//===- RDFLiveness.h --------------------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Recalculate the liveness information given a data flow graph.
 
// This includes block live-ins and kill flags.
 
 
 
#ifndef LLVM_CODEGEN_RDFLIVENESS_H
 
#define LLVM_CODEGEN_RDFLIVENESS_H
 
 
 
#include "RDFGraph.h"
 
#include "RDFRegisters.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/MC/LaneBitmask.h"
 
#include <map>
 
#include <set>
 
#include <unordered_map>
 
#include <unordered_set>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class MachineBasicBlock;
 
class MachineDominanceFrontier;
 
class MachineDominatorTree;
 
class MachineRegisterInfo;
 
class TargetRegisterInfo;
 
 
 
} // namespace llvm
 
 
 
namespace llvm {
 
namespace rdf {
 
namespace detail {
 
 
 
using NodeRef = std::pair<NodeId, LaneBitmask>;
 
 
 
} // namespace detail
 
} // namespace rdf
 
} // namespace llvm
 
 
 
namespace std {
 
 
 
template <> struct hash<llvm::rdf::detail::NodeRef> {
 
  std::size_t operator()(llvm::rdf::detail::NodeRef R) const {
 
    return std::hash<llvm::rdf::NodeId>{}(R.first) ^
 
           std::hash<llvm::LaneBitmask::Type>{}(R.second.getAsInteger());
 
  }
 
};
 
 
 
} // namespace std
 
 
 
namespace llvm {
 
namespace rdf {
 
 
 
  struct Liveness {
 
  public:
 
    // This is really a std::map, except that it provides a non-trivial
 
    // default constructor to the element accessed via [].
 
    struct LiveMapType {
 
      LiveMapType(const PhysicalRegisterInfo &pri) : Empty(pri) {}
 
 
 
      RegisterAggr &operator[] (MachineBasicBlock *B) {
 
        return Map.emplace(B, Empty).first->second;
 
      }
 
 
 
    private:
 
      RegisterAggr Empty;
 
      std::map<MachineBasicBlock*,RegisterAggr> Map;
 
    };
 
 
 
    using NodeRef = detail::NodeRef;
 
    using NodeRefSet = std::unordered_set<NodeRef>;
 
    using RefMap = std::unordered_map<RegisterId, NodeRefSet>;
 
 
 
    Liveness(MachineRegisterInfo &mri, const DataFlowGraph &g)
 
        : DFG(g), TRI(g.getTRI()), PRI(g.getPRI()), MDT(g.getDT()),
 
          MDF(g.getDF()), LiveMap(g.getPRI()), Empty(), NoRegs(g.getPRI()) {}
 
 
 
    NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
 
        bool TopShadows, bool FullChain, const RegisterAggr &DefRRs);
 
 
 
    NodeList getAllReachingDefs(NodeAddr<RefNode*> RefA) {
 
      return getAllReachingDefs(RefA.Addr->getRegRef(DFG), RefA, false,
 
                                false, NoRegs);
 
    }
 
 
 
    NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA) {
 
      return getAllReachingDefs(RefRR, RefA, false, false, NoRegs);
 
    }
 
 
 
    NodeSet getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode*> DefA,
 
        const RegisterAggr &DefRRs);
 
 
 
    NodeSet getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode*> DefA) {
 
      return getAllReachedUses(RefRR, DefA, NoRegs);
 
    }
 
 
 
    std::pair<NodeSet,bool> getAllReachingDefsRec(RegisterRef RefRR,
 
        NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs);
 
 
 
    NodeAddr<RefNode*> getNearestAliasedRef(RegisterRef RefRR,
 
        NodeAddr<InstrNode*> IA);
 
 
 
    LiveMapType &getLiveMap() { return LiveMap; }
 
    const LiveMapType &getLiveMap() const { return LiveMap; }
 
 
 
    const RefMap &getRealUses(NodeId P) const {
 
      auto F = RealUseMap.find(P);
 
      return F == RealUseMap.end() ? Empty : F->second;
 
    }
 
 
 
    void computePhiInfo();
 
    void computeLiveIns();
 
    void resetLiveIns();
 
    void resetKills();
 
    void resetKills(MachineBasicBlock *B);
 
 
 
    void trace(bool T) { Trace = T; }
 
 
 
  private:
 
    const DataFlowGraph &DFG;
 
    const TargetRegisterInfo &TRI;
 
    const PhysicalRegisterInfo &PRI;
 
    const MachineDominatorTree &MDT;
 
    const MachineDominanceFrontier &MDF;
 
    LiveMapType LiveMap;
 
    const RefMap Empty;
 
    const RegisterAggr NoRegs;
 
    bool Trace = false;
 
 
 
    // Cache of mapping from node ids (for RefNodes) to the containing
 
    // basic blocks. Not computing it each time for each node reduces
 
    // the liveness calculation time by a large fraction.
 
    DenseMap<NodeId, MachineBasicBlock *> NBMap;
 
 
 
    // Phi information:
 
    //
 
    // RealUseMap
 
    // map: NodeId -> (map: RegisterId -> NodeRefSet)
 
    //      phi id -> (map: register -> set of reached non-phi uses)
 
    DenseMap<NodeId, RefMap> RealUseMap;
 
 
 
    // Inverse iterated dominance frontier.
 
    std::map<MachineBasicBlock*,std::set<MachineBasicBlock*>> IIDF;
 
 
 
    // Live on entry.
 
    std::map<MachineBasicBlock*,RefMap> PhiLON;
 
 
 
    // Phi uses are considered to be located at the end of the block that
 
    // they are associated with. The reaching def of a phi use dominates the
 
    // block that the use corresponds to, but not the block that contains
 
    // the phi itself. To include these uses in the liveness propagation (up
 
    // the dominator tree), create a map: block -> set of uses live on exit.
 
    std::map<MachineBasicBlock*,RefMap> PhiLOX;
 
 
 
    MachineBasicBlock *getBlockWithRef(NodeId RN) const;
 
    void traverse(MachineBasicBlock *B, RefMap &LiveIn);
 
    void emptify(RefMap &M);
 
 
 
    std::pair<NodeSet,bool> getAllReachingDefsRecImpl(RegisterRef RefRR,
 
        NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs,
 
        unsigned Nest, unsigned MaxNest);
 
  };
 
 
 
  raw_ostream &operator<<(raw_ostream &OS, const Print<Liveness::RefMap> &P);
 
 
 
} // end namespace rdf
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_RDFLIVENESS_H