.   }
  1653.  
  1654.   virtual int getOperandLatency(const InstrItineraryData *ItinData,
  1655.                                 SDNode *DefNode, unsigned DefIdx,
  1656.                                 SDNode *UseNode, unsigned UseIdx) const;
  1657.  
  1658.   /// Compute and return the use operand latency of a given pair of def and use.
  1659.   /// In most cases, the static scheduling itinerary was enough to determine the
  1660.   /// operand latency. But it may not be possible for instructions with variable
  1661.   /// number of defs / uses.
  1662.   ///
  1663.   /// This is a raw interface to the itinerary that may be directly overridden
  1664.   /// by a target. Use computeOperandLatency to get the best estimate of
  1665.   /// latency.
  1666.   virtual int getOperandLatency(const InstrItineraryData *ItinData,
  1667.                                 const MachineInstr &DefMI, unsigned DefIdx,
  1668.                                 const MachineInstr &UseMI,
  1669.                                 unsigned UseIdx) const;
  1670.  
  1671.   /// Compute the instruction latency of a given instruction.
  1672.   /// If the instruction has higher cost when predicated, it's returned via
  1673.   /// PredCost.
  1674.   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
  1675.                                    const MachineInstr &MI,
  1676.                                    unsigned *PredCost = nullptr) const;
  1677.  
  1678.   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
  1679.  
  1680.   virtual int getInstrLatency(const InstrItineraryData *ItinData,
  1681.                               SDNode *Node) const;
  1682.  
  1683.   /// Return the default expected latency for a def based on its opcode.
  1684.   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
  1685.                              const MachineInstr &DefMI) const;
  1686.  
  1687.   /// Return true if this opcode has high latency to its result.
  1688.   virtual bool isHighLatencyDef(int opc) const { return false; }
  1689.  
  1690.   /// Compute operand latency between a def of 'Reg'
  1691.   /// and a use in the current loop. Return true if the target considered
  1692.   /// it 'high'. This is used by optimization passes such as machine LICM to
  1693.   /// determine whether it makes sense to hoist an instruction out even in a
  1694.   /// high register pressure situation.
  1695.   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
  1696.                                      const MachineRegisterInfo *MRI,
  1697.                                      const MachineInstr &DefMI, unsigned DefIdx,
  1698.                                      const MachineInstr &UseMI,
  1699.                                      unsigned UseIdx) const {
  1700.     return false;
  1701.   }
  1702.  
  1703.   /// Compute operand latency of a def of 'Reg'. Return true
  1704.   /// if the target considered it 'low'.
  1705.   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
  1706.                                 const MachineInstr &DefMI,
  1707.                                 unsigned DefIdx) const;
  1708.  
  1709.   /// Perform target-specific instruction verification.
  1710.   virtual bool verifyInstruction(const MachineInstr &MI,
  1711.                                  StringRef &ErrInfo) const {
  1712.     return true;
  1713.   }
  1714.  
  1715.   /// Return the current execution domain and bit mask of
  1716.   /// possible domains for instruction.
  1717.   ///
  1718.   /// Some micro-architectures have multiple execution domains, and multiple
  1719.   /// opcodes that perform the same operation in different domains.  For
  1720.   /// example, the x86 architecture provides the por, orps, and orpd
  1721.   /// instructions that all do the same thing.  There is a latency penalty if a
  1722.   /// register is written in one domain and read in another.
  1723.   ///
  1724.   /// This function returns a pair (domain, mask) containing the execution
  1725.   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
  1726.   /// function can be used to change the opcode to one of the domains in the
  1727.   /// bit mask.  Instructions whose execution domain can't be changed should
  1728.   /// return a 0 mask.
  1729.   ///
  1730.   /// The execution domain numbers don't have any special meaning except domain
  1731.   /// 0 is used for instructions that are not associated with any interesting
  1732.   /// execution domain.
