//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file implements SlotIndex and related classes. The purpose of SlotIndex
 
// is to describe a position at which a register can become live, or cease to
 
// be live.
 
//
 
// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
 
// is held is LiveIntervals and provides the real numbering. This allows
 
// LiveIntervals to perform largely transparent renumbering.
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_SLOTINDEXES_H
 
#define LLVM_CODEGEN_SLOTINDEXES_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/IntervalMap.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/ilist.h"
 
#include "llvm/CodeGen/MachineBasicBlock.h"
 
#include "llvm/CodeGen/MachineFunction.h"
 
#include "llvm/CodeGen/MachineFunctionPass.h"
 
#include "llvm/CodeGen/MachineInstr.h"
 
#include "llvm/CodeGen/MachineInstrBundle.h"
 
#include "llvm/Support/Allocator.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <iterator>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class raw_ostream;
 
 
 
  /// This class represents an entry in the slot index list held in the
 
  /// SlotIndexes pass. It should not be used directly. See the
 
  /// SlotIndex & SlotIndexes classes for the public interface to this
 
  /// information.
 
  class IndexListEntry : public ilist_node<IndexListEntry> {
 
    MachineInstr *mi;
 
    unsigned index;
 
 
 
  public:
 
    IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
 
 
 
    MachineInstr* getInstr() const { return mi; }
 
    void setInstr(MachineInstr *mi) {
 
      this->mi = mi;
 
    }
 
 
 
    unsigned getIndex() const { return index; }
 
    void setIndex(unsigned index) {
 
      this->index = index;
 
    }
 
 
 
#ifdef EXPENSIVE_CHECKS
 
    // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
 
    // actually be moved to a "graveyard" list, and have their pointers
 
    // poisoned, so that dangling SlotIndex access can be reliably detected.
 
    void setPoison() {
 
      intptr_t tmp = reinterpret_cast<intptr_t>(mi);
 
      assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
 
      tmp |= 0x1;
 
      mi = reinterpret_cast<MachineInstr*>(tmp);
 
    }
 
 
 
    bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
 
#endif // EXPENSIVE_CHECKS
 
  };
 
 
 
  template <>
 
  struct ilist_alloc_traits<IndexListEntry>
 
      : public ilist_noalloc_traits<IndexListEntry> {};
 
 
 
  /// SlotIndex - An opaque wrapper around machine indexes.
 
  class SlotIndex {
 
    friend class SlotIndexes;
 
 
 
    enum Slot {
 
      /// Basic block boundary.  Used for live ranges entering and leaving a
 
      /// block without being live in the layout neighbor.  Also used as the
 
      /// def slot of PHI-defs.
 
      Slot_Block,
 
 
 
      /// Early-clobber register use/def slot.  A live range defined at
 
      /// Slot_EarlyClobber interferes with normal live ranges killed at
 
      /// Slot_Register.  Also used as the kill slot for live ranges tied to an
 
      /// early-clobber def.
 
      Slot_EarlyClobber,
 
 
 
      /// Normal register use/def slot.  Normal instructions kill and define
 
      /// register live ranges at this slot.
 
      Slot_Register,
 
 
 
      /// Dead def kill point.  Kill slot for a live range that is defined by
 
      /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
 
      /// used anywhere.
 
      Slot_Dead,
 
 
 
      Slot_Count
 
    };
 
 
 
    PointerIntPair<IndexListEntry*, 2, unsigned> lie;
 
 
 
    IndexListEntry* listEntry() const {
 
      assert(isValid() && "Attempt to compare reserved index.");
 
#ifdef EXPENSIVE_CHECKS
 
      assert(!lie.getPointer()->isPoisoned() &&
 
             "Attempt to access deleted list-entry.");
 
#endif // EXPENSIVE_CHECKS
 
      return lie.getPointer();
 
    }
 
 
 
    unsigned getIndex() const {
 
      return listEntry()->getIndex() | getSlot();
 
    }
 
 
 
    /// Returns the slot for this SlotIndex.
 
    Slot getSlot() const {
 
      return static_cast<Slot>(lie.getInt());
 
    }
 
 
 
  public:
 
    enum {
 
      /// The default distance between instructions as returned by distance().
 
