//===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
/// \file Implements the ScheduleDAGInstrs class, which implements scheduling
 
/// for a MachineInstr-based dependency graph.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
 
#define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/SparseMultiSet.h"
 
#include "llvm/ADT/SparseSet.h"
 
#include "llvm/ADT/identity.h"
 
#include "llvm/CodeGen/LivePhysRegs.h"
 
#include "llvm/CodeGen/MachineBasicBlock.h"
 
#include "llvm/CodeGen/ScheduleDAG.h"
 
#include "llvm/CodeGen/TargetRegisterInfo.h"
 
#include "llvm/CodeGen/TargetSchedule.h"
 
#include "llvm/MC/LaneBitmask.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <list>
 
#include <string>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
  class AAResults;
 
  class LiveIntervals;
 
  class MachineFrameInfo;
 
  class MachineFunction;
 
  class MachineInstr;
 
  class MachineLoopInfo;
 
  class MachineOperand;
 
  struct MCSchedClassDesc;
 
  class PressureDiffs;
 
  class PseudoSourceValue;
 
  class RegPressureTracker;
 
  class UndefValue;
 
  class Value;
 
 
 
  /// An individual mapping from virtual register number to SUnit.
 
  struct VReg2SUnit {
 
    unsigned VirtReg;
 
    LaneBitmask LaneMask;
 
    SUnit *SU;
 
 
 
    VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
 
      : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
 
 
 
    unsigned getSparseSetIndex() const {
 
      return Register::virtReg2Index(VirtReg);
 
    }
 
  };
 
 
 
  /// Mapping from virtual register to SUnit including an operand index.
 
  struct VReg2SUnitOperIdx : public VReg2SUnit {
 
    unsigned OperandIndex;
 
 
 
    VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
 
                      unsigned OperandIndex, SUnit *SU)
 
      : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
 
  };
 
 
 
  /// Record a physical register access.
 
  /// For non-data-dependent uses, OpIdx == -1.
 
  struct PhysRegSUOper {
 
    SUnit *SU;
 
    int OpIdx;
 
    unsigned Reg;
 
 
 
    PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
 
 
 
    unsigned getSparseSetIndex() const { return Reg; }
 
  };
 
 
 
  /// Use a SparseMultiSet to track physical registers. Storage is only
 
  /// allocated once for the pass. It can be cleared in constant time and reused
 
  /// without any frees.
 
  using Reg2SUnitsMap =
 
      SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
 
 
 
  /// Use SparseSet as a SparseMap by relying on the fact that it never
 
  /// compares ValueT's, only unsigned keys. This allows the set to be cleared
 
  /// between scheduling regions in constant time as long as ValueT does not
 
  /// require a destructor.
 
  using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
 
 
 
  /// Track local uses of virtual registers. These uses are gathered by the DAG
 
  /// builder and may be consulted by the scheduler to avoid iterating an entire
 
  /// vreg use list.
 
  using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
 
 
 
  using VReg2SUnitOperIdxMultiMap =
 
      SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
 
 
 
  using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
 
 
 
  struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
 
    UnderlyingObject(ValueType V, bool MayAlias)
 
        : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
 
 
 
    ValueType getValue() const { return getPointer(); }
 
    bool mayAlias() const { return getInt(); }
 
  };
 
 
 
  using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
 
 
 
  /// A ScheduleDAG for scheduling lists of MachineInstr.
 
  class ScheduleDAGInstrs : public ScheduleDAG {
 
  protected:
 
    const MachineLoopInfo *MLI;
 
    const MachineFrameInfo &MFI;
 
 
 
    /// TargetSchedModel provides an interface to the machine model.
 
    TargetSchedModel SchedModel;
 
 
 
    /// True if the DAG builder should remove kill flags (in preparation for
 
    /// rescheduling).
 
    bool RemoveKillFlags;
 
 
 
    /// The standard DAG builder does not normally include terminators as DAG
 
    /// nodes because it does not create the necessary dependencies to prevent
 
    /// reordering. A specialized scheduler can override
 
    /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
 
    /// it has taken responsibility for scheduling the terminator correctly.
 
    bool CanHandleTerminators = false;
 
 
 
    /// Whether lane masks should get tracked.
 
    bool TrackLaneMasks = false;
 
 
 
    // State specific to the current scheduling region.
 
    // ------------------------------------------------
 
 
 
    /// The block in which to insert instructions
 
    MachineBasicBlock *BB;
 
 
 
    /// The beginning of the range to be scheduled.
 
    MachineBasicBlock::iterator RegionBegin;
 
 
 
    /// The end of the range to be scheduled.
 
    MachineBasicBlock::iterator RegionEnd;
 
 
 
    /// Instructions in this region (distance(RegionBegin, RegionEnd)).
 
    unsigned NumRegionInstrs;
 
 
 
    /// After calling BuildSchedGraph, each machine instruction in the current
 
    /// scheduling region is mapped to an SUnit.
 
