//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/TypeSize.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <string>
#include <tuple>
#include <utility>
namespace llvm {
class APInt;
class Constant;
class GlobalValue;
class MachineBasicBlock;
class MachineConstantPoolValue;
class MCSymbol;
class raw_ostream;
class SDNode;
class SelectionDAG;
class Type;
class Value;
void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
bool force = false);
/// This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG. Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList {
const EVT *VTs;
unsigned int NumVTs;
};
namespace ISD {
/// Node predicates
/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
/// same constant or undefined, return true and return the constant value in
/// \p SplatValue.
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
/// true, it only checks BUILD_VECTOR.
bool isConstantSplatVectorAllOnes(const SDNode *N,
bool BuildVectorOnly = false);
/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
/// only checks BUILD_VECTOR.
bool isConstantSplatVectorAllZeros(const SDNode *N,
bool BuildVectorOnly = false);
/// Return true if the specified node is a BUILD_VECTOR where all of the
/// elements are ~0 or undef.
bool isBuildVectorAllOnes(const SDNode *N);
/// Return true if the specified node is a BUILD_VECTOR where all of the
/// elements are 0 or undef.
bool isBuildVectorAllZeros(const SDNode *N);
/// Return true if the specified node is a BUILD_VECTOR node of all
/// ConstantSDNode or undef.
bool isBuildVectorOfConstantSDNodes(const SDNode *N);
/// Return true if the specified node is a BUILD_VECTOR node of all
/// ConstantFPSDNode or undef.
bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
/// Returns true if the specified node is a vector where all elements can
/// be truncated to the specified element size without a loss in meaning.
bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed);
/// Return true if the node has at least one operand and all operands of the
/// specified node are ISD::UNDEF.
bool allOperandsUndef(const SDNode *N);
/// Return true if the specified node is FREEZE(UNDEF).
bool isFreezeUndef(const SDNode *N);
} // end namespace ISD
//===----------------------------------------------------------------------===//
/// Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDValue value type.
///
class SDValue {
friend struct DenseMapInfo<SDValue>;
SDNode *Node = nullptr; // The node defining the value we are using.
unsigned ResNo = 0; // Which return value of the node we are using.
public:
SDValue() = default;
SDValue(SDNode *node, unsigned resno);
/// get the index which selects a specific result in the SDNode
unsigned getResNo() const { return ResNo; }
/// get the SDNode which holds the desired result
SDNode *getNode() const { return Node; }
/// set the SDNode
void setNode(SDNode *N) { Node = N; }
inline SDNode *operator->() const { return Node; }
bool operator==(const SDValue &O) const {
return Node == O.Node && ResNo == O.ResNo;
}
bool operator!=(const SDValue &O) const {
return !operator==(O);
}
bool operator<(const SDValue &O) const {
return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
}
explicit operator bool() const {
return Node != nullptr;
}
SDValue getValue(unsigned R) const {
return SDValue(Node, R);
}
/// Return true if this node is an operand of N.
bool isOperandOf(const SDNode *N) const;
/// Return the ValueType of the referenced return value.
inline EVT getValueType() const;
/// Return the simple ValueType of the referenced return value.
MVT getSimpleValueType() const {
return getValueType().getSimpleVT();
}
/// Returns the size of the value in bits.
///
/// If the value type is a scalable vector type, the scalable property will
/// be set and the runtime size will be a positive integer multiple of the
/// base size.
TypeSize getValueSizeInBits() const {
return getValueType().getSizeInBits();
}
uint64_t getScalarValueSizeInBits() const {
return getValueType().getScalarType().getFixedSizeInBits();
}
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNumOperands() const;
inline const SDValue &getOperand(unsigned i) const;
inline uint64_t getConstantOperandVal(unsigned i) const;
inline const APInt &getConstantOperandAPInt(unsigned i) const;
inline bool isTargetMemoryOpcode() const;
inline bool isTargetOpcode() const;
inline bool isMachineOpcode() const;
inline bool isUndef() const;
inline unsigned getMachineOpcode() const;
inline const DebugLoc &getDebugLoc() const;
inline void dump() const;
inline void dump(const SelectionDAG *G) const;
inline void dumpr() const;
inline void dumpr(const SelectionDAG *G) const;
/// Return true if this operand (which must be a chain) reaches the
/// specified operand without crossing any side-effecting instructions.
/// In practice, this looks through token factors and non-volatile loads.
/// In order to remain efficient, this only
/// looks a couple of nodes in, it does not do an exhaustive search.
bool reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth = 2) const;
/// Return true if there are no nodes using value ResNo of Node.
inline bool use_empty() const;
/// Return true if there is exactly one node using value ResNo of Node.
inline bool hasOneUse() const;
};
template<> struct DenseMapInfo<SDValue> {
static inline SDValue getEmptyKey() {
SDValue V;
V.ResNo = -1U;
return V;
}
static inline SDValue getTombstoneKey() {
SDValue V;
V.ResNo = -2U;
return V;
}
static unsigned getHashValue(const SDValue &Val) {
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
}
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
return LHS == RHS;
}
};
/// Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDValue> {
using SimpleType = SDNode *;
static SimpleType getSimplifiedValue(SDValue &Val) {
return Val.getNode();
}
};
template<> struct simplify_type<const SDValue> {
using SimpleType = /*const*/ SDNode *;
static SimpleType getSimplifiedValue(const SDValue &Val) {
return Val.getNode();
}
};
/// Represents a use of a SDNode. This class holds an SDValue,
/// which records the SDNode being used and the result number, a
/// pointer to the SDNode using the value, and Next and Prev pointers,
/// which link together all the uses of an SDNode.
///
class SDUse {
/// Val - The value being used.
SDValue Val;
/// User - The user of this value.
SDNode *User = nullptr;
/// Prev, Next - Pointers to the uses list of the SDNode referred by
/// this operand.
SDUse **Prev = nullptr;
SDUse *Next = nullptr;
public:
SDUse() = default;
SDUse(const SDUse &U) = delete;
SDUse &operator=(const SDUse &) = delete;
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
operator const SDValue&() const { return Val; }
/// If implicit conversion to SDValue doesn't work, the get() method returns
/// the SDValue.
const SDValue &get() const { return Val; }
/// This returns the SDNode that contains this Use.
SDNode *getUser() { return User; }
const SDNode *getUser() const { return User; }
/// Get the next SDUse in the use list.
SDUse *getNext() const { return Next; }
/// Convenience function for get().getNode().
SDNode *getNode() const { return Val.getNode(); }
/// Convenience function for get().getResNo().
unsigned getResNo() const { return Val.getResNo(); }
/// Convenience function for get().getValueType().
EVT getValueType() const { return Val.getValueType(); }
/// Convenience function for get().operator==
bool operator==(const SDValue &V) const {
return Val == V;
}
/// Convenience function for get().operator!=
bool operator!=(const SDValue &V) const {
return Val != V;
}
/// Convenience function for get().operator<
bool operator<(const SDValue &V) const {
return Val < V;
}
private:
friend class SelectionDAG;
friend class SDNode;
// TODO: unfriend HandleSDNode once we fix its operand handling.
friend class HandleSDNode;
void setUser(SDNode *p) { User = p; }
/// Remove this use from its existing use list, assign it the
/// given value, and add it to the new value's node's use list.
inline void set(const SDValue &V);
/// Like set, but only supports initializing a newly-allocated
/// SDUse with a non-null value.
inline void setInitial(const SDValue &V);
/// Like set, but only sets the Node portion of the value,
/// leaving the ResNo portion unmodified.
inline void setNode(SDNode *N);
void addToList(SDUse **List) {
Next = *List;
if (Next) Next->Prev = &Next;
Prev = List;
*List = this;
}
void removeFromList() {
*Prev = Next;
if (Next) Next->Prev = Prev;
}
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDUse> {
using SimpleType = SDNode *;
static SimpleType getSimplifiedValue(SDUse &Val) {
return Val.getNode();
}
};
/// These are IR-level optimization flags that may be propagated to SDNodes.
/// TODO: This data structure should be shared by the IR optimizer and the
/// the backend.
struct SDNodeFlags {
private:
bool NoUnsignedWrap : 1;
bool NoSignedWrap : 1;
bool Exact : 1;
bool NoNaNs : 1;
bool NoInfs : 1;
bool NoSignedZeros : 1;
bool AllowReciprocal : 1;
bool AllowContract : 1;
bool ApproximateFuncs : 1;
bool AllowReassociation : 1;
// We assume instructions do not raise floating-point exceptions by default,
// and only those marked explicitly may do so. We could choose to represent
// this via a positive "FPExcept" flags like on the MI level, but having a
// negative "NoFPExcept" flag here (that defaults to true) makes the flag
// intersection logic more straightforward.
bool NoFPExcept : 1;
public:
/// Default constructor turns off all optimization flags.