  1733.   ///
  1734.   virtual std::pair<uint16_t, uint16_t>
  1735.   getExecutionDomain(const MachineInstr &MI) const {
  1736.     return std::make_pair(0, 0);
  1737.   }
  1738.  
  1739.   /// Change the opcode of MI to execute in Domain.
  1740.   ///
  1741.   /// The bit (1 << Domain) must be set in the mask returned from
  1742.   /// getExecutionDomain(MI).
  1743.   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
  1744.  
  1745.   /// Returns the preferred minimum clearance
  1746.   /// before an instruction with an unwanted partial register update.
  1747.   ///
  1748.   /// Some instructions only write part of a register, and implicitly need to
  1749.   /// read the other parts of the register.  This may cause unwanted stalls
  1750.   /// preventing otherwise unrelated instructions from executing in parallel in
  1751.   /// an out-of-order CPU.
  1752.   ///
  1753.   /// For example, the x86 instruction cvtsi2ss writes its result to bits
  1754.   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
  1755.   /// the instruction needs to wait for the old value of the register to become
  1756.   /// available:
  1757.   ///
  1758.   ///   addps %xmm1, %xmm0
  1759.   ///   movaps %xmm0, (%rax)
  1760.   ///   cvtsi2ss %rbx, %xmm0
  1761.   ///
  1762.   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
  1763.   /// instruction before it can issue, even though the high bits of %xmm0
  1764.   /// probably aren't needed.
  1765.   ///
  1766.   /// This hook returns the preferred clearance before MI, measured in
  1767.   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
  1768.   /// instructions before MI.  It should only return a positive value for
  1769.   /// unwanted dependencies.  If the old bits of the defined register have
  1770.   /// useful values, or if MI is determined to otherwise read the dependency,
  1771.   /// the hook should return 0.
  1772.   ///
  1773.   /// The unwanted dependency may be handled by:
  1774.   ///
  1775.   /// 1. Allocating the same register for an MI def and use.  That makes the
  1776.   ///    unwanted dependency identical to a required dependency.
  1777.   ///
  1778.   /// 2. Allocating a register for the def that has no defs in the previous N
  1779.   ///    instructions.
  1780.   ///
  1781.   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
  1782.   ///    allows the target to insert a dependency breaking instruction.
  1783.   ///
  1784.   virtual unsigned
  1785.   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
  1786.                                const TargetRegisterInfo *TRI) const {
  1787.     // The default implementation returns 0 for no partial register dependency.
  1788.     return 0;
  1789.   }
  1790.  
  1791.   /// Return the minimum clearance before an instruction that reads an
  1792.   /// unused register.
  1793.   ///
  1794.   /// For example, AVX instructions may copy part of a register operand into
  1795.   /// the unused high bits of the destination register.
  1796.   ///
  1797.   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
  1798.   ///
  1799.   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
  1800.   /// false dependence on any previous write to %xmm0.
  1801.   ///
  1802.   /// This hook works similarly to getPartialRegUpdateClearance, except that it
  1803.   /// does not take an operand index. Instead sets \p OpNum to the index of the
  1804.   /// unused register.
  1805.   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
  1806.                                         const TargetRegisterInfo *TRI) const {
  1807.     // The default implementation returns 0 for no undef register dependency.
  1808.     return 0;
  1809.   }
  1810.  
  1811.   /// Insert a dependency-breaking instruction
  1812.   /// before MI to eliminate an unwanted dependency on OpNum.
  1813.   ///
  1814.   /// If it wasn't possible to avoid a def in the last N instructions before MI
  1815.   /// (see getPartialRegUpdateClearance), this hook will be called to break the
  1816.   /// unwanted dependency.
  1817.   ///
  1818.   /// On x86, an xorps instruction can be used as a dependency breaker:
  1819.   ///
  1820.   ///   addps %xmm1, %xmm0
  1821.   ///   movaps %xmm0, (%rax)
  1822.   ///   xorps %xmm0, %xmm0
  1823.   ///   cvtsi2ss %rbx, %xmm0
  1824.   ///
  1825.   /// An <imp-kill> operand should be added to MI if an instruction was
  1826.   /// inserted.  This ties the instructions together in the post-ra scheduler.
