Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===-- llvm/CodeGen/TargetFrameLowering.h ----------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // Interface to describe the layout of a stack frame on the target machine.
  10. //
  11. //===----------------------------------------------------------------------===//
  12.  
  13. #ifndef LLVM_CODEGEN_TARGETFRAMELOWERING_H
  14. #define LLVM_CODEGEN_TARGETFRAMELOWERING_H
  15.  
  16. #include "llvm/CodeGen/MachineBasicBlock.h"
  17. #include "llvm/Support/TypeSize.h"
  18. #include <vector>
  19.  
  20. namespace llvm {
  21.   class BitVector;
  22.   class CalleeSavedInfo;
  23.   class MachineFunction;
  24.   class RegScavenger;
  25.  
  26. namespace TargetStackID {
  27. enum Value {
  28.   Default = 0,
  29.   SGPRSpill = 1,
  30.   ScalableVector = 2,
  31.   WasmLocal = 3,
  32.   NoAlloc = 255
  33. };
  34. }
  35.  
  36. /// Information about stack frame layout on the target.  It holds the direction
  37. /// of stack growth, the known stack alignment on entry to each function, and
  38. /// the offset to the locals area.
  39. ///
  40. /// The offset to the local area is the offset from the stack pointer on
  41. /// function entry to the first location where function data (local variables,
  42. /// spill locations) can be stored.
  43. class TargetFrameLowering {
  44. public:
  45.   enum StackDirection {
  46.     StackGrowsUp,        // Adding to the stack increases the stack address
  47.     StackGrowsDown       // Adding to the stack decreases the stack address
  48.   };
  49.  
  50.   // Maps a callee saved register to a stack slot with a fixed offset.
  51.   struct SpillSlot {
  52.     unsigned Reg;
  53.     int Offset; // Offset relative to stack pointer on function entry.
  54.   };
  55.  
  56.   struct DwarfFrameBase {
  57.     // The frame base may be either a register (the default), the CFA,
  58.     // or a WebAssembly-specific location description.
  59.     enum FrameBaseKind { Register, CFA, WasmFrameBase } Kind;
  60.     struct WasmFrameBase {
  61.       unsigned Kind; // Wasm local, global, or value stack
  62.       unsigned Index;
  63.     };
  64.     union {
  65.       unsigned Reg;
  66.       struct WasmFrameBase WasmLoc;
  67.     } Location;
  68.   };
  69.  
  70. private:
  71.   StackDirection StackDir;
  72.   Align StackAlignment;
  73.   Align TransientStackAlignment;
  74.   int LocalAreaOffset;
  75.   bool StackRealignable;
  76. public:
  77.   TargetFrameLowering(StackDirection D, Align StackAl, int LAO,
  78.                       Align TransAl = Align(1), bool StackReal = true)
  79.       : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
  80.         LocalAreaOffset(LAO), StackRealignable(StackReal) {}
  81.  
  82.   virtual ~TargetFrameLowering();
  83.  
  84.   // These methods return information that describes the abstract stack layout
  85.   // of the target machine.
  86.  
  87.   /// getStackGrowthDirection - Return the direction the stack grows
  88.   ///
  89.   StackDirection getStackGrowthDirection() const { return StackDir; }
  90.  
  91.   /// getStackAlignment - This method returns the number of bytes to which the
  92.   /// stack pointer must be aligned on entry to a function.  Typically, this
  93.   /// is the largest alignment for any data object in the target.
  94.   ///
  95.   unsigned getStackAlignment() const { return StackAlignment.value(); }
  96.   /// getStackAlignment - This method returns the number of bytes to which the
  97.   /// stack pointer must be aligned on entry to a function.  Typically, this
  98.   /// is the largest alignment for any data object in the target.
  99.   ///
  100.   Align getStackAlign() const { return StackAlignment; }
  101.  
  102.   /// alignSPAdjust - This method aligns the stack adjustment to the correct
  103.   /// alignment.
  104.   ///
  105.   int alignSPAdjust(int SPAdj) const {
  106.     if (SPAdj < 0) {
  107.       SPAdj = -alignTo(-SPAdj, StackAlignment);
  108.     } else {
  109.       SPAdj = alignTo(SPAdj, StackAlignment);
  110.     }
  111.     return SPAdj;
  112.   }
  113.  