SDNodeFlags()
: NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
AllowContract(false), ApproximateFuncs(false),
AllowReassociation(false), NoFPExcept(false) {}
/// Propagate the fast-math-flags from an IR FPMathOperator.
void copyFMF(const FPMathOperator &FPMO) {
setNoNaNs(FPMO.hasNoNaNs());
setNoInfs(FPMO.hasNoInfs());
setNoSignedZeros(FPMO.hasNoSignedZeros());
setAllowReciprocal(FPMO.hasAllowReciprocal());
setAllowContract(FPMO.hasAllowContract());
setApproximateFuncs(FPMO.hasApproxFunc());
setAllowReassociation(FPMO.hasAllowReassoc());
}
// These are mutators for each flag.
void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
void setNoSignedWrap(bool b) { NoSignedWrap = b; }
void setExact(bool b) { Exact = b; }
void setNoNaNs(bool b) { NoNaNs = b; }
void setNoInfs(bool b) { NoInfs = b; }
void setNoSignedZeros(bool b) { NoSignedZeros = b; }
void setAllowReciprocal(bool b) { AllowReciprocal = b; }
void setAllowContract(bool b) { AllowContract = b; }
void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
void setAllowReassociation(bool b) { AllowReassociation = b; }
void setNoFPExcept(bool b) { NoFPExcept = b; }
// These are accessors for each flag.
bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
bool hasNoSignedWrap() const { return NoSignedWrap; }
bool hasExact() const { return Exact; }
bool hasNoNaNs() const { return NoNaNs; }
bool hasNoInfs() const { return NoInfs; }
bool hasNoSignedZeros() const { return NoSignedZeros; }
bool hasAllowReciprocal() const { return AllowReciprocal; }
bool hasAllowContract() const { return AllowContract; }
bool hasApproximateFuncs() const { return ApproximateFuncs; }
bool hasAllowReassociation() const { return AllowReassociation; }
bool hasNoFPExcept() const { return NoFPExcept; }
/// Clear any flags in this flag set that aren't also set in Flags. All
/// flags will be cleared if Flags are undefined.
void intersectWith(const SDNodeFlags Flags) {
NoUnsignedWrap &= Flags.NoUnsignedWrap;
NoSignedWrap &= Flags.NoSignedWrap;
Exact &= Flags.Exact;
NoNaNs &= Flags.NoNaNs;
NoInfs &= Flags.NoInfs;
NoSignedZeros &= Flags.NoSignedZeros;
AllowReciprocal &= Flags.AllowReciprocal;
AllowContract &= Flags.AllowContract;
ApproximateFuncs &= Flags.ApproximateFuncs;
AllowReassociation &= Flags.AllowReassociation;
NoFPExcept &= Flags.NoFPExcept;
}
};
/// Represents one node in the SelectionDAG.
///
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
private:
/// The operation that this node performs.
int32_t NodeType;
public:
/// Unique and persistent id per SDNode in the DAG. Used for debug printing.
/// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS`
/// intentionally because it adds unneeded complexity without noticeable
/// benefits (see discussion with @thakis in D120714).
uint16_t PersistentId;
protected:
// We define a set of mini-helper classes to help us interpret the bits in our
// SubclassData. These are designed to fit within a uint16_t so they pack
// with PersistentId.
#if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
// and give the `pack` pragma push semantics.
#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
#else
#define BEGIN_TWO_BYTE_PACK()
#define END_TWO_BYTE_PACK()
#endif
BEGIN_TWO_BYTE_PACK()
class SDNodeBitfields {
friend class SDNode;
friend class MemIntrinsicSDNode;
friend class MemSDNode;
friend class SelectionDAG;
uint16_t HasDebugValue : 1;
uint16_t IsMemIntrinsic : 1;
uint16_t IsDivergent : 1;
};
enum { NumSDNodeBits = 3 };
class ConstantSDNodeBitfields {
friend class ConstantSDNode;
uint16_t : NumSDNodeBits;
uint16_t IsOpaque : 1;
};
class MemSDNodeBitfields {
friend class MemSDNode;
friend class MemIntrinsicSDNode;
friend class AtomicSDNode;
uint16_t : NumSDNodeBits;
uint16_t IsVolatile : 1;
uint16_t IsNonTemporal : 1;
uint16_t IsDereferenceable : 1;
uint16_t IsInvariant : 1;
};
enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
class LSBaseSDNodeBitfields {
friend class LSBaseSDNode;
friend class VPBaseLoadStoreSDNode;
friend class MaskedLoadStoreSDNode;
friend class MaskedGatherScatterSDNode;
friend class VPGatherScatterSDNode;
uint16_t : NumMemSDNodeBits;
// This storage is shared between disparate class hierarchies to hold an
// enumeration specific to the class hierarchy in use.
// LSBaseSDNode => enum ISD::MemIndexedMode
// VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode
// MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
// VPGatherScatterSDNode => enum ISD::MemIndexType
// MaskedGatherScatterSDNode => enum ISD::MemIndexType
uint16_t AddressingMode : 3;
};
enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
class LoadSDNodeBitfields {
friend class LoadSDNode;
friend class VPLoadSDNode;
friend class VPStridedLoadSDNode;
friend class MaskedLoadSDNode;
friend class MaskedGatherSDNode;
friend class VPGatherSDNode;
uint16_t : NumLSBaseSDNodeBits;
uint16_t ExtTy : 2; // enum ISD::LoadExtType
uint16_t IsExpanding : 1;
};
class StoreSDNodeBitfields {
friend class StoreSDNode;
friend class VPStoreSDNode;
friend class VPStridedStoreSDNode;
friend class MaskedStoreSDNode;
friend class MaskedScatterSDNode;
friend class VPScatterSDNode;
uint16_t : NumLSBaseSDNodeBits;
uint16_t IsTruncating : 1;
uint16_t IsCompressing : 1;
};
union {
char RawSDNodeBits[sizeof(uint16_t)];
SDNodeBitfields SDNodeBits;
ConstantSDNodeBitfields ConstantSDNodeBits;
MemSDNodeBitfields MemSDNodeBits;
LSBaseSDNodeBitfields LSBaseSDNodeBits;
LoadSDNodeBitfields LoadSDNodeBits;
StoreSDNodeBitfields StoreSDNodeBits;
};
END_TWO_BYTE_PACK()
#undef BEGIN_TWO_BYTE_PACK
#undef END_TWO_BYTE_PACK
// RawSDNodeBits must cover the entirety of the union. This means that all of
// the union's members must have size <= RawSDNodeBits. We write the RHS as
// "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
private:
friend class SelectionDAG;
// TODO: unfriend HandleSDNode once we fix its operand handling.
friend class HandleSDNode;
/// Unique id per SDNode in the DAG.
int NodeId = -1;
/// The values that are used by this operation.
SDUse *OperandList = nullptr;
/// The types of the values this node defines. SDNode's may
/// define multiple values simultaneously.
const EVT *ValueList;
/// List of uses for this SDNode.
SDUse *UseList = nullptr;
/// The number of entries in the Operand/Value list.
unsigned short NumOperands = 0;
unsigned short NumValues;
// The ordering of the SDNodes. It roughly corresponds to the ordering of the
// original LLVM instructions.
// This is used for turning off scheduling, because we'll forgo
// the normal scheduling algorithms and output the instructions according to
// this ordering.
unsigned IROrder;
/// Source line information.
DebugLoc debugLoc;
/// Return a pointer to the specified value type.
static const EVT *getValueTypeList(EVT VT);
SDNodeFlags Flags;
uint32_t CFIType = 0;
public:
//===--------------------------------------------------------------------===//
// Accessors
//
/// Return the SelectionDAG opcode value for this node. For
/// pre-isel nodes (those for which isMachineOpcode returns false), these
/// are the opcode values in the ISD and <target>ISD namespaces. For
/// post-isel opcodes, see getMachineOpcode.
unsigned getOpcode() const { return (unsigned)NodeType; }
/// Test if this node has a target-specific opcode (in the
/// \<target\>ISD namespace).
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
/// Test if this node has a target-specific opcode that may raise
/// FP exceptions (in the \<target\>ISD namespace and greater than
/// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
/// opcode are currently automatically considered to possibly raise
/// FP exceptions as well.
bool isTargetStrictFPOpcode() const {
return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
}
/// Test if this node has a target-specific
/// memory-referencing opcode (in the \<target\>ISD namespace and
/// greater than FIRST_TARGET_MEMORY_OPCODE).
bool isTargetMemoryOpcode() const {
return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
}
/// Return true if the type of the node type undefined.
bool isUndef() const { return NodeType == ISD::UNDEF; }
/// Test if this node is a memory intrinsic (with valid pointer information).
/// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
/// non-memory intrinsics (with chains) that are not really instances of
/// MemSDNode. For such nodes, we need some extra state to determine the
/// proper classof relationship.
bool isMemIntrinsic() const {
return (NodeType == ISD::INTRINSIC_W_CHAIN ||
NodeType == ISD::INTRINSIC_VOID) &&
SDNodeBits.IsMemIntrinsic;
}
/// Test if this node is a strict floating point pseudo-op.
bool isStrictFPOpcode() {
switch (NodeType) {
default:
return false;
case ISD::STRICT_FP16_TO_FP:
case ISD::STRICT_FP_TO_FP16:
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
case ISD::STRICT_##DAGN:
#include "llvm/IR/ConstrainedOps.def"
return true;
}
}
/// Test if this node is a vector predication operation.
bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); }
/// Test if this node has a post-isel opcode, directly
/// corresponding to a MachineInstr opcode.
bool isMachineOpcode() const { return NodeType < 0; }
/// This may only be called if isMachineOpcode returns
/// true. It returns the MachineInstr opcode value that the node's opcode
/// corresponds to.
unsigned getMachineOpcode() const {
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
return ~NodeType;
}
bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
bool isDivergent() const { return SDNodeBits.IsDivergent; }
/// Return true if there are no uses of this node.
bool use_empty() const { return UseList == nullptr; }
/// Return true if there is exactly one use of this node.
bool hasOneUse() const { return hasSingleElement(uses()); }
/// Return the number of uses of this node. This method takes
/// time proportional to the number of uses.
size_t use_size() const { return std::distance(use_begin(), use_end()); }
/// Return the unique node id.
int getNodeId() const { return NodeId; }
/// Set unique node id.
void setNodeId(int Id) { NodeId = Id; }
/// Return the node ordering.
unsigned getIROrder() const { return IROrder; }
/// Set the node ordering.
void setIROrder(unsigned Order) { IROrder = Order; }
/// Return the source location info.
const DebugLoc &getDebugLoc() const { return debugLoc; }
/// Set source location info. Try to avoid this, putting
/// it in the constructor is preferable.
void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
/// This class provides iterator support for SDUse
/// operands that use a specific SDNode.
class use_iterator {
friend class SDNode;
SDUse *Op = nullptr;
explicit use_iterator(SDUse *op) : Op(op) {}
public:
using iterator_category = std::forward_iterator_tag;
using value_type = SDUse;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
use_iterator() = default;
use_iterator(const use_iterator &I) = default;
use_iterator &operator=(const use_iterator &) = default;
bool operator==(const use_iterator &x) const { return Op == x.Op; }
bool operator!=(const use_iterator &x) const {
return !operator==(x);
}
/// Return true if this iterator is at the end of uses list.
bool atEnd() const { return Op == nullptr; }
// Iterator traversal: forward iteration only.
use_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!");
Op = Op->getNext();
return *this;
}
use_iterator operator++(int) { // Postincrement
use_iterator tmp = *this; ++*this; return tmp;
}
/// Retrieve a pointer to the current user node.