      /// This may vary as instructions are inserted and removed.
 
      InstrDist = 4 * Slot_Count
 
    };
 
 
 
    /// Construct an invalid index.
 
    SlotIndex() = default;
 
 
 
    // Creates a SlotIndex from an IndexListEntry and a slot. Generally should
 
    // not be used. This method is only public to facilitate writing certain
 
    // unit tests.
 
    SlotIndex(IndexListEntry *entry, unsigned slot) : lie(entry, slot) {}
 
 
 
    // Construct a new slot index from the given one, and set the slot.
 
    SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
 
      assert(lie.getPointer() != nullptr &&
 
             "Attempt to construct index with 0 pointer.");
 
    }
 
 
 
    /// Returns true if this is a valid index. Invalid indices do
 
    /// not point into an index table, and cannot be compared.
 
    bool isValid() const {
 
      return lie.getPointer();
 
    }
 
 
 
    /// Return true for a valid index.
 
    explicit operator bool() const { return isValid(); }
 
 
 
    /// Print this index to the given raw_ostream.
 
    void print(raw_ostream &os) const;
 
 
 
    /// Dump this index to stderr.
 
    void dump() const;
 
 
 
    /// Compare two SlotIndex objects for equality.
 
    bool operator==(SlotIndex other) const {
 
      return lie == other.lie;
 
    }
 
    /// Compare two SlotIndex objects for inequality.
 
    bool operator!=(SlotIndex other) const {
 
      return lie != other.lie;
 
    }
 
 
 
    /// Compare two SlotIndex objects. Return true if the first index
 
    /// is strictly lower than the second.
 
    bool operator<(SlotIndex other) const {
 
      return getIndex() < other.getIndex();
 
    }
 
    /// Compare two SlotIndex objects. Return true if the first index
 
    /// is lower than, or equal to, the second.
 
    bool operator<=(SlotIndex other) const {
 
      return getIndex() <= other.getIndex();
 
    }
 
 
 
    /// Compare two SlotIndex objects. Return true if the first index
 
    /// is greater than the second.
 
    bool operator>(SlotIndex other) const {
 
      return getIndex() > other.getIndex();
 
    }
 
 
 
    /// Compare two SlotIndex objects. Return true if the first index
 
    /// is greater than, or equal to, the second.
 
    bool operator>=(SlotIndex other) const {
 
      return getIndex() >= other.getIndex();
 
    }
 
 
 
    /// isSameInstr - Return true if A and B refer to the same instruction.
 
    static bool isSameInstr(SlotIndex A, SlotIndex B) {
 
      return A.lie.getPointer() == B.lie.getPointer();
 
    }
 
 
 
    /// isEarlierInstr - Return true if A refers to an instruction earlier than
 
    /// B. This is equivalent to A < B && !isSameInstr(A, B).
 
    static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
 
      return A.listEntry()->getIndex() < B.listEntry()->getIndex();
 
    }
 
 
 
    /// Return true if A refers to the same instruction as B or an earlier one.
 
    /// This is equivalent to !isEarlierInstr(B, A).
 
    static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) {
 
      return !isEarlierInstr(B, A);
 
    }
 
 
 
    /// Return the distance from this index to the given one.
 
    int distance(SlotIndex other) const {
 
      return other.getIndex() - getIndex();
 
    }
 
 
 
    /// Return the scaled distance from this index to the given one, where all
 
    /// slots on the same instruction have zero distance, assuming that the slot
 
    /// indices are packed as densely as possible. There are normally gaps
 
    /// between instructions, so this assumption often doesn't hold. This
 
    /// results in this function often returning a value greater than the actual
 
    /// instruction distance.
 
    int getApproxInstrDistance(SlotIndex other) const {
 
      return (other.listEntry()->getIndex() - listEntry()->getIndex())
 
        / Slot_Count;
 
    }
 
 
 
    /// isBlock - Returns true if this is a block boundary slot.
 
    bool isBlock() const { return getSlot() == Slot_Block; }
 
 
 
    /// isEarlyClobber - Returns true if this is an early-clobber slot.
 
    bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
 
 
 
    /// isRegister - Returns true if this is a normal register use/def slot.
 