  114.   /// getTransientStackAlignment - This method returns the number of bytes to
  115.   /// which the stack pointer must be aligned at all times, even between
  116.   /// calls.
  117.   ///
  118.   Align getTransientStackAlign() const { return TransientStackAlignment; }
  119.  
  120.   /// isStackRealignable - This method returns whether the stack can be
  121.   /// realigned.
  122.   bool isStackRealignable() const {
  123.     return StackRealignable;
  124.   }
  125.  
  126.   /// Return the skew that has to be applied to stack alignment under
  127.   /// certain conditions (e.g. stack was adjusted before function \p MF
  128.   /// was called).
  129.   virtual unsigned getStackAlignmentSkew(const MachineFunction &MF) const;
  130.  
  131.   /// This method returns whether or not it is safe for an object with the
  132.   /// given stack id to be bundled into the local area.
  133.   virtual bool isStackIdSafeForLocalArea(unsigned StackId) const {
  134.     return true;
  135.   }
  136.  
  137.   /// getOffsetOfLocalArea - This method returns the offset of the local area
  138.   /// from the stack pointer on entrance to a function.
  139.   ///
  140.   int getOffsetOfLocalArea() const { return LocalAreaOffset; }
  141.  
  142.   /// Control the placement of special register scavenging spill slots when
  143.   /// allocating a stack frame.
  144.   ///
  145.   /// If this returns true, the frame indexes used by the RegScavenger will be
  146.   /// allocated closest to the incoming stack pointer.
  147.   virtual bool allocateScavengingFrameIndexesNearIncomingSP(
  148.     const MachineFunction &MF) const;
  149.  
  150.   /// assignCalleeSavedSpillSlots - Allows target to override spill slot
  151.   /// assignment logic.  If implemented, assignCalleeSavedSpillSlots() should
  152.   /// assign frame slots to all CSI entries and return true.  If this method
  153.   /// returns false, spill slots will be assigned using generic implementation.
  154.   /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of
  155.   /// CSI.
  156.   virtual bool assignCalleeSavedSpillSlots(MachineFunction &MF,
  157.                                            const TargetRegisterInfo *TRI,
  158.                                            std::vector<CalleeSavedInfo> &CSI,
  159.                                            unsigned &MinCSFrameIndex,
  160.                                            unsigned &MaxCSFrameIndex) const {
  161.     return assignCalleeSavedSpillSlots(MF, TRI, CSI);
  162.   }
  163.  
  164.   virtual bool
  165.   assignCalleeSavedSpillSlots(MachineFunction &MF,
  166.                               const TargetRegisterInfo *TRI,
  167.                               std::vector<CalleeSavedInfo> &CSI) const {
  168.     return false;
  169.   }
  170.  
  171.   /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
  172.   /// pairs, that contains an entry for each callee saved register that must be
  173.   /// spilled to a particular stack location if it is spilled.
  174.   ///
  175.   /// Each entry in this array contains a <register,offset> pair, indicating the
  176.   /// fixed offset from the incoming stack pointer that each register should be
  177.   /// spilled at. If a register is not listed here, the code generator is
  178.   /// allowed to spill it anywhere it chooses.
  179.   ///
  180.   virtual const SpillSlot *
  181.   getCalleeSavedSpillSlots(unsigned &NumEntries) const {
  182.     NumEntries = 0;
  183.     return nullptr;
  184.   }
  185.  
  186.   /// targetHandlesStackFrameRounding - Returns true if the target is
  187.   /// responsible for rounding up the stack frame (probably at emitPrologue
  188.   /// time).
  189.   virtual bool targetHandlesStackFrameRounding() const {
  190.     return false;
  191.   }
  192.  
  193.   /// Returns true if the target will correctly handle shrink wrapping.
  194.   virtual bool enableShrinkWrapping(const MachineFunction &MF) const {
  195.     return false;
  196.   }
  197.  
  198.   /// Returns true if the stack slot holes in the fixed and callee-save stack
  199.   /// area should be used when allocating other stack locations to reduce stack
  200.   /// size.
  201.   virtual bool enableStackSlotScavenging(const MachineFunction &MF) const {
  202.     return false;
  203.   }
  204.  