SDNode *operator*() const {
assert(Op && "Cannot dereference end iterator!");
return Op->getUser();
}
SDNode *operator->() const { return operator*(); }
SDUse &getUse() const { return *Op; }
/// Retrieve the operand # of this use in its user.
unsigned getOperandNo() const {
assert(Op && "Cannot dereference end iterator!");
return (unsigned)(Op - Op->getUser()->OperandList);
}
};
/// Provide iteration support to walk over all uses of an SDNode.
use_iterator use_begin() const {
return use_iterator(UseList);
}
static use_iterator use_end() { return use_iterator(nullptr); }
inline iterator_range<use_iterator> uses() {
return make_range(use_begin(), use_end());
}
inline iterator_range<use_iterator> uses() const {
return make_range(use_begin(), use_end());
}
/// Return true if there are exactly NUSES uses of the indicated value.
/// This method ignores uses of other values defined by this operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
/// Return true if there are any use of the indicated value.
/// This method ignores uses of other values defined by this operation.
bool hasAnyUseOfValue(unsigned Value) const;
/// Return true if this node is the only use of N.
bool isOnlyUserOf(const SDNode *N) const;
/// Return true if this node is an operand of N.
bool isOperandOf(const SDNode *N) const;
/// Return true if this node is a predecessor of N.
/// NOTE: Implemented on top of hasPredecessor and every bit as
/// expensive. Use carefully.
bool isPredecessorOf(const SDNode *N) const {
return N->hasPredecessor(this);
}
/// Return true if N is a predecessor of this node.
/// N is either an operand of this node, or can be reached by recursively
/// traversing up the operands.
/// NOTE: This is an expensive method. Use it carefully.
bool hasPredecessor(const SDNode *N) const;
/// Returns true if N is a predecessor of any node in Worklist. This
/// helper keeps Visited and Worklist sets externally to allow unions
/// searches to be performed in parallel, caching of results across
/// queries and incremental addition to Worklist. Stops early if N is
/// found but will resume. Remember to clear Visited and Worklists
/// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
/// giving up. The TopologicalPrune flag signals that positive NodeIds are
/// topologically ordered (Operands have strictly smaller node id) and search
/// can be pruned leveraging this.
static bool hasPredecessorHelper(const SDNode *N,
SmallPtrSetImpl<const SDNode *> &Visited,
SmallVectorImpl<const SDNode *> &Worklist,
unsigned int MaxSteps = 0,
bool TopologicalPrune = false) {
SmallVector<const SDNode *, 8> DeferredNodes;
if (Visited.count(N))
return true;
// Node Id's are assigned in three places: As a topological
// ordering (> 0), during legalization (results in values set to
// 0), new nodes (set to -1). If N has a topolgical id then we
// know that all nodes with ids smaller than it cannot be
// successors and we need not check them. Filter out all node
// that can't be matches. We add them to the worklist before exit
// in case of multiple calls. Note that during selection the topological id
// may be violated if a node's predecessor is selected before it. We mark
// this at selection negating the id of unselected successors and
// restricting topological pruning to positive ids.
int NId = N->getNodeId();
// If we Invalidated the Id, reconstruct original NId.
if (NId < -1)
NId = -(NId + 1);
bool Found = false;
while (!Worklist.empty()) {
const SDNode *M = Worklist.pop_back_val();
int MId = M->getNodeId();
if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
(MId > 0) && (MId < NId)) {
DeferredNodes.push_back(M);
continue;
}
for (const SDValue &OpV : M->op_values()) {
SDNode *Op = OpV.getNode();
if (Visited.insert(Op).second)
Worklist.push_back(Op);
if (Op == N)
Found = true;
}
if (Found)
break;
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
break;
}
// Push deferred nodes back on worklist.
Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
// If we bailed early, conservatively return found.
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
return true;
return Found;
}
/// Return true if all the users of N are contained in Nodes.
/// NOTE: Requires at least one match, but doesn't require them all.
static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
/// Return the number of values used by this operation.
unsigned getNumOperands() const { return NumOperands; }
/// Return the maximum number of operands that a SDNode can hold.
static constexpr size_t getMaxNumOperands() {
return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
}
/// Helper method returns the integer value of a ConstantSDNode operand.
inline uint64_t getConstantOperandVal(unsigned Num) const;
/// Helper method returns the APInt of a ConstantSDNode operand.
inline const APInt &getConstantOperandAPInt(unsigned Num) const;
const SDValue &getOperand(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return OperandList[Num];
}
using op_iterator = SDUse *;
op_iterator op_begin() const { return OperandList; }
op_iterator op_end() const { return OperandList+NumOperands; }
ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); }
/// Iterator for directly iterating over the operand SDValue's.
struct value_op_iterator
: iterator_adaptor_base<value_op_iterator, op_iterator,
std::random_access_iterator_tag, SDValue,
ptrdiff_t, value_op_iterator *,
value_op_iterator *> {
explicit value_op_iterator(SDUse *U = nullptr)
: iterator_adaptor_base(U) {}
const SDValue &operator*() const { return I->get(); }
};
iterator_range<value_op_iterator> op_values() const {
return make_range(value_op_iterator(op_begin()),
value_op_iterator(op_end()));
}
SDVTList getVTList() const {
SDVTList X = { ValueList, NumValues };
return X;
}
/// If this node has a glue operand, return the node
/// to which the glue operand points. Otherwise return NULL.
SDNode *getGluedNode() const {
if (getNumOperands() != 0 &&
getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
return getOperand(getNumOperands()-1).getNode();
return nullptr;
}
/// If this node has a glue value with a user, return
/// the user (there is at most one). Otherwise return NULL.
SDNode *getGluedUser() const {
for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
if (UI.getUse().get().getValueType() == MVT::Glue)
return *UI;
return nullptr;
}
SDNodeFlags getFlags() const { return Flags; }
void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
/// Clear any flags in this node that aren't also set in Flags.
/// If Flags is not in a defined state then this has no effect.
void intersectFlagsWith(const SDNodeFlags Flags);
void setCFIType(uint32_t Type) { CFIType = Type; }
uint32_t getCFIType() const { return CFIType; }
/// Return the number of values defined/returned by this operator.
unsigned getNumValues() const { return NumValues; }
/// Return the type of a specified result.
EVT getValueType(unsigned ResNo) const {
assert(ResNo < NumValues && "Illegal result number!");
return ValueList[ResNo];
}
/// Return the type of a specified result as a simple type.
MVT getSimpleValueType(unsigned ResNo) const {
return getValueType(ResNo).getSimpleVT();
}
/// Returns MVT::getSizeInBits(getValueType(ResNo)).
///
/// If the value type is a scalable vector type, the scalable property will
/// be set and the runtime size will be a positive integer multiple of the
/// base size.
TypeSize getValueSizeInBits(unsigned ResNo) const {
return getValueType(ResNo).getSizeInBits();
}
using value_iterator = const EVT *;
value_iterator value_begin() const { return ValueList; }
value_iterator value_end() const { return ValueList+NumValues; }
iterator_range<value_iterator> values() const {
return llvm::make_range(value_begin(), value_end());
}
/// Return the opcode of this operation for printing.
std::string getOperationName(const SelectionDAG *G = nullptr) const;
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
void print_types(raw_ostream &OS, const SelectionDAG *G) const;
void print_details(raw_ostream &OS, const SelectionDAG *G) const;
void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
/// Print a SelectionDAG node and all children down to
/// the leaves. The given SelectionDAG allows target-specific nodes
/// to be printed in human-readable form. Unlike printr, this will
/// print the whole DAG, including children that appear multiple
/// times.
///
void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
/// Print a SelectionDAG node and children up to
/// depth "depth." The given SelectionDAG allows target-specific
/// nodes to be printed in human-readable form. Unlike printr, this
/// will print children that appear multiple times wherever they are
/// used.
///
void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
unsigned depth = 100) const;
/// Dump this node, for debugging.
void dump() const;
/// Dump (recursively) this node and its use-def subgraph.
void dumpr() const;
/// Dump this node, for debugging.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dump(const SelectionDAG *G) const;
/// Dump (recursively) this node and its use-def subgraph.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dumpr(const SelectionDAG *G) const;
/// printrFull to dbgs(). The given SelectionDAG allows
/// target-specific nodes to be printed in human-readable form.