    /// Note that early-clobber slots may also be used for uses and defs.
 
    bool isRegister() const { return getSlot() == Slot_Register; }
 
 
 
    /// isDead - Returns true if this is a dead def kill slot.
 
    bool isDead() const { return getSlot() == Slot_Dead; }
 
 
 
    /// Returns the base index for associated with this index. The base index
 
    /// is the one associated with the Slot_Block slot for the instruction
 
    /// pointed to by this index.
 
    SlotIndex getBaseIndex() const {
 
      return SlotIndex(listEntry(), Slot_Block);
 
    }
 
 
 
    /// Returns the boundary index for associated with this index. The boundary
 
    /// index is the one associated with the Slot_Block slot for the instruction
 
    /// pointed to by this index.
 
    SlotIndex getBoundaryIndex() const {
 
      return SlotIndex(listEntry(), Slot_Dead);
 
    }
 
 
 
    /// Returns the register use/def slot in the current instruction for a
 
    /// normal or early-clobber def.
 
    SlotIndex getRegSlot(bool EC = false) const {
 
      return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
 
    }
 
 
 
    /// Returns the dead def kill slot for the current instruction.
 
    SlotIndex getDeadSlot() const {
 
      return SlotIndex(listEntry(), Slot_Dead);
 
    }
 
 
 
    /// Returns the next slot in the index list. This could be either the
 
    /// next slot for the instruction pointed to by this index or, if this
 
    /// index is a STORE, the first slot for the next instruction.
 
    /// WARNING: This method is considerably more expensive than the methods
 
    /// that return specific slots (getUseIndex(), etc). If you can - please
 
    /// use one of those methods.
 
    SlotIndex getNextSlot() const {
 
      Slot s = getSlot();
 
      if (s == Slot_Dead) {
 
        return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
 
      }
 
      return SlotIndex(listEntry(), s + 1);
 
    }
 
 
 
    /// Returns the next index. This is the index corresponding to the this
 
    /// index's slot, but for the next instruction.
 
    SlotIndex getNextIndex() const {
 
      return SlotIndex(&*++listEntry()->getIterator(), getSlot());
 
    }
 
 
 
    /// Returns the previous slot in the index list. This could be either the
 
    /// previous slot for the instruction pointed to by this index or, if this
 
    /// index is a Slot_Block, the last slot for the previous instruction.
 
    /// WARNING: This method is considerably more expensive than the methods
 
    /// that return specific slots (getUseIndex(), etc). If you can - please
 
    /// use one of those methods.
 
    SlotIndex getPrevSlot() const {
 
      Slot s = getSlot();
 
      if (s == Slot_Block) {
 
        return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
 
      }
 
      return SlotIndex(listEntry(), s - 1);
 
    }
 
 
 
    /// Returns the previous index. This is the index corresponding to this
 
    /// index's slot, but for the previous instruction.
 
    SlotIndex getPrevIndex() const {
 
      return SlotIndex(&*--listEntry()->getIterator(), getSlot());
 
    }
 
  };
 
 
 
  inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
 
    li.print(os);
 
    return os;
 
  }
 
 
 
  using IdxMBBPair = std::pair<SlotIndex, MachineBasicBlock *>;
 
 
 
  /// SlotIndexes pass.
 
  ///
 
  /// This pass assigns indexes to each instruction.
 
  class SlotIndexes : public MachineFunctionPass {
 
  private:
 
    // IndexListEntry allocator.
 
    BumpPtrAllocator ileAllocator;
 
 
 
    using IndexList = ilist<IndexListEntry>;
 
    IndexList indexList;
 
 
 
    MachineFunction *mf = nullptr;
 
 
 
    using Mi2IndexMap = DenseMap<const MachineInstr *, SlotIndex>;
 
    Mi2IndexMap mi2iMap;
 
 
 
    /// MBBRanges - Map MBB number to (start, stop) indexes.
 
    SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
 
 
 
    /// Idx2MBBMap - Sorted list of pairs of index of first instruction
 
    /// and MBB id.
 