  1827.   ///
  1828.   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
  1829.                                          const TargetRegisterInfo *TRI) const {}
  1830.  
  1831.   /// Create machine specific model for scheduling.
  1832.   virtual DFAPacketizer *
  1833.   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
  1834.     return nullptr;
  1835.   }
  1836.  
  1837.   /// Sometimes, it is possible for the target
  1838.   /// to tell, even without aliasing information, that two MIs access different
  1839.   /// memory addresses. This function returns true if two MIs access different
  1840.   /// memory addresses and false otherwise.
  1841.   ///
  1842.   /// Assumes any physical registers used to compute addresses have the same
  1843.   /// value for both instructions. (This is the most useful assumption for
  1844.   /// post-RA scheduling.)
  1845.   ///
  1846.   /// See also MachineInstr::mayAlias, which is implemented on top of this
  1847.   /// function.
  1848.   virtual bool
  1849.   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
  1850.                                   const MachineInstr &MIb) const {
  1851.     assert(MIa.mayLoadOrStore() &&
  1852.            "MIa must load from or modify a memory location");
  1853.     assert(MIb.mayLoadOrStore() &&
  1854.            "MIb must load from or modify a memory location");
  1855.     return false;
  1856.   }
  1857.  
  1858.   /// Return the value to use for the MachineCSE's LookAheadLimit,
  1859.   /// which is a heuristic used for CSE'ing phys reg defs.
  1860.   virtual unsigned getMachineCSELookAheadLimit() const {
  1861.     // The default lookahead is small to prevent unprofitable quadratic
  1862.     // behavior.
  1863.     return 5;
  1864.   }
  1865.  
  1866.   /// Return the maximal number of alias checks on memory operands. For
  1867.   /// instructions with more than one memory operands, the alias check on a
  1868.   /// single MachineInstr pair has quadratic overhead and results in
  1869.   /// unacceptable performance in the worst case. The limit here is to clamp
  1870.   /// that maximal checks performed. Usually, that's the product of memory
  1871.   /// operand numbers from that pair of MachineInstr to be checked. For
  1872.   /// instance, with two MachineInstrs with 4 and 5 memory operands
  1873.   /// correspondingly, a total of 20 checks are required. With this limit set to
  1874.   /// 16, their alias check is skipped. We choose to limit the product instead
  1875.   /// of the individual instruction as targets may have special MachineInstrs
  1876.   /// with a considerably high number of memory operands, such as `ldm` in ARM.
  1877.   /// Setting this limit per MachineInstr would result in either too high
  1878.   /// overhead or too rigid restriction.
  1879.   virtual unsigned getMemOperandAACheckLimit() const { return 16; }
  1880.  
  1881.   /// Return an array that contains the ids of the target indices (used for the
  1882.   /// TargetIndex machine operand) and their names.
  1883.   ///
  1884.   /// MIR Serialization is able to serialize only the target indices that are
  1885.   /// defined by this method.
  1886.   virtual ArrayRef<std::pair<int, const char *>>
  1887.   getSerializableTargetIndices() const {
  1888.     return std::nullopt;
  1889.   }
  1890.  
  1891.   /// Decompose the machine operand's target flags into two values - the direct
  1892.   /// target flag value and any of bit flags that are applied.
  1893.   virtual std::pair<unsigned, unsigned>
  1894.   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
  1895.     return std::make_pair(0u, 0u);
  1896.   }
  1897.  
  1898.   /// Return an array that contains the direct target flag values and their
  1899.   /// names.
  1900.   ///
  1901.   /// MIR Serialization is able to serialize only the target flags that are
  1902.   /// defined by this method.
  1903.   virtual ArrayRef<std::pair<unsigned, const char *>>
  1904.   getSerializableDirectMachineOperandTargetFlags() const {
  1905.     return std::nullopt;
  1906.   }
  1907.  