/// Unlike dumpr, this will print the whole DAG, including children
/// that appear multiple times.
void dumprFull(const SelectionDAG *G = nullptr) const;
/// printrWithDepth to dbgs(). The given
/// SelectionDAG allows target-specific nodes to be printed in
/// human-readable form. Unlike dumpr, this will print children
/// that appear multiple times wherever they are used.
///
void dumprWithDepth(const SelectionDAG *G = nullptr,
unsigned depth = 100) const;
/// Gather unique data for the node.
void Profile(FoldingSetNodeID &ID) const;
/// This method should only be used by the SDUse class.
void addUse(SDUse &U) { U.addToList(&UseList); }
protected:
static SDVTList getSDVTList(EVT VT) {
SDVTList Ret = { getValueTypeList(VT), 1 };
return Ret;
}
/// Create an SDNode.
///
/// SDNodes are created without any operands, and never own the operand
/// storage. To add operands, see SelectionDAG::createOperands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
: NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
IROrder(Order), debugLoc(std::move(dl)) {
memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
assert(NumValues == VTs.NumVTs &&
"NumValues wasn't wide enough for its operands!");
}
/// Release the operands and set this node to have zero operands.
void DropOperands();
};
/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
/// into SDNode creation functions.
/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
/// from the original Instruction, and IROrder is the ordinal position of
/// the instruction.
/// When an SDNode is created after the DAG is being built, both DebugLoc and
/// the IROrder are propagated from the original SDNode.
/// So SDLoc class provides two constructors besides the default one, one to
/// be used by the DAGBuilder, the other to be used by others.
class SDLoc {
private:
DebugLoc DL;
int IROrder = 0;
public:
SDLoc() = default;
SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
SDLoc(const Instruction *I, int Order) : IROrder(Order) {
assert(Order >= 0 && "bad IROrder");
if (I)
DL = I->getDebugLoc();
}
unsigned getIROrder() const { return IROrder; }
const DebugLoc &getDebugLoc() const { return DL; }
};
// Define inline functions from the SDValue class.
inline SDValue::SDValue(SDNode *node, unsigned resno)
: Node(node), ResNo(resno) {
// Explicitly check for !ResNo to avoid use-after-free, because there are
// callers that use SDValue(N, 0) with a deleted N to indicate successful
// combines.
assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
"Invalid result number for the given node!");
assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
}
inline unsigned SDValue::getOpcode() const {
return Node->getOpcode();
}
inline EVT SDValue::getValueType() const {
return Node->getValueType(ResNo);
}
inline unsigned SDValue::getNumOperands() const {
return Node->getNumOperands();
}
inline const SDValue &SDValue::getOperand(unsigned i) const {
return Node->getOperand(i);
}
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
return Node->getConstantOperandVal(i);
}
inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
return Node->getConstantOperandAPInt(i);
}
inline bool SDValue::isTargetOpcode() const {
return Node->isTargetOpcode();
}
inline bool SDValue::isTargetMemoryOpcode() const {
return Node->isTargetMemoryOpcode();
}
inline bool SDValue::isMachineOpcode() const {
return Node->isMachineOpcode();
}
inline unsigned SDValue::getMachineOpcode() const {
return Node->getMachineOpcode();
}
inline bool SDValue::isUndef() const {
return Node->isUndef();
}
inline bool SDValue::use_empty() const {
return !Node->hasAnyUseOfValue(ResNo);
}
inline bool SDValue::hasOneUse() const {
return Node->hasNUsesOfValue(1, ResNo);
}
inline const DebugLoc &SDValue::getDebugLoc() const {
return Node->getDebugLoc();
}
inline void SDValue::dump() const {
return Node->dump();
}
inline void SDValue::dump(const SelectionDAG *G) const {
return Node->dump(G);
}
inline void SDValue::dumpr() const {
return Node->dumpr();
}
inline void SDValue::dumpr(const SelectionDAG *G) const {
return Node->dumpr(G);
}
// Define inline functions from the SDUse class.
inline void SDUse::set(const SDValue &V) {
if (Val.getNode()) removeFromList();
Val = V;
if (V.getNode())
V->addUse(*this);
}
inline void SDUse::setInitial(const SDValue &V) {
Val = V;
V->addUse(*this);
}
inline void SDUse::setNode(SDNode *N) {
if (Val.getNode()) removeFromList();
Val.setNode(N);
if (N) N->addUse(*this);
}
/// This class is used to form a handle around another node that
/// is persistent and is updated across invocations of replaceAllUsesWith on its
/// operand. This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
SDUse Op;
public:
explicit HandleSDNode(SDValue X)
: SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
// HandleSDNodes are never inserted into the DAG, so they won't be
// auto-numbered. Use ID 65535 as a sentinel.
PersistentId = 0xffff;
// Manually set up the operand list. This node type is special in that it's
// always stack allocated and SelectionDAG does not manage its operands.
// TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
// be so special.
Op.setUser(this);
Op.setInitial(X);
NumOperands = 1;
OperandList = &Op;
}
~HandleSDNode();
const SDValue &getValue() const { return Op; }
};
class AddrSpaceCastSDNode : public SDNode {
private:
unsigned SrcAddrSpace;
unsigned DestAddrSpace;
public:
AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
unsigned SrcAS, unsigned DestAS);
unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
unsigned getDestAddressSpace() const { return DestAddrSpace; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ADDRSPACECAST;
}
};
/// This is an abstract virtual class for memory operations.
class MemSDNode : public SDNode {
private:
// VT of in-memory value.
EVT MemoryVT;
protected:
/// Memory reference information.
MachineMemOperand *MMO;
public:
MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT memvt, MachineMemOperand *MMO);
bool readMem() const { return MMO->isLoad(); }
bool writeMem() const { return MMO->isStore(); }
/// Returns alignment and volatility of the memory access
Align getOriginalAlign() const { return MMO->getBaseAlign(); }
Align getAlign() const { return MMO->getAlign(); }
/// Return the SubclassData value, without HasDebugValue. This contains an
/// encoding of the volatile flag, as well as bits used by subclasses. This
/// function should only be used to compute a FoldingSetNodeID value.
/// The HasDebugValue bit is masked out because CSE map needs to match
/// nodes with debug info with nodes without debug info. Same is about
/// isDivergent bit.
unsigned getRawSubclassData() const {
uint16_t Data;
union {
char RawSDNodeBits[sizeof(uint16_t)];
SDNodeBitfields SDNodeBits;
};
memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
SDNodeBits.HasDebugValue = 0;
SDNodeBits.IsDivergent = false;
memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
return Data;
}
bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
// Returns the offset from the location of the access.
int64_t getSrcValueOffset() const { return MMO->getOffset(); }
/// Returns the AA info that describes the dereference.
AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
/// Returns the Ranges that describes the dereference.
const MDNode *getRanges() const { return MMO->getRanges(); }
/// Returns the synchronization scope ID for this memory operation.
SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
/// Return the atomic ordering requirements for this memory operation. For
/// cmpxchg atomic operations, return the atomic ordering requirements when
/// store occurs.
AtomicOrdering getSuccessOrdering() const {
return MMO->getSuccessOrdering();
}
/// Return a single atomic ordering that is at least as strong as both the
/// success and failure orderings for an atomic operation. (For operations
/// other than cmpxchg, this is equivalent to getSuccessOrdering().)
AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
/// Return true if the memory operation ordering is Unordered or higher.
bool isAtomic() const { return MMO->isAtomic(); }
/// Returns true if the memory operation doesn't imply any ordering
/// constraints on surrounding memory operations beyond the normal memory
/// aliasing rules.
bool isUnordered() const { return MMO->isUnordered(); }
/// Returns true if the memory operation is neither atomic or volatile.
bool isSimple() const { return !isAtomic() && !isVolatile(); }
/// Return the type of the in-memory value.
EVT getMemoryVT() const { return MemoryVT; }
/// Return a MachineMemOperand object describing the memory
/// reference performed by operation.
MachineMemOperand *getMemOperand() const { return MMO; }
const MachinePointerInfo &getPointerInfo() const {
return MMO->getPointerInfo();
}
/// Return the address space for the associated pointer
unsigned getAddressSpace() const {
return getPointerInfo().getAddrSpace();
}
/// Update this MemSDNode's MachineMemOperand information
/// to reflect the alignment of NewMMO, if it has a greater alignment.
/// This must only be used when the new alignment applies to all users of
/// this MachineMemOperand.
void refineAlignment(const MachineMemOperand *NewMMO) {
MMO->refineAlignment(NewMMO);
}
const SDValue &getChain() const { return getOperand(0); }
const SDValue &getBasePtr() const {
switch (getOpcode()) {
case ISD::STORE:
case ISD::VP_STORE:
case ISD::MSTORE:
case ISD::VP_SCATTER:
case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
return getOperand(2);
case ISD::MGATHER:
case ISD::MSCATTER:
return getOperand(3);
default:
return getOperand(1);
}
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
// with either an intrinsic or a target opcode.
switch (N->getOpcode()) {
case ISD::LOAD:
case ISD::STORE:
case ISD::PREFETCH:
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_CLR:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD_FADD:
case ISD::ATOMIC_LOAD_FSUB:
case ISD::ATOMIC_LOAD_FMAX:
case ISD::ATOMIC_LOAD_FMIN:
case ISD::ATOMIC_LOAD_UINC_WRAP:
case ISD::ATOMIC_LOAD_UDEC_WRAP:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE:
case ISD::MLOAD:
case ISD::MSTORE:
case ISD::MGATHER:
case ISD::MSCATTER:
case ISD::VP_LOAD:
case ISD::VP_STORE:
case ISD::VP_GATHER:
case ISD::VP_SCATTER:
case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
return true;
default:
return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
}
}
};
/// This is an SDNode representing atomic operations.
class AtomicSDNode : public MemSDNode {
public:
AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
EVT MemVT, MachineMemOperand *MMO)
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getVal() const { return getOperand(2); }
/// Returns true if this SDNode represents cmpxchg atomic operation, false
/// otherwise.
bool isCompareAndSwap() const {
unsigned Op = getOpcode();
return Op == ISD::ATOMIC_CMP_SWAP ||
Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
}
/// For cmpxchg atomic operations, return the atomic ordering requirements
/// when store does not occur.