  205.   /// Returns true if the target can safely skip saving callee-saved registers
  206.   /// for noreturn nounwind functions.
  207.   virtual bool enableCalleeSaveSkip(const MachineFunction &MF) const;
  208.  
  209.   /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
  210.   /// the function.
  211.   virtual void emitPrologue(MachineFunction &MF,
  212.                             MachineBasicBlock &MBB) const = 0;
  213.   virtual void emitEpilogue(MachineFunction &MF,
  214.                             MachineBasicBlock &MBB) const = 0;
  215.  
  216.   /// emitZeroCallUsedRegs - Zeros out call used registers.
  217.   virtual void emitZeroCallUsedRegs(BitVector RegsToZero,
  218.                                     MachineBasicBlock &MBB) const {}
  219.  
  220.   /// With basic block sections, emit callee saved frame moves for basic blocks
  221.   /// that are in a different section.
  222.   virtual void
  223.   emitCalleeSavedFrameMovesFullCFA(MachineBasicBlock &MBB,
  224.                                    MachineBasicBlock::iterator MBBI) const {}
  225.  
  226.   /// Returns true if we may need to fix the unwind information for the
  227.   /// function.
  228.   virtual bool enableCFIFixup(MachineFunction &MF) const;
  229.  
  230.   /// Emit CFI instructions that recreate the state of the unwind information
  231.   /// upon fucntion entry.
  232.   virtual void resetCFIToInitialState(MachineBasicBlock &MBB) const {}
  233.  
  234.   /// Replace a StackProbe stub (if any) with the actual probe code inline
  235.   virtual void inlineStackProbe(MachineFunction &MF,
  236.                                 MachineBasicBlock &PrologueMBB) const {}
  237.  
  238.   /// Does the stack probe function call return with a modified stack pointer?
  239.   virtual bool stackProbeFunctionModifiesSP() const { return false; }
  240.  
  241.   /// Adjust the prologue to have the function use segmented stacks. This works
  242.   /// by adding a check even before the "normal" function prologue.
  243.   virtual void adjustForSegmentedStacks(MachineFunction &MF,
  244.                                         MachineBasicBlock &PrologueMBB) const {}
  245.  
  246.   /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
  247.   /// the assembly prologue to explicitly handle the stack.
  248.   virtual void adjustForHiPEPrologue(MachineFunction &MF,
  249.                                      MachineBasicBlock &PrologueMBB) const {}
  250.  
  251.   /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
  252.   /// saved registers and returns true if it isn't possible / profitable to do
  253.   /// so by issuing a series of store instructions via
  254.   /// storeRegToStackSlot(). Returns false otherwise.
  255.   virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
  256.                                          MachineBasicBlock::iterator MI,
  257.                                          ArrayRef<CalleeSavedInfo> CSI,
  258.                                          const TargetRegisterInfo *TRI) const {
  259.     return false;
  260.   }
  261.  
  262.   /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
  263.   /// saved registers and returns true if it isn't possible / profitable to do
  264.   /// so by issuing a series of load instructions via loadRegToStackSlot().
  265.   /// If it returns true, and any of the registers in CSI is not restored,
  266.   /// it sets the corresponding Restored flag in CSI to false.
  267.   /// Returns false otherwise.
  268.   virtual bool
  269.   restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
  270.                               MachineBasicBlock::iterator MI,
  271.                               MutableArrayRef<CalleeSavedInfo> CSI,
  272.                               const TargetRegisterInfo *TRI) const {
  273.     return false;
  274.   }
  275.  
  276.   /// Return true if the target wants to keep the frame pointer regardless of
  277.   /// the function attribute "frame-pointer".
  278.   virtual bool keepFramePointer(const MachineFunction &MF) const {
  279.     return false;
  280.   }
  281.  
  282.   /// hasFP - Return true if the specified function should have a dedicated
  283.   /// frame pointer register. For most targets this is true only if the function
  284.   /// has variable sized allocas or if frame pointer elimination is disabled.
  285.   virtual bool hasFP(const MachineFunction &MF) const = 0;
  286.  
  287.   /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
  288.   /// not required, we reserve argument space for call sites in the function
  289.   /// immediately on entry to the current function. This eliminates the need for
  290.   /// add/sub sp brackets around call sites. Returns true if the call frame is
  291.   /// included as part of the stack frame.