  1908.   /// Return an array that contains the bitmask target flag values and their
  1909.   /// names.
  1910.   ///
  1911.   /// MIR Serialization is able to serialize only the target flags that are
  1912.   /// defined by this method.
  1913.   virtual ArrayRef<std::pair<unsigned, const char *>>
  1914.   getSerializableBitmaskMachineOperandTargetFlags() const {
  1915.     return std::nullopt;
  1916.   }
  1917.  
  1918.   /// Return an array that contains the MMO target flag values and their
  1919.   /// names.
  1920.   ///
  1921.   /// MIR Serialization is able to serialize only the MMO target flags that are
  1922.   /// defined by this method.
  1923.   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
  1924.   getSerializableMachineMemOperandTargetFlags() const {
  1925.     return std::nullopt;
  1926.   }
  1927.  
  1928.   /// Determines whether \p Inst is a tail call instruction. Override this
  1929.   /// method on targets that do not properly set MCID::Return and MCID::Call on
  1930.   /// tail call instructions."
  1931.   virtual bool isTailCall(const MachineInstr &Inst) const {
  1932.     return Inst.isReturn() && Inst.isCall();
  1933.   }
  1934.  
  1935.   /// True if the instruction is bound to the top of its basic block and no
  1936.   /// other instructions shall be inserted before it. This can be implemented
  1937.   /// to prevent register allocator to insert spills before such instructions.
  1938.   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
  1939.     return false;
  1940.   }
  1941.  
  1942.   /// During PHI eleimination lets target to make necessary checks and
  1943.   /// insert the copy to the PHI destination register in a target specific
  1944.   /// manner.
  1945.   virtual MachineInstr *createPHIDestinationCopy(
  1946.       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
  1947.       const DebugLoc &DL, Register Src, Register Dst) const {
  1948.     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
  1949.         .addReg(Src);
  1950.   }
  1951.  
  1952.   /// During PHI eleimination lets target to make necessary checks and
  1953.   /// insert the copy to the PHI destination register in a target specific
  1954.   /// manner.
  1955.   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
  1956.                                             MachineBasicBlock::iterator InsPt,
  1957.                                             const DebugLoc &DL, Register Src,
  1958.                                             unsigned SrcSubReg,
  1959.                                             Register Dst) const {
  1960.     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
  1961.         .addReg(Src, 0, SrcSubReg);
  1962.   }
  1963.  
  1964.   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
  1965.   /// information for a set of outlining candidates.
  1966.   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
  1967.       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
  1968.     llvm_unreachable(
  1969.         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
  1970.   }
  1971.  
  1972.   /// Optional target hook to create the LLVM IR attributes for the outlined
  1973.   /// function. If overridden, the overriding function must call the default
  1974.   /// implementation.
  1975.   virtual void mergeOutliningCandidateAttributes(
  1976.       Function &F, std::vector<outliner::Candidate> &Candidates) const;
  1977.  
  1978.   /// Returns how or if \p MI should be outlined.
  1979.   virtual outliner::InstrType
  1980.   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
  1981.     llvm_unreachable(
  1982.         "Target didn't implement TargetInstrInfo::getOutliningType!");
  1983.   }
  1984.  
  1985.   /// Optional target hook that returns true if \p MBB is safe to outline from,
  1986.   /// and returns any target-specific information in \p Flags.
  1987.   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
  1988.                                       unsigned &Flags) const;
  1989.  
  1990.   /// Insert a custom frame for outlined functions.
  1991.   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
  1992.                                   const outliner::OutlinedFunction &OF) const {
  1993.     llvm_unreachable(
  1994.         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
  1995.   }
  1996.  
  1997.   /// Insert a call to an outlined function into the program.
  1998.   /// Returns an iterator to the spot where we inserted the call. This must be
  1999.   /// implemented by the target.