AtomicOrdering getFailureOrdering() const {
assert(isCompareAndSwap() && "Must be cmpxchg operation");
return MMO->getFailureOrdering();
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
N->getOpcode() == ISD::ATOMIC_SWAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_FMAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_FMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP ||
N->getOpcode() == ISD::ATOMIC_LOAD ||
N->getOpcode() == ISD::ATOMIC_STORE;
}
};
/// This SDNode is used for target intrinsics that touch
/// memory and need an associated MachineMemOperand. Its opcode may be
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
class MemIntrinsicSDNode : public MemSDNode {
public:
MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
: MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
SDNodeBits.IsMemIntrinsic = true;
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
// We lower some target intrinsics to their target opcode
// early a node with a target opcode can be of this class
return N->isMemIntrinsic() ||
N->getOpcode() == ISD::PREFETCH ||
N->isTargetMemoryOpcode();
}
};
/// This SDNode is used to implement the code generator
/// support for the llvm IR shufflevector instruction. It combines elements
/// from two input vectors into a new input vector, with the selection and
/// ordering of elements determined by an array of integers, referred to as
/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
/// An index of -1 is treated as undef, such that the code generator may put
/// any value in the corresponding element of the result.
class ShuffleVectorSDNode : public SDNode {
// The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
// is freed when the SelectionDAG object is destroyed.
const int *Mask;
protected:
friend class SelectionDAG;
ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
: SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
public:
ArrayRef<int> getMask() const {
EVT VT = getValueType(0);
return ArrayRef(Mask, VT.getVectorNumElements());
}
int getMaskElt(unsigned Idx) const {
assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
return Mask[Idx];
}
bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
int getSplatIndex() const {
assert(isSplat() && "Cannot get splat index for non-splat!");
EVT VT = getValueType(0);
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
if (Mask[i] >= 0)
return Mask[i];
// We can choose any index value here and be correct because all elements
// are undefined. Return 0 for better potential for callers to simplify.
return 0;
}
static bool isSplatMask(const int *Mask, EVT VT);
/// Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
static void commuteMask(MutableArrayRef<int> Mask) {
unsigned NumElems = Mask.size();
for (unsigned i = 0; i != NumElems; ++i) {
int idx = Mask[i];
if (idx < 0)
continue;
else if (idx < (int)NumElems)
Mask[i] = idx + NumElems;
else
Mask[i] = idx - NumElems;
}
}
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VECTOR_SHUFFLE;
}
};
class ConstantSDNode : public SDNode {
friend class SelectionDAG;
const ConstantInt *Value;
ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
getSDVTList(VT)),
Value(val) {
ConstantSDNodeBits.IsOpaque = isOpaque;
}
public:
const ConstantInt *getConstantIntValue() const { return Value; }
const APInt &getAPIntValue() const { return Value->getValue(); }
uint64_t getZExtValue() const { return Value->getZExtValue(); }
int64_t getSExtValue() const { return Value->getSExtValue(); }
uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
return Value->getLimitedValue(Limit);
}
MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
Align getAlignValue() const { return Value->getAlignValue(); }
bool isOne() const { return Value->isOne(); }
bool isZero() const { return Value->isZero(); }
// NOTE: This is soft-deprecated. Please use `isZero()` instead.
bool isNullValue() const { return isZero(); }
bool isAllOnes() const { return Value->isMinusOne(); }
// NOTE: This is soft-deprecated. Please use `isAllOnes()` instead.
bool isAllOnesValue() const { return isAllOnes(); }
bool isMaxSignedValue() const { return Value->isMaxValue(true); }
bool isMinSignedValue() const { return Value->isMinValue(true); }
bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant ||
N->getOpcode() == ISD::TargetConstant;
}
};
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
}
const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
}
class ConstantFPSDNode : public SDNode {
friend class SelectionDAG;
const ConstantFP *Value;
ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
DebugLoc(), getSDVTList(VT)),
Value(val) {}
public:
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
const ConstantFP *getConstantFPValue() const { return Value; }
/// Return true if the value is positive or negative zero.
bool isZero() const { return Value->isZero(); }
/// Return true if the value is a NaN.
bool isNaN() const { return Value->isNaN(); }
/// Return true if the value is an infinity
bool isInfinity() const { return Value->isInfinity(); }
/// Return true if the value is negative.
bool isNegative() const { return Value->isNegative(); }
/// We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
/// We leave the version with the double argument here because it's just so
/// convenient to write "2.0" and the like. Without this function we'd
/// have to duplicate its logic everywhere it's called.
bool isExactlyValue(double V) const {
return Value->getValueAPF().isExactlyValue(V);
}
bool isExactlyValue(const APFloat& V) const;
static bool isValueValidForType(EVT VT, const APFloat& Val);
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP ||
N->getOpcode() == ISD::TargetConstantFP;
}
};
/// Returns true if \p V is a constant integer zero.
bool isNullConstant(SDValue V);
/// Returns true if \p V is an FP constant with a value of positive zero.
bool isNullFPConstant(SDValue V);
/// Returns true if \p V is an integer constant with all bits set.
bool isAllOnesConstant(SDValue V);
/// Returns true if \p V is a constant integer one.
bool isOneConstant(SDValue V);
/// Returns true if \p V is a constant min signed integer value.
bool isMinSignedConstant(SDValue V);
/// Returns true if \p V is a neutral element of Opc with Flags.
/// When OperandNo is 0, it checks that V is a left identity. Otherwise, it
/// checks that V is a right identity.
bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V,
unsigned OperandNo);
/// Return the non-bitcasted source operand of \p V if it exists.
/// If \p V is not a bitcasted value, it is returned as-is.
SDValue peekThroughBitcasts(SDValue V);
/// Return the non-bitcasted and one-use source operand of \p V if it exists.
/// If \p V is not a bitcasted one-use value, it is returned as-is.
SDValue peekThroughOneUseBitcasts(SDValue V);
/// Return the non-extracted vector source operand of \p V if it exists.
/// If \p V is not an extracted subvector, it is returned as-is.
SDValue peekThroughExtractSubvectors(SDValue V);
/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
/// constant is canonicalized to be operand 1.
bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
/// If \p V is a bitwise not, returns the inverted operand. Otherwise returns
/// an empty SDValue. Only bits set in \p Mask are required to be inverted,
/// other bits may be arbitrary.
SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs);
/// Returns the SDNode if it is a constant splat BuildVector or constant int.
ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
bool AllowTruncation = false);
/// Returns the SDNode if it is a demanded constant splat BuildVector or
/// constant int.
ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
bool AllowUndefs = false,
bool AllowTruncation = false);
/// Returns the SDNode if it is a constant splat BuildVector or constant float.
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
/// Returns the SDNode if it is a demanded constant splat BuildVector or
/// constant float.
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
bool AllowUndefs = false);
/// Return true if the value is a constant 0 integer or a splatted vector of
/// a constant 0 integer (with no undefs by default).
/// Build vector implicit truncation is not an issue for null values.
bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
/// Return true if the value is a constant 1 integer or a splatted vector of a
/// constant 1 integer (with no undefs).
/// Build vector implicit truncation is allowed, but the truncated bits need to
/// be zero.
bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
/// Return true if the value is a constant -1 integer or a splatted vector of a
/// constant -1 integer (with no undefs).
/// Does not permit build vector implicit truncation.
bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
/// Return true if \p V is either a integer or FP constant.
inline bool isIntOrFPConstant(SDValue V) {
return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
}
class GlobalAddressSDNode : public SDNode {
friend class SelectionDAG;
const GlobalValue *TheGlobal;
int64_t Offset;
unsigned TargetFlags;
GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
const GlobalValue *GA, EVT VT, int64_t o,
unsigned TF);
public:
const GlobalValue *getGlobal() const { return TheGlobal; }
int64_t getOffset() const { return Offset; }
unsigned getTargetFlags() const { return TargetFlags; }
// Return the address space this GlobalAddress belongs to.
unsigned getAddressSpace() const;
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress ||
N->getOpcode() == ISD::TargetGlobalAddress ||
N->getOpcode() == ISD::GlobalTLSAddress ||
N->getOpcode() == ISD::TargetGlobalTLSAddress;
}
};
class FrameIndexSDNode : public SDNode {
friend class SelectionDAG;
int FI;
FrameIndexSDNode(int fi, EVT VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
0, DebugLoc(), getSDVTList(VT)), FI(fi) {
}
public:
int getIndex() const { return FI; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex ||
N->getOpcode() == ISD::TargetFrameIndex;
}
};
/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
/// the offet and size that are started/ended in the underlying FrameIndex.
class LifetimeSDNode : public SDNode {
friend class SelectionDAG;
int64_t Size;
int64_t Offset; // -1 if offset is unknown.
LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
SDVTList VTs, int64_t Size, int64_t Offset)
: SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
public:
int64_t getFrameIndex() const {
return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
}
bool hasOffset() const { return Offset >= 0; }
int64_t getOffset() const {
assert(hasOffset() && "offset is unknown");
return Offset;
}
int64_t getSize() const {
assert(hasOffset() && "offset is unknown");
return Size;
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LIFETIME_START ||
N->getOpcode() == ISD::LIFETIME_END;
}
};
/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
/// the index of the basic block being probed. A pseudo probe serves as a place
/// holder and will be removed at the end of compilation. It does not have any
/// operand because we do not want the instruction selection to deal with any.
class PseudoProbeSDNode : public SDNode {
friend class SelectionDAG;
uint64_t Guid;
uint64_t Index;
uint32_t Attributes;
PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
: SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
Attributes(Attr) {}
public:
uint64_t getGuid() const { return Guid; }
uint64_t getIndex() const { return Index; }
uint32_t getAttributes() const { return Attributes; }
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::PSEUDO_PROBE;
}
};
class JumpTableSDNode : public SDNode {
friend class SelectionDAG;
int JTI;
unsigned TargetFlags;
JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
}
public:
int getIndex() const { return JTI; }
unsigned getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::JumpTable ||
N->getOpcode() == ISD::TargetJumpTable;
}
};
class ConstantPoolSDNode : public SDNode {
friend class SelectionDAG;
union {
const Constant *ConstVal;
MachineConstantPoolValue *MachineCPVal;
} Val;
int Offset; // It's a MachineConstantPoolValue if top bit is set.
Align Alignment; // Minimum alignment requirement of CP.
unsigned TargetFlags;
ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
Align Alignment, unsigned TF)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
DebugLoc(), getSDVTList(VT)),
Offset(o), Alignment(Alignment), TargetFlags(TF) {
assert(Offset >= 0 && "Offset is too large");
Val.ConstVal = c;
}
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
Align Alignment, unsigned TF)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
DebugLoc(), getSDVTList(VT)),
Offset(o), Alignment(Alignment), TargetFlags(TF) {
assert(Offset >= 0 && "Offset is too large");
Val.MachineCPVal = v;
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
}
public:
bool isMachineConstantPoolEntry() const {
return Offset < 0;
}
const Constant *getConstVal() const {
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.ConstVal;
}
MachineConstantPoolValue *getMachineCPVal() const {
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.MachineCPVal;
}
int getOffset() const {
return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
}
// Return the alignment of this constant pool object, which is either 0 (for
// default alignment) or the desired value.
Align getAlign() const { return Alignment; }
unsigned getTargetFlags() const { return TargetFlags; }
Type *getType() const;
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool ||
N->getOpcode() == ISD::TargetConstantPool;
}
};
/// Completely target-dependent object reference.
class TargetIndexSDNode : public SDNode {
friend class SelectionDAG;
unsigned TargetFlags;
int Index;
int64_t Offset;
public:
TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
: SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
TargetFlags(TF), Index(Idx), Offset(Ofs) {}
unsigned getTargetFlags() const { return TargetFlags; }
int getIndex() const { return Index; }
int64_t getOffset() const { return Offset; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::TargetIndex;
}
};
class BasicBlockSDNode : public SDNode {
friend class SelectionDAG;
MachineBasicBlock *MBB;
/// Debug info is meaningful and potentially useful here, but we create
/// blocks out of order when they're jumped to, which makes it a bit
/// harder. Let's see if we need it first.
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
{}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
class BuildVectorSDNode : public SDNode {
public:
// These are constructed as SDNodes and then cast to BuildVectorSDNodes.
explicit BuildVectorSDNode() = delete;
/// Check if this is a constant splat, and if so, find the
/// smallest element size that splats the vector. If MinSplatBits is
/// nonzero, the element size must be at least that large. Note that the
/// splat element may be the entire vector (i.e., a one element vector).
/// Returns the splat element value in SplatValue. Any undefined bits in
/// that value are zero, and the corresponding bits in the SplatUndef mask
/// are set. The SplatBitSize value is set to the splat element size in
/// bits. HasAnyUndefs is set to true if any bits in the vector are
/// undefined. isBigEndian describes the endianness of the target.
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
unsigned &SplatBitSize, bool &HasAnyUndefs,
unsigned MinSplatBits = 0,
bool isBigEndian = false) const;
/// Returns the demanded splatted value or a null value if this is not a
/// splat.
///
/// The DemandedElts mask indicates the elements that must be in the splat.
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
SDValue getSplatValue(const APInt &DemandedElts,
BitVector *UndefElements = nullptr) const;
/// Returns the splatted value or a null value if this is not a splat.
///
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
/// Find the shortest repeating sequence of values in the build vector.
///
/// e.g. { u, X, u, X, u, u, X, u } -> { X }
/// { X, Y, u, Y, u, u, X, u } -> { X, Y }
///
/// Currently this must be a power-of-2 build vector.
/// The DemandedElts mask indicates the elements that must be present,
/// undemanded elements in Sequence may be null (SDValue()). If passed a
/// non-null UndefElements bitvector, it will resize it to match the original
/// vector width and set the bits where elements are undef. If result is
/// false, Sequence will be empty.
bool getRepeatedSequence(const APInt &DemandedElts,
SmallVectorImpl<SDValue> &Sequence,
BitVector *UndefElements = nullptr) const;
/// Find the shortest repeating sequence of values in the build vector.
///
/// e.g. { u, X, u, X, u, u, X, u } -> { X }
/// { X, Y, u, Y, u, u, X, u } -> { X, Y }
///
/// Currently this must be a power-of-2 build vector.
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the original vector width and set the bits where elements are undef.
/// If result is false, Sequence will be empty.
bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
BitVector *UndefElements = nullptr) const;
/// Returns the demanded splatted constant or null if this is not a constant
/// splat.
///
/// The DemandedElts mask indicates the elements that must be in the splat.
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantSDNode *
getConstantSplatNode(const APInt &DemandedElts,
BitVector *UndefElements = nullptr) const;
/// Returns the splatted constant or null if this is not a constant
/// splat.
///
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantSDNode *
getConstantSplatNode(BitVector *UndefElements = nullptr) const;
/// Returns the demanded splatted constant FP or null if this is not a
/// constant FP splat.
///
/// The DemandedElts mask indicates the elements that must be in the splat.
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantFPSDNode *
getConstantFPSplatNode(const APInt &DemandedElts,
BitVector *UndefElements = nullptr) const;
/// Returns the splatted constant FP or null if this is not a constant
/// FP splat.
///
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantFPSDNode *
getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
/// If this is a constant FP splat and the splatted constant FP is an
/// exact power or 2, return the log base 2 integer value. Otherwise,
/// return -1.
///
/// The BitWidth specifies the necessary bit precision.
int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
uint32_t BitWidth) const;
/// Extract the raw bit data from a build vector of Undef, Constant or
/// ConstantFP node elements. Each raw bit element will be \p
/// DstEltSizeInBits wide, undef elements are treated as zero, and entirely
/// undefined elements are flagged in \p UndefElements.
bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
SmallVectorImpl<APInt> &RawBitElements,
BitVector &UndefElements) const;
bool isConstant() const;
/// If this BuildVector is constant and represents the numerical series
/// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer,
/// the value "<a,n>" is returned.
std::optional<std::pair<APInt, APInt>> isConstantSequence() const;
/// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements.
/// Undef elements are treated as zero, and entirely undefined elements are
/// flagged in \p DstUndefElements.
static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
SmallVectorImpl<APInt> &DstBitElements,
ArrayRef<APInt> SrcBitElements,
BitVector &DstUndefElements,
const BitVector &SrcUndefElements);
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BUILD_VECTOR;
}
};
/// An SDNode that holds an arbitrary LLVM IR Value. This is
/// used when the SelectionDAG needs to make a simple reference to something
/// in the LLVM IR representation.
///
class SrcValueSDNode : public SDNode {
friend class SelectionDAG;
const Value *V;
/// Create a SrcValue for a general value.
explicit SrcValueSDNode(const Value *v)
: SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
public:
/// Return the contained Value.
const Value *getValue() const { return V; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
class MDNodeSDNode : public SDNode {
friend class SelectionDAG;
const MDNode *MD;
explicit MDNodeSDNode(const MDNode *md)
: SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
{}
public:
const MDNode *getMD() const { return MD; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MDNODE_SDNODE;
}
};
class RegisterSDNode : public SDNode {
friend class SelectionDAG;
Register Reg;
RegisterSDNode(Register reg, EVT VT)
: SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
public:
Register getReg() const { return Reg; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Register;
}
};
class RegisterMaskSDNode : public SDNode {
friend class SelectionDAG;
// The memory for RegMask is not owned by the node.