    SmallVector<IdxMBBPair, 8> idx2MBBMap;
 
 
 
    IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
 
      IndexListEntry *entry =
 
          static_cast<IndexListEntry *>(ileAllocator.Allocate(
 
              sizeof(IndexListEntry), alignof(IndexListEntry)));
 
 
 
      new (entry) IndexListEntry(mi, index);
 
 
 
      return entry;
 
    }
 
 
 
    /// Renumber locally after inserting curItr.
 
    void renumberIndexes(IndexList::iterator curItr);
 
 
 
  public:
 
    static char ID;
 
 
 
    SlotIndexes();
 
 
 
    ~SlotIndexes() override;
 
 
 
    void getAnalysisUsage(AnalysisUsage &au) const override;
 
    void releaseMemory() override;
 
 
 
    bool runOnMachineFunction(MachineFunction &fn) override;
 
 
 
    /// Dump the indexes.
 
    void dump() const;
 
 
 
    /// Repair indexes after adding and removing instructions.
 
    void repairIndexesInRange(MachineBasicBlock *MBB,
 
                              MachineBasicBlock::iterator Begin,
 
                              MachineBasicBlock::iterator End);
 
 
 
    /// Returns the zero index for this analysis.
 
    SlotIndex getZeroIndex() {
 
      assert(indexList.front().getIndex() == 0 && "First index is not 0?");
 
      return SlotIndex(&indexList.front(), 0);
 
    }
 
 
 
    /// Returns the base index of the last slot in this analysis.
 
    SlotIndex getLastIndex() {
 
      return SlotIndex(&indexList.back(), 0);
 
    }
 
 
 
    /// Returns true if the given machine instr is mapped to an index,
 
    /// otherwise returns false.
 
    bool hasIndex(const MachineInstr &instr) const {
 
      return mi2iMap.count(&instr);
 
    }
 
 
 
    /// Returns the base index for the given instruction.
 
    SlotIndex getInstructionIndex(const MachineInstr &MI,
 
                                  bool IgnoreBundle = false) const {
 
      // Instructions inside a bundle have the same number as the bundle itself.
 
      auto BundleStart = getBundleStart(MI.getIterator());
 
      auto BundleEnd = getBundleEnd(MI.getIterator());
 
      // Use the first non-debug instruction in the bundle to get SlotIndex.
 
      const MachineInstr &BundleNonDebug =
 
          IgnoreBundle ? MI
 
                       : *skipDebugInstructionsForward(BundleStart, BundleEnd);
 
      assert(!BundleNonDebug.isDebugInstr() &&
 
             "Could not use a debug instruction to query mi2iMap.");
 
      Mi2IndexMap::const_iterator itr = mi2iMap.find(&BundleNonDebug);
 
      assert(itr != mi2iMap.end() && "Instruction not found in maps.");
 
      return itr->second;
 
    }
 
 
 
    /// Returns the instruction for the given index, or null if the given
 
    /// index has no instruction associated with it.
 
    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
 
      return index.isValid() ? index.listEntry()->getInstr() : nullptr;
 
    }
 
 
 
    /// Returns the next non-null index, if one exists.
 
    /// Otherwise returns getLastIndex().
 
    SlotIndex getNextNonNullIndex(SlotIndex Index) {
 
      IndexList::iterator I = Index.listEntry()->getIterator();
 
      IndexList::iterator E = indexList.end();
 
      while (++I != E)
 
        if (I->getInstr())
 
          return SlotIndex(&*I, Index.getSlot());
 
      // We reached the end of the function.
 
      return getLastIndex();
 
    }
 
 
 
    /// getIndexBefore - Returns the index of the last indexed instruction
 
    /// before MI, or the start index of its basic block.
 
    /// MI is not required to have an index.
 
    SlotIndex getIndexBefore(const MachineInstr &MI) const {
 
      const MachineBasicBlock *MBB = MI.getParent();
 
      assert(MBB && "MI must be inserted in a basic block");
 
      MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
 
      while (true) {
 
        if (I == B)
 
          return getMBBStartIdx(MBB);
 
        --I;
 
        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
 
        if (MapItr != mi2iMap.end())
 
          return MapItr->second;
 
      }
 
    }
 
 
 
    /// getIndexAfter - Returns the index of the first indexed instruction
 
    /// after MI, or the end index of its basic block.
 