  2000.   virtual MachineBasicBlock::iterator
  2001.   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
  2002.                      MachineBasicBlock::iterator &It, MachineFunction &MF,
  2003.                      outliner::Candidate &C) const {
  2004.     llvm_unreachable(
  2005.         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
  2006.   }
  2007.  
  2008.   /// Return true if the function can safely be outlined from.
  2009.   /// A function \p MF is considered safe for outlining if an outlined function
  2010.   /// produced from instructions in F will produce a program which produces the
  2011.   /// same output for any set of given inputs.
  2012.   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
  2013.                                            bool OutlineFromLinkOnceODRs) const {
  2014.     llvm_unreachable("Target didn't implement "
  2015.                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
  2016.   }
  2017.  
  2018.   /// Return true if the function should be outlined from by default.
  2019.   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
  2020.     return false;
  2021.   }
  2022.  
  2023.   /// Produce the expression describing the \p MI loading a value into
  2024.   /// the physical register \p Reg. This hook should only be used with
  2025.   /// \p MIs belonging to VReg-less functions.
  2026.   virtual std::optional<ParamLoadedValue>
  2027.   describeLoadedValue(const MachineInstr &MI, Register Reg) const;
  2028.  
  2029.   /// Given the generic extension instruction \p ExtMI, returns true if this
  2030.   /// extension is a likely candidate for being folded into an another
  2031.   /// instruction.
  2032.   virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
  2033.                                         MachineRegisterInfo &MRI) const {
  2034.     return false;
  2035.   }
  2036.  
  2037.   /// Return MIR formatter to format/parse MIR operands.  Target can override
  2038.   /// this virtual function and return target specific MIR formatter.
  2039.   virtual const MIRFormatter *getMIRFormatter() const {
  2040.     if (!Formatter.get())
  2041.       Formatter = std::make_unique<MIRFormatter>();
  2042.     return Formatter.get();
  2043.   }
  2044.  
  2045.   /// Returns the target-specific default value for tail duplication.
  2046.   /// This value will be used if the tail-dup-placement-threshold argument is
  2047.   /// not provided.
  2048.   virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
  2049.     return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
  2050.   }
  2051.  
  2052.   /// Returns the callee operand from the given \p MI.
  2053.   virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
  2054.     return MI.getOperand(0);
  2055.   }
  2056.  
  2057.   /// Return the uniformity behavior of the given instruction.
  2058.   virtual InstructionUniformity
  2059.   getInstructionUniformity(const MachineInstr &MI) const {
  2060.     return InstructionUniformity::Default;
  2061.   }
  2062.  
  2063.   /// Returns true if the given \p MI defines a TargetIndex operand that can be
  2064.   /// tracked by their offset, can have values, and can have debug info
  2065.   /// associated with it. If so, sets \p Index and \p Offset of the target index
  2066.   /// operand.
  2067.   virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
  2068.                                         int64_t &Offset) const {
  2069.     return false;
  2070.   }
  2071.  
  2072. private:
  2073.   mutable std::unique_ptr<MIRFormatter> Formatter;
  2074.   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
  2075.   unsigned CatchRetOpcode;
  2076.   unsigned ReturnOpcode;
  2077. };
  2078.  
  2079. /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
  2080. template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
  2081.   using RegInfo = DenseMapInfo<unsigned>;
  2082.  
  2083.   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
  2084.     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
  2085.                                           RegInfo::getEmptyKey());
  2086.   }
  2087.  
  2088.   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
  2089.     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
  2090.                                           RegInfo::getTombstoneKey());
  2091.   }
  2092.  
  2093.   /// Reuse getHashValue implementation from
  2094.   /// std::pair<unsigned, unsigned>.
  2095.   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
  2096.     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
  2097.     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
  2098.   }
  2099.  
  2100.   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
  2101.                       const TargetInstrInfo::RegSubRegPair &RHS) {
  2102.     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
  2103.            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
  2104.   }
  2105. };
  2106.  
  2107. } // end namespace llvm
  2108.  
  2109. #endif // LLVM_CODEGEN_TARGETINSTRINFO_H
  2110.