const uint32_t *RegMask;
RegisterMaskSDNode(const uint32_t *mask)
: SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
RegMask(mask) {}
public:
const uint32_t *getRegMask() const { return RegMask; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::RegisterMask;
}
};
class BlockAddressSDNode : public SDNode {
friend class SelectionDAG;
const BlockAddress *BA;
int64_t Offset;
unsigned TargetFlags;
BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
int64_t o, unsigned Flags)
: SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
BA(ba), Offset(o), TargetFlags(Flags) {}
public:
const BlockAddress *getBlockAddress() const { return BA; }
int64_t getOffset() const { return Offset; }
unsigned getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BlockAddress ||
N->getOpcode() == ISD::TargetBlockAddress;
}
};
class LabelSDNode : public SDNode {
friend class SelectionDAG;
MCSymbol *Label;
LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
: SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
assert(LabelSDNode::classof(this) && "not a label opcode");
}
public:
MCSymbol *getLabel() const { return Label; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::EH_LABEL ||
N->getOpcode() == ISD::ANNOTATION_LABEL;
}
};
class ExternalSymbolSDNode : public SDNode {
friend class SelectionDAG;
const char *Symbol;
unsigned TargetFlags;
ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
DebugLoc(), getSDVTList(VT)),
Symbol(Sym), TargetFlags(TF) {}
public:
const char *getSymbol() const { return Symbol; }
unsigned getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol ||
N->getOpcode() == ISD::TargetExternalSymbol;
}
};
class MCSymbolSDNode : public SDNode {
friend class SelectionDAG;
MCSymbol *Symbol;
MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
: SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
public:
MCSymbol *getMCSymbol() const { return Symbol; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MCSymbol;
}
};
class CondCodeSDNode : public SDNode {
friend class SelectionDAG;
ISD::CondCode Condition;
explicit CondCodeSDNode(ISD::CondCode Cond)
: SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
Condition(Cond) {}
public:
ISD::CondCode get() const { return Condition; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONDCODE;
}
};
/// This class is used to represent EVT's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
friend class SelectionDAG;
EVT ValueType;
explicit VTSDNode(EVT VT)
: SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
ValueType(VT) {}
public:
EVT getVT() const { return ValueType; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VALUETYPE;
}
};
/// Base class for LoadSDNode and StoreSDNode
class LSBaseSDNode : public MemSDNode {
public:
LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
MachineMemOperand *MMO)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
LSBaseSDNodeBits.AddressingMode = AM;
assert(getAddressingMode() == AM && "Value truncated");
}
const SDValue &getOffset() const {
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
}
/// Return the addressing mode for this load or store:
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
ISD::MemIndexedMode getAddressingMode() const {
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
}
/// Return true if this is a pre/post inc/dec load/store.
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
/// Return true if this is NOT a pre/post inc/dec load/store.
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD ||
N->getOpcode() == ISD::STORE;
}
};
/// This class is used to represent ISD::LOAD nodes.
class LoadSDNode : public LSBaseSDNode {
friend class SelectionDAG;
LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
MachineMemOperand *MMO)
: LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
LoadSDNodeBits.ExtTy = ETy;
assert(readMem() && "Load MachineMemOperand is not a load!");
assert(!writeMem() && "Load MachineMemOperand is a store!");
}
public:
/// Return whether this is a plain node,
/// or one of the varieties of value-extending loads.
ISD::LoadExtType getExtensionType() const {
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getOffset() const { return getOperand(2); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD;
}
};
/// This class is used to represent ISD::STORE nodes.
class StoreSDNode : public LSBaseSDNode {
friend class SelectionDAG;
StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
MachineMemOperand *MMO)
: LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
StoreSDNodeBits.IsTruncating = isTrunc;
assert(!readMem() && "Store MachineMemOperand is a load!");
assert(writeMem() && "Store MachineMemOperand is not a store!");
}
public:
/// Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
void setTruncatingStore(bool Truncating) {
StoreSDNodeBits.IsTruncating = Truncating;
}
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getOffset() const { return getOperand(3); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::STORE;
}
};
/// This base class is used to represent VP_LOAD, VP_STORE,
/// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes
class VPBaseLoadStoreSDNode : public MemSDNode {
public:
friend class SelectionDAG;
VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
const DebugLoc &DL, SDVTList VTs,
ISD::MemIndexedMode AM, EVT MemVT,
MachineMemOperand *MMO)
: MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) {
LSBaseSDNodeBits.AddressingMode = AM;
assert(getAddressingMode() == AM && "Value truncated");
}
// VPStridedStoreSDNode (Chain, Data, Ptr, Offset, Stride, Mask, EVL)
// VPStoreSDNode (Chain, Data, Ptr, Offset, Mask, EVL)
// VPStridedLoadSDNode (Chain, Ptr, Offset, Stride, Mask, EVL)
// VPLoadSDNode (Chain, Ptr, Offset, Mask, EVL)
// Mask is a vector of i1 elements;
// the type of EVL is TLI.getVPExplicitVectorLengthTy().
const SDValue &getOffset() const {
return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
getOpcode() == ISD::VP_LOAD)
? 2
: 3);
}
const SDValue &getBasePtr() const {
return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
getOpcode() == ISD::VP_LOAD)
? 1
: 2);
}
const SDValue &getMask() const {
switch (getOpcode()) {
default:
llvm_unreachable("Invalid opcode");
case ISD::VP_LOAD:
return getOperand(3);
case ISD::VP_STORE:
case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
return getOperand(4);
case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
return getOperand(5);
}
}
const SDValue &getVectorLength() const {
switch (getOpcode()) {
default:
llvm_unreachable("Invalid opcode");
case ISD::VP_LOAD:
return getOperand(4);
case ISD::VP_STORE:
case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
return getOperand(5);
case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
return getOperand(6);
}
}
/// Return the addressing mode for this load or store:
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
ISD::MemIndexedMode getAddressingMode() const {
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
}
/// Return true if this is a pre/post inc/dec load/store.
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
/// Return true if this is NOT a pre/post inc/dec load/store.
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE ||
N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE;
}
};
/// This class is used to represent a VP_LOAD node
class VPLoadSDNode : public VPBaseLoadStoreSDNode {
public:
friend class SelectionDAG;
VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding,
EVT MemVT, MachineMemOperand *MMO)
: VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) {
LoadSDNodeBits.ExtTy = ETy;
LoadSDNodeBits.IsExpanding = isExpanding;
}
ISD::LoadExtType getExtensionType() const {
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getOffset() const { return getOperand(2); }
const SDValue &getMask() const { return getOperand(3); }
const SDValue &getVectorLength() const { return getOperand(4); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VP_LOAD;
}
bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
};
/// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
class VPStridedLoadSDNode : public VPBaseLoadStoreSDNode {
public:
friend class SelectionDAG;
VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
: VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs,
AM, MemVT, MMO) {
LoadSDNodeBits.ExtTy = ETy;
LoadSDNodeBits.IsExpanding = IsExpanding;
}
ISD::LoadExtType getExtensionType() const {
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getOffset() const { return getOperand(2); }
const SDValue &getStride() const { return getOperand(3); }
const SDValue &getMask() const { return getOperand(4); }
const SDValue &getVectorLength() const { return getOperand(5); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD;
}
bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
};
/// This class is used to represent a VP_STORE node
class VPStoreSDNode : public VPBaseLoadStoreSDNode {
public:
friend class SelectionDAG;
VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
EVT MemVT, MachineMemOperand *MMO)
: VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) {
StoreSDNodeBits.IsTruncating = isTrunc;
StoreSDNodeBits.IsCompressing = isCompressing;
}
/// Return true if this is a truncating store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
/// Returns true if the op does a compression to the vector before storing.
/// The node contiguously stores the active elements (integers or floats)
/// in src (those with their respective bit set in writemask k) to unaligned
/// memory at base_addr.
bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getOffset() const { return getOperand(3); }
const SDValue &getMask() const { return getOperand(4); }
const SDValue &getVectorLength() const { return getOperand(5); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VP_STORE;
}
};
/// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
class VPStridedStoreSDNode : public VPBaseLoadStoreSDNode {
public:
friend class SelectionDAG;
VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing,
EVT MemVT, MachineMemOperand *MMO)
: VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL,
VTs, AM, MemVT, MMO) {
StoreSDNodeBits.IsTruncating = IsTrunc;
StoreSDNodeBits.IsCompressing = IsCompressing;
}
/// Return true if this is a truncating store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
/// Returns true if the op does a compression to the vector before storing.
/// The node contiguously stores the active elements (integers or floats)
/// in src (those with their respective bit set in writemask k) to unaligned
/// memory at base_addr.
bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getOffset() const { return getOperand(3); }
const SDValue &getStride() const { return getOperand(4); }
const SDValue &getMask() const { return getOperand(5); }
const SDValue &getVectorLength() const { return getOperand(6); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE;
}
};
/// This base class is used to represent MLOAD and MSTORE nodes
class MaskedLoadStoreSDNode : public MemSDNode {
public:
friend class SelectionDAG;
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, EVT MemVT,
MachineMemOperand *MMO)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
LSBaseSDNodeBits.AddressingMode = AM;
assert(getAddressingMode() == AM && "Value truncated");
}
// MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
// MaskedStoreSDNode (Chain, data, ptr, offset, mask)
// Mask is a vector of i1 elements
const SDValue &getOffset() const {
return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
}
const SDValue &getMask() const {
return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
}
/// Return the addressing mode for this load or store:
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
ISD::MemIndexedMode getAddressingMode() const {
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
}
/// Return true if this is a pre/post inc/dec load/store.
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
/// Return true if this is NOT a pre/post inc/dec load/store.
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MLOAD ||
N->getOpcode() == ISD::MSTORE;
}
};
/// This class is used to represent an MLOAD node
class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
public:
friend class SelectionDAG;
MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
: MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
LoadSDNodeBits.ExtTy = ETy;
LoadSDNodeBits.IsExpanding = IsExpanding;
}
ISD::LoadExtType getExtensionType() const {
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getOffset() const { return getOperand(2); }
const SDValue &getMask() const { return getOperand(3); }
const SDValue &getPassThru() const { return getOperand(4); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MLOAD;
}
bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
};
/// This class is used to represent an MSTORE node
class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
public:
friend class SelectionDAG;
MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
EVT MemVT, MachineMemOperand *MMO)
: MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
StoreSDNodeBits.IsTruncating = isTrunc;
StoreSDNodeBits.IsCompressing = isCompressing;
}
/// Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
/// Returns true if the op does a compression to the vector before storing.