    /// MI is not required to have an index.
 
    SlotIndex getIndexAfter(const MachineInstr &MI) const {
 
      const MachineBasicBlock *MBB = MI.getParent();
 
      assert(MBB && "MI must be inserted in a basic block");
 
      MachineBasicBlock::const_iterator I = MI, E = MBB->end();
 
      while (true) {
 
        ++I;
 
        if (I == E)
 
          return getMBBEndIdx(MBB);
 
        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
 
        if (MapItr != mi2iMap.end())
 
          return MapItr->second;
 
      }
 
    }
 
 
 
    /// Return the (start,end) range of the given basic block number.
 
    const std::pair<SlotIndex, SlotIndex> &
 
    getMBBRange(unsigned Num) const {
 
      return MBBRanges[Num];
 
    }
 
 
 
    /// Return the (start,end) range of the given basic block.
 
    const std::pair<SlotIndex, SlotIndex> &
 
    getMBBRange(const MachineBasicBlock *MBB) const {
 
      return getMBBRange(MBB->getNumber());
 
    }
 
 
 
    /// Returns the first index in the given basic block number.
 
    SlotIndex getMBBStartIdx(unsigned Num) const {
 
      return getMBBRange(Num).first;
 
    }
 
 
 
    /// Returns the first index in the given basic block.
 
    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
 
      return getMBBRange(mbb).first;
 
    }
 
 
 
    /// Returns the last index in the given basic block number.
 
    SlotIndex getMBBEndIdx(unsigned Num) const {
 
      return getMBBRange(Num).second;
 
    }
 
 
 
    /// Returns the last index in the given basic block.
 
    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
 
      return getMBBRange(mbb).second;
 
    }
 
 
 
    /// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
 
    /// begin and basic block)
 
    using MBBIndexIterator = SmallVectorImpl<IdxMBBPair>::const_iterator;
 
 
 
    /// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
 
    /// equal to \p To.
 
    MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
 
      return std::partition_point(
 
          I, idx2MBBMap.end(),
 
          [=](const IdxMBBPair &IM) { return IM.first < To; });
 
    }
 
 
 
    /// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
 
    /// that is greater or equal to \p Idx.
 
    MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
 
      return advanceMBBIndex(idx2MBBMap.begin(), Idx);
 
    }
 
 
 
    /// Returns an iterator for the begin of the idx2MBBMap.
 
    MBBIndexIterator MBBIndexBegin() const {
 
      return idx2MBBMap.begin();
 
    }
 
 
 
    /// Return an iterator for the end of the idx2MBBMap.
 
    MBBIndexIterator MBBIndexEnd() const {
 
      return idx2MBBMap.end();
 
    }
 
 
 
    /// Returns the basic block which the given index falls in.
 
    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
 
      if (MachineInstr *MI = getInstructionFromIndex(index))
 
        return MI->getParent();
 
 
 
      MBBIndexIterator I = findMBBIndex(index);
 
      // Take the pair containing the index
 
      MBBIndexIterator J =
 
        ((I != MBBIndexEnd() && I->first > index) ||
 
         (I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
 
 
 
      assert(J != MBBIndexEnd() && J->first <= index &&
 
             index < getMBBEndIdx(J->second) &&
 
             "index does not correspond to an MBB");
 
      return J->second;
 
    }
 
 
 
    /// Insert the given machine instruction into the mapping. Returns the
 
    /// assigned index.
 
    /// If Late is set and there are null indexes between mi's neighboring
 
    /// instructions, create the new index after the null indexes instead of
 
    /// before them.
 
    SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) {
 
      assert(!MI.isInsideBundle() &&
 
             "Instructions inside bundles should use bundle start's slot.");
 
      assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed.");
 
      // Numbering debug instructions could cause code generation to be
 
      // affected by debug information.
 
      assert(!MI.isDebugInstr() && "Cannot number debug instructions.");
 
 
 
      assert(MI.getParent() != nullptr && "Instr must be added to function.");
 
 
 
      // Get the entries where MI should be inserted.
 