    DenseMap<MachineInstr*, SUnit*> MISUnitMap;
 
 
 
    // State internal to DAG building.
 
    // -------------------------------
 
 
 
    /// Defs, Uses - Remember where defs and uses of each register are as we
 
    /// iterate upward through the instructions. This is allocated here instead
 
    /// of inside BuildSchedGraph to avoid the need for it to be initialized and
 
    /// destructed for each block.
 
    Reg2SUnitsMap Defs;
 
    Reg2SUnitsMap Uses;
 
 
 
    /// Tracks the last instruction(s) in this region defining each virtual
 
    /// register. There may be multiple current definitions for a register with
 
    /// disjunct lanemasks.
 
    VReg2SUnitMultiMap CurrentVRegDefs;
 
    /// Tracks the last instructions in this region using each virtual register.
 
    VReg2SUnitOperIdxMultiMap CurrentVRegUses;
 
 
 
    AAResults *AAForDep = nullptr;
 
 
 
    /// Remember a generic side-effecting instruction as we proceed.
 
    /// No other SU ever gets scheduled around it (except in the special
 
    /// case of a huge region that gets reduced).
 
    SUnit *BarrierChain = nullptr;
 
 
 
  public:
 
    /// A list of SUnits, used in Value2SUsMap, during DAG construction.
 
    /// Note: to gain speed it might be worth investigating an optimized
 
    /// implementation of this data structure, such as a singly linked list
 
    /// with a memory pool (SmallVector was tried but slow and SparseSet is not
 
    /// applicable).
 
    using SUList = std::list<SUnit *>;
 
 
 
  protected:
 
    /// A map from ValueType to SUList, used during DAG construction, as
 
    /// a means of remembering which SUs depend on which memory locations.
 
    class Value2SUsMap;
 
 
 
    /// Reduces maps in FIFO order, by N SUs. This is better than turning
 
    /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
 
    /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
 
    /// and those below it.
 
    void reduceHugeMemNodeMaps(Value2SUsMap &stores,
 
                               Value2SUsMap &loads, unsigned N);
 
 
 
    /// Adds a chain edge between SUa and SUb, but only if both
 
    /// AAResults and Target fail to deny the dependency.
 
    void addChainDependency(SUnit *SUa, SUnit *SUb,
 
                            unsigned Latency = 0);
 
 
 
    /// Adds dependencies as needed from all SUs in list to SU.
 
    void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
 
      for (SUnit *Entry : SUs)
 
        addChainDependency(SU, Entry, Latency);
 
    }
 
 
 
    /// Adds dependencies as needed from all SUs in map, to SU.
 
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
 
 
 
    /// Adds dependencies as needed to SU, from all SUs mapped to V.
 
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
 
                              ValueType V);
 
 
 
    /// Adds barrier chain edges from all SUs in map, and then clear the map.
 
    /// This is equivalent to insertBarrierChain(), but optimized for the common
 
    /// case where the new BarrierChain (a global memory object) has a higher
 
    /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
 
    /// before calling this.
 
    void addBarrierChain(Value2SUsMap &map);
 
 
 
    /// Inserts a barrier chain in a huge region, far below current SU.
 
    /// Adds barrier chain edges from all SUs in map with higher NodeNums than
 
    /// this new BarrierChain, and remove them from map. It is assumed
 
    /// BarrierChain has been set before calling this.
 
    void insertBarrierChain(Value2SUsMap &map);
 
 
 
    /// For an unanalyzable memory access, this Value is used in maps.
 
    UndefValue *UnknownValue;
 
 
 
 
 
    /// Topo - A topological ordering for SUnits which permits fast IsReachable
 
    /// and similar queries.
 
    ScheduleDAGTopologicalSort Topo;
 
 
 
    using DbgValueVector =
 
        std::vector<std::pair<MachineInstr *, MachineInstr *>>;
 
    /// Remember instruction that precedes DBG_VALUE.
 
    /// These are generated by buildSchedGraph but persist so they can be
 
    /// referenced when emitting the final schedule.
 
    DbgValueVector DbgValues;
 
    MachineInstr *FirstDbgValue = nullptr;
 
 
 
    /// Set of live physical registers for updating kill flags.
 
    LivePhysRegs LiveRegs;
 
 
 
  public:
 
    explicit ScheduleDAGInstrs(MachineFunction &mf,
 
                               const MachineLoopInfo *mli,
 
                               bool RemoveKillFlags = false);
 
 
 
    ~ScheduleDAGInstrs() override = default;
 
 
 
    /// Gets the machine model for instruction scheduling.
 
    const TargetSchedModel *getSchedModel() const { return &SchedModel; }
 
 
 
    /// Resolves and cache a resolved scheduling class for an SUnit.
 
    const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
 
      if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
 
        SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
 
      return SU->SchedClass;
 
    }
 
 
 
    /// IsReachable - Checks if SU is reachable from TargetSU.
 
    bool IsReachable(SUnit *SU, SUnit *TargetSU) {
 
      return Topo.IsReachable(SU, TargetSU);
 
    }
 
 
 
    /// Returns an iterator to the top of the current scheduling region.
 