  292.   virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
  293.     return !hasFP(MF);
  294.   }
  295.  
  296.   /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
  297.   /// call frame pseudo ops before doing frame index elimination. This is
  298.   /// possible only when frame index references between the pseudos won't
  299.   /// need adjusting for the call frame adjustments. Normally, that's true
  300.   /// if the function has a reserved call frame or a frame pointer. Some
  301.   /// targets (Thumb2, for example) may have more complicated criteria,
  302.   /// however, and can override this behavior.
  303.   virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
  304.     return hasReservedCallFrame(MF) || hasFP(MF);
  305.   }
  306.  
  307.   // needsFrameIndexResolution - Do we need to perform FI resolution for
  308.   // this function. Normally, this is required only when the function
  309.   // has any stack objects. However, targets may want to override this.
  310.   virtual bool needsFrameIndexResolution(const MachineFunction &MF) const;
  311.  
  312.   /// getFrameIndexReference - This method should return the base register
  313.   /// and offset used to reference a frame index location. The offset is
  314.   /// returned directly, and the base register is returned via FrameReg.
  315.   virtual StackOffset getFrameIndexReference(const MachineFunction &MF, int FI,
  316.                                              Register &FrameReg) const;
  317.  
  318.   /// Same as \c getFrameIndexReference, except that the stack pointer (as
  319.   /// opposed to the frame pointer) will be the preferred value for \p
  320.   /// FrameReg. This is generally used for emitting statepoint or EH tables that
  321.   /// use offsets from RSP.  If \p IgnoreSPUpdates is true, the returned
  322.   /// offset is only guaranteed to be valid with respect to the value of SP at
  323.   /// the end of the prologue.
  324.   virtual StackOffset
  325.   getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI,
  326.                                  Register &FrameReg,
  327.                                  bool IgnoreSPUpdates) const {
  328.     // Always safe to dispatch to getFrameIndexReference.
  329.     return getFrameIndexReference(MF, FI, FrameReg);
  330.   }
  331.  
  332.   /// getNonLocalFrameIndexReference - This method returns the offset used to
  333.   /// reference a frame index location. The offset can be from either FP/BP/SP
  334.   /// based on which base register is returned by llvm.localaddress.
  335.   virtual StackOffset getNonLocalFrameIndexReference(const MachineFunction &MF,
  336.                                                      int FI) const {
  337.     // By default, dispatch to getFrameIndexReference. Interested targets can
  338.     // override this.
  339.     Register FrameReg;
  340.     return getFrameIndexReference(MF, FI, FrameReg);
  341.   }
  342.  
  343.   /// Returns the callee-saved registers as computed by determineCalleeSaves
  344.   /// in the BitVector \p SavedRegs.
  345.   virtual void getCalleeSaves(const MachineFunction &MF,
  346.                                   BitVector &SavedRegs) const;
  347.  
  348.   /// This method determines which of the registers reported by
  349.   /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved.
  350.   /// The default implementation checks populates the \p SavedRegs bitset with
  351.   /// all registers which are modified in the function, targets may override
  352.   /// this function to save additional registers.
  353.   /// This method also sets up the register scavenger ensuring there is a free
  354.   /// register or a frameindex available.
  355.   /// This method should not be called by any passes outside of PEI, because
  356.   /// it may change state passed in by \p MF and \p RS. The preferred
  357.   /// interface outside PEI is getCalleeSaves.
  358.   virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs,
  359.                                     RegScavenger *RS = nullptr) const;
  360.  
  361.   /// processFunctionBeforeFrameFinalized - This method is called immediately
  362.   /// before the specified function's frame layout (MF.getFrameInfo()) is
  363.   /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
  364.   /// replaced with direct constants.  This method is optional.
  365.   ///
  366.   virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
  367.                                              RegScavenger *RS = nullptr) const {
  368.   }
  369.  
  370.   /// processFunctionBeforeFrameIndicesReplaced - This method is called
  371.   /// immediately before MO_FrameIndex operands are eliminated, but after the
  372.   /// frame is finalized. This method is optional.