/// The node contiguously stores the active elements (integers or floats)
/// in src (those with their respective bit set in writemask k) to unaligned
/// memory at base_addr.
bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getOffset() const { return getOperand(3); }
const SDValue &getMask() const { return getOperand(4); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MSTORE;
}
};
/// This is a base class used to represent
/// VP_GATHER and VP_SCATTER nodes
///
class VPGatherScatterSDNode : public MemSDNode {
public:
friend class SelectionDAG;
VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO, ISD::MemIndexType IndexType)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
LSBaseSDNodeBits.AddressingMode = IndexType;
assert(getIndexType() == IndexType && "Value truncated");
}
/// How is Index applied to BasePtr when computing addresses.
ISD::MemIndexType getIndexType() const {
return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
}
bool isIndexScaled() const {
return !cast<ConstantSDNode>(getScale())->isOne();
}
bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
// In the both nodes address is Op1, mask is Op2:
// VPGatherSDNode (Chain, base, index, scale, mask, vlen)
// VPScatterSDNode (Chain, value, base, index, scale, mask, vlen)
// Mask is a vector of i1 elements
const SDValue &getBasePtr() const {
return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2);
}
const SDValue &getIndex() const {
return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3);
}
const SDValue &getScale() const {
return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4);
}
const SDValue &getMask() const {
return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5);
}
const SDValue &getVectorLength() const {
return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6);
}
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VP_GATHER ||
N->getOpcode() == ISD::VP_SCATTER;
}
};
/// This class is used to represent an VP_GATHER node
///
class VPGatherSDNode : public VPGatherScatterSDNode {
public:
friend class SelectionDAG;
VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO, ISD::MemIndexType IndexType)
: VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO,
IndexType) {}
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VP_GATHER;
}
};
/// This class is used to represent an VP_SCATTER node
///
class VPScatterSDNode : public VPGatherScatterSDNode {
public:
friend class SelectionDAG;
VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO, ISD::MemIndexType IndexType)
: VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO,
IndexType) {}
const SDValue &getValue() const { return getOperand(1); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VP_SCATTER;
}
};
/// This is a base class used to represent
/// MGATHER and MSCATTER nodes
///
class MaskedGatherScatterSDNode : public MemSDNode {
public:
friend class SelectionDAG;
MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO, ISD::MemIndexType IndexType)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
LSBaseSDNodeBits.AddressingMode = IndexType;
assert(getIndexType() == IndexType && "Value truncated");
}
/// How is Index applied to BasePtr when computing addresses.
ISD::MemIndexType getIndexType() const {
return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
}
bool isIndexScaled() const {
return !cast<ConstantSDNode>(getScale())->isOne();
}
bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
// In the both nodes address is Op1, mask is Op2:
// MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
// MaskedScatterSDNode (Chain, value, mask, base, index, scale)
// Mask is a vector of i1 elements
const SDValue &getBasePtr() const { return getOperand(3); }
const SDValue &getIndex() const { return getOperand(4); }
const SDValue &getMask() const { return getOperand(2); }
const SDValue &getScale() const { return getOperand(5); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MGATHER ||
N->getOpcode() == ISD::MSCATTER;
}
};
/// This class is used to represent an MGATHER node
///
class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
public:
friend class SelectionDAG;
MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT MemVT, MachineMemOperand *MMO,
ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
: MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
IndexType) {
LoadSDNodeBits.ExtTy = ETy;
}
const SDValue &getPassThru() const { return getOperand(1); }
ISD::LoadExtType getExtensionType() const {
return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
}
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MGATHER;
}
};
/// This class is used to represent an MSCATTER node
///
class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
public:
friend class SelectionDAG;
MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT MemVT, MachineMemOperand *MMO,
ISD::MemIndexType IndexType, bool IsTrunc)
: MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
IndexType) {
StoreSDNodeBits.IsTruncating = IsTrunc;
}
/// Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
const SDValue &getValue() const { return getOperand(1); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MSCATTER;
}
};
/// An SDNode that represents everything that will be needed
/// to construct a MachineInstr. These nodes are created during the
/// instruction selection proper phase.
///
/// Note that the only supported way to set the `memoperands` is by calling the
/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
/// inside the DAG rather than in the node.
class MachineSDNode : public SDNode {
private:
friend class SelectionDAG;
MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
: SDNode(Opc, Order, DL, VTs) {}
// We use a pointer union between a single `MachineMemOperand` pointer and
// a pointer to an array of `MachineMemOperand` pointers. This is null when
// the number of these is zero, the single pointer variant used when the
// number is one, and the array is used for larger numbers.
//
// The array is allocated via the `SelectionDAG`'s allocator and so will
// always live until the DAG is cleaned up and doesn't require ownership here.
//
// We can't use something simpler like `TinyPtrVector` here because `SDNode`
// subclasses aren't managed in a conforming C++ manner. See the comments on
// `SelectionDAG::MorphNodeTo` which details what all goes on, but the
// constraint here is that these don't manage memory with their constructor or
// destructor and can be initialized to a good state even if they start off
// uninitialized.
PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
// Note that this could be folded into the above `MemRefs` member if doing so
// is advantageous at some point. We don't need to store this in most cases.
// However, at the moment this doesn't appear to make the allocation any
// smaller and makes the code somewhat simpler to read.
int NumMemRefs = 0;
public:
using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
ArrayRef<MachineMemOperand *> memoperands() const {
// Special case the common cases.
if (NumMemRefs == 0)
return {};
if (NumMemRefs == 1)
return ArrayRef(MemRefs.getAddrOfPtr1(), 1);
// Otherwise we have an actual array.
return ArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
}
mmo_iterator memoperands_begin() const { return memoperands().begin(); }
mmo_iterator memoperands_end() const { return memoperands().end(); }
bool memoperands_empty() const { return memoperands().empty(); }
/// Clear out the memory reference descriptor list.
void clearMemRefs() {
MemRefs = nullptr;
NumMemRefs = 0;
}
static bool classof(const SDNode *N) {
return N->isMachineOpcode();
}
};
/// An SDNode that records if a register contains a value that is guaranteed to
/// be aligned accordingly.
class AssertAlignSDNode : public SDNode {
Align Alignment;
public:
AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
: SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
Align getAlign() const { return Alignment; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::AssertAlign;
}
};
class SDNodeIterator {
const SDNode *Node;
unsigned Operand;
SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
using iterator_category = std::forward_iterator_tag;
using value_type = SDNode;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
pointer operator*() const {
return Node->getOperand(Operand).getNode();
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
size_t operator-(SDNodeIterator Other) const {
assert(Node == Other.Node &&
"Cannot compare iterators of two different nodes!");
return Operand - Other.Operand;
}
static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (const SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
using NodeRef = SDNode *;
using ChildIteratorType = SDNodeIterator;
static NodeRef getEntryNode(SDNode *N) { return N; }
static ChildIteratorType child_begin(NodeRef N) {
return SDNodeIterator::begin(N);
}
static ChildIteratorType child_end(NodeRef N) {
return SDNodeIterator::end(N);
}
};
/// A representation of the largest SDNode, for use in sizeof().
///
/// This needs to be a union because the largest node differs on 32 bit systems
/// with 4 and 8 byte pointer alignment, respectively.
using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
BlockAddressSDNode,
GlobalAddressSDNode,
PseudoProbeSDNode>;
/// The SDNode class with the greatest alignment requirement.
using MostAlignedSDNode = GlobalAddressSDNode;
namespace ISD {
/// Returns true if the specified node is a non-extending and unindexed load.
inline bool isNormalLoad(const SDNode *N) {
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
Ld->getAddressingMode() == ISD::UNINDEXED;
}
/// Returns true if the specified node is a non-extending load.
inline bool isNON_EXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
}
/// Returns true if the specified node is a EXTLOAD.
inline bool isEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
}
/// Returns true if the specified node is a SEXTLOAD.
inline bool isSEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
}
/// Returns true if the specified node is a ZEXTLOAD.
inline bool isZEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
}
/// Returns true if the specified node is an unindexed load.
inline bool isUNINDEXEDLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
/// Returns true if the specified node is a non-truncating
/// and unindexed store.
inline bool isNormalStore(const SDNode *N) {
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
return St && !St->isTruncatingStore() &&
St->getAddressingMode() == ISD::UNINDEXED;
}
/// Returns true if the specified node is an unindexed store.
inline bool isUNINDEXEDStore(const SDNode *N) {
return isa<StoreSDNode>(N) &&
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
/// Attempt to match a unary predicate against a scalar/splat constant or
/// every element of a constant BUILD_VECTOR.
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
bool matchUnaryPredicate(SDValue Op,
std::function<bool(ConstantSDNode *)> Match,
bool AllowUndefs = false);
/// Attempt to match a binary predicate against a pair of scalar/splat
/// constants or every element of a pair of constant BUILD_VECTORs.
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
/// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
bool matchBinaryPredicate(
SDValue LHS, SDValue RHS,
std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
bool AllowUndefs = false, bool AllowTypeMismatch = false);
/// Returns true if the specified value is the overflow result from one
/// of the overflow intrinsic nodes.
inline bool isOverflowIntrOpRes(SDValue Op) {
unsigned Opc = Op.getOpcode();
return (Op.getResNo() == 1 &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
}
} // end namespace ISD
} // end namespace llvm
#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H