    MachineBasicBlock::iterator begin() const { return RegionBegin; }
 
 
 
    /// Returns an iterator to the bottom of the current scheduling region.
 
    MachineBasicBlock::iterator end() const { return RegionEnd; }
 
 
 
    /// Creates a new SUnit and return a ptr to it.
 
    SUnit *newSUnit(MachineInstr *MI);
 
 
 
    /// Returns an existing SUnit for this MI, or nullptr.
 
    SUnit *getSUnit(MachineInstr *MI) const;
 
 
 
    /// If this method returns true, handling of the scheduling regions
 
    /// themselves (in case of a scheduling boundary in MBB) will be done
 
    /// beginning with the topmost region of MBB.
 
    virtual bool doMBBSchedRegionsTopDown() const { return false; }
 
 
 
    /// Prepares to perform scheduling in the given block.
 
    virtual void startBlock(MachineBasicBlock *BB);
 
 
 
    /// Cleans up after scheduling in the given block.
 
    virtual void finishBlock();
 
 
 
    /// Initialize the DAG and common scheduler state for a new
 
    /// scheduling region. This does not actually create the DAG, only clears
 
    /// it. The scheduling driver may call BuildSchedGraph multiple times per
 
    /// scheduling region.
 
    virtual void enterRegion(MachineBasicBlock *bb,
 
                             MachineBasicBlock::iterator begin,
 
                             MachineBasicBlock::iterator end,
 
                             unsigned regioninstrs);
 
 
 
    /// Called when the scheduler has finished scheduling the current region.
 
    virtual void exitRegion();
 
 
 
    /// Builds SUnits for the current region.
 
    /// If \p RPTracker is non-null, compute register pressure as a side effect.
 
    /// The DAG builder is an efficient place to do it because it already visits
 
    /// operands.
 
    void buildSchedGraph(AAResults *AA,
 
                         RegPressureTracker *RPTracker = nullptr,
 
                         PressureDiffs *PDiffs = nullptr,
 
                         LiveIntervals *LIS = nullptr,
 
                         bool TrackLaneMasks = false);
 
 
 
    /// Adds dependencies from instructions in the current list of
 
    /// instructions being scheduled to scheduling barrier. We want to make sure
 
    /// instructions which define registers that are either used by the
 
    /// terminator or are live-out are properly scheduled. This is especially
 
    /// important when the definition latency of the return value(s) are too
 
    /// high to be hidden by the branch or when the liveout registers used by
 
    /// instructions in the fallthrough block.
 
    void addSchedBarrierDeps();
 
 
 
    /// Orders nodes according to selected style.
 
    ///
 
    /// Typically, a scheduling algorithm will implement schedule() without
 
    /// overriding enterRegion() or exitRegion().
 
    virtual void schedule() = 0;
 
 
 
    /// Allow targets to perform final scheduling actions at the level of the
 
    /// whole MachineFunction. By default does nothing.
 
    virtual void finalizeSchedule() {}
 
 
 
    void dumpNode(const SUnit &SU) const override;
 
    void dump() const override;
 
 
 
    /// Returns a label for a DAG node that points to an instruction.
 
    std::string getGraphNodeLabel(const SUnit *SU) const override;
 
 
 
    /// Returns a label for the region of code covered by the DAG.
 
    std::string getDAGName() const override;
 
 
 
    /// Fixes register kill flags that scheduling has made invalid.
 
    void fixupKills(MachineBasicBlock &MBB);
 
 
 
    /// True if an edge can be added from PredSU to SuccSU without creating
 
    /// a cycle.
 
    bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
 
 
 
    /// Add a DAG edge to the given SU with the given predecessor
 
    /// dependence data.
 
    ///
 
    /// \returns true if the edge may be added without creating a cycle OR if an
 
    /// equivalent edge already existed (false indicates failure).
 
    bool addEdge(SUnit *SuccSU, const SDep &PredDep);
 
 
 
  protected:
 
    void initSUnits();
 
    void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
 
    void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
 
    void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
 
    void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
 
 
 
    /// Returns a mask for which lanes get read/written by the given (register)
 
    /// machine operand.
 
    LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
 
 
 
    /// Returns true if the def register in \p MO has no uses.
 
    bool deadDefHasNoUse(const MachineOperand &MO);
 
  };
 
 
 
  /// Creates a new SUnit and return a ptr to it.
 
  inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
 
#ifndef NDEBUG
 
    const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
 
#endif
 
    SUnits.emplace_back(MI, (unsigned)SUnits.size());
 
    assert((Addr == nullptr || Addr == &SUnits[0]) &&
 
           "SUnits std::vector reallocated on the fly!");
 
    return &SUnits.back();
 
  }
 
 
 
  /// Returns an existing SUnit for this MI, or nullptr.
 
  inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
 
    return MISUnitMap.lookup(MI);
 
  }
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H