  373.   virtual void
  374.   processFunctionBeforeFrameIndicesReplaced(MachineFunction &MF,
  375.                                             RegScavenger *RS = nullptr) const {}
  376.  
  377.   virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const {
  378.     report_fatal_error("WinEH not implemented for this target");
  379.   }
  380.  
  381.   /// This method is called during prolog/epilog code insertion to eliminate
  382.   /// call frame setup and destroy pseudo instructions (but only if the Target
  383.   /// is using them).  It is responsible for eliminating these instructions,
  384.   /// replacing them with concrete instructions.  This method need only be
  385.   /// implemented if using call frame setup/destroy pseudo instructions.
  386.   /// Returns an iterator pointing to the instruction after the replaced one.
  387.   virtual MachineBasicBlock::iterator
  388.   eliminateCallFramePseudoInstr(MachineFunction &MF,
  389.                                 MachineBasicBlock &MBB,
  390.                                 MachineBasicBlock::iterator MI) const {
  391.     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
  392.                      "target!");
  393.   }
  394.  
  395.  
  396.   /// Order the symbols in the local stack frame.
  397.   /// The list of objects that we want to order is in \p objectsToAllocate as
  398.   /// indices into the MachineFrameInfo. The array can be reordered in any way
  399.   /// upon return. The contents of the array, however, may not be modified (i.e.
  400.   /// only their order may be changed).
  401.   /// By default, just maintain the original order.
  402.   virtual void
  403.   orderFrameObjects(const MachineFunction &MF,
  404.                     SmallVectorImpl<int> &objectsToAllocate) const {
  405.   }
  406.  
  407.   /// Check whether or not the given \p MBB can be used as a prologue
  408.   /// for the target.
  409.   /// The prologue will be inserted first in this basic block.
  410.   /// This method is used by the shrink-wrapping pass to decide if
  411.   /// \p MBB will be correctly handled by the target.
  412.   /// As soon as the target enable shrink-wrapping without overriding
  413.   /// this method, we assume that each basic block is a valid
  414.   /// prologue.
  415.   virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const {
  416.     return true;
  417.   }
  418.  
  419.   /// Check whether or not the given \p MBB can be used as a epilogue
  420.   /// for the target.
  421.   /// The epilogue will be inserted before the first terminator of that block.
  422.   /// This method is used by the shrink-wrapping pass to decide if
  423.   /// \p MBB will be correctly handled by the target.
  424.   /// As soon as the target enable shrink-wrapping without overriding
  425.   /// this method, we assume that each basic block is a valid
  426.   /// epilogue.
  427.   virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const {
  428.     return true;
  429.   }
  430.  
  431.   /// Returns the StackID that scalable vectors should be associated with.
  432.   virtual TargetStackID::Value getStackIDForScalableVectors() const {
  433.     return TargetStackID::Default;
  434.   }
  435.  
  436.   virtual bool isSupportedStackID(TargetStackID::Value ID) const {
  437.     switch (ID) {
  438.     default:
  439.       return false;
  440.     case TargetStackID::Default:
  441.     case TargetStackID::NoAlloc:
  442.       return true;
  443.     }
  444.   }
  445.  
  446.   /// Check if given function is safe for not having callee saved registers.
  447.   /// This is used when interprocedural register allocation is enabled.
  448.   static bool isSafeForNoCSROpt(const Function &F);
  449.  
  450.   /// Check if the no-CSR optimisation is profitable for the given function.
  451.   virtual bool isProfitableForNoCSROpt(const Function &F) const {
  452.     return true;
  453.   }
  454.  
  455.   /// Return initial CFA offset value i.e. the one valid at the beginning of the
  456.   /// function (before any stack operations).
  457.   virtual int getInitialCFAOffset(const MachineFunction &MF) const;
  458.  
  459.   /// Return initial CFA register value i.e. the one valid at the beginning of
  460.   /// the function (before any stack operations).
  461.   virtual Register getInitialCFARegister(const MachineFunction &MF) const;
  462.  
  463.   /// Return the frame base information to be encoded in the DWARF subprogram
  464.   /// debug info.
  465.   virtual DwarfFrameBase getDwarfFrameBase(const MachineFunction &MF) const;
  466. };
  467.  
  468. } // End llvm namespace
  469.  
  470. #endif
  471.