      IndexList::iterator prevItr, nextItr;
 
      if (Late) {
 
        // Insert MI's index immediately before the following instruction.
 
        nextItr = getIndexAfter(MI).listEntry()->getIterator();
 
        prevItr = std::prev(nextItr);
 
      } else {
 
        // Insert MI's index immediately after the preceding instruction.
 
        prevItr = getIndexBefore(MI).listEntry()->getIterator();
 
        nextItr = std::next(prevItr);
 
      }
 
 
 
      // Get a number for the new instr, or 0 if there's no room currently.
 
      // In the latter case we'll force a renumber later.
 
      unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
 
      unsigned newNumber = prevItr->getIndex() + dist;
 
 
 
      // Insert a new list entry for MI.
 
      IndexList::iterator newItr =
 
          indexList.insert(nextItr, createEntry(&MI, newNumber));
 
 
 
      // Renumber locally if we need to.
 
      if (dist == 0)
 
        renumberIndexes(newItr);
 
 
 
      SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
 
      mi2iMap.insert(std::make_pair(&MI, newIndex));
 
      return newIndex;
 
    }
 
 
 
    /// Removes machine instruction (bundle) \p MI from the mapping.
 
    /// This should be called before MachineInstr::eraseFromParent() is used to
 
    /// remove a whole bundle or an unbundled instruction.
 
    /// If \p AllowBundled is set then this can be used on a bundled
 
    /// instruction; however, this exists to support handleMoveIntoBundle,
 
    /// and in general removeSingleMachineInstrFromMaps should be used instead.
 
    void removeMachineInstrFromMaps(MachineInstr &MI,
 
                                    bool AllowBundled = false);
 
 
 
    /// Removes a single machine instruction \p MI from the mapping.
 
    /// This should be called before MachineInstr::eraseFromBundle() is used to
 
    /// remove a single instruction (out of a bundle).
 
    void removeSingleMachineInstrFromMaps(MachineInstr &MI);
 
 
 
    /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
 
    /// maps used by register allocator. \returns the index where the new
 
    /// instruction was inserted.
 
    SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
 
      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
 
      if (mi2iItr == mi2iMap.end())
 
        return SlotIndex();
 
      SlotIndex replaceBaseIndex = mi2iItr->second;
 
      IndexListEntry *miEntry(replaceBaseIndex.listEntry());
 
      assert(miEntry->getInstr() == &MI &&
 
             "Mismatched instruction in index tables.");
 
      miEntry->setInstr(&NewMI);
 
      mi2iMap.erase(mi2iItr);
 
      mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex));
 
      return replaceBaseIndex;
 
    }
 
 
 
    /// Add the given MachineBasicBlock into the maps.
 
    /// If it contains any instructions then they must already be in the maps.
 
    /// This is used after a block has been split by moving some suffix of its
 
    /// instructions into a newly created block.
 
    void insertMBBInMaps(MachineBasicBlock *mbb) {
 
      assert(mbb != &mbb->getParent()->front() &&
 
             "Can't insert a new block at the beginning of a function.");
 
      auto prevMBB = std::prev(MachineFunction::iterator(mbb));
 
 
 
      // Create a new entry to be used for the start of mbb and the end of
 
      // prevMBB.
 
      IndexListEntry *startEntry = createEntry(nullptr, 0);
 
      IndexListEntry *endEntry = getMBBEndIdx(&*prevMBB).listEntry();
 
      IndexListEntry *insEntry =
 
          mbb->empty() ? endEntry
 
                       : getInstructionIndex(mbb->front()).listEntry();
 
      IndexList::iterator newItr =
 
          indexList.insert(insEntry->getIterator(), startEntry);
 
 
 
      SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
 
      SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
 
 
 
      MBBRanges[prevMBB->getNumber()].second = startIdx;
 
 
 
      assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
 
             "Blocks must be added in order");
 
      MBBRanges.push_back(std::make_pair(startIdx, endIdx));
 
      idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
 
 
 
      renumberIndexes(newItr);
 
      llvm::sort(idx2MBBMap, less_first());
 
    }
 
  };
 
 
 
  // Specialize IntervalMapInfo for half-open slot index intervals.
 
  template <>
 
  struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
 
  };
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_SLOTINDEXES_H