Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // PBQP Graph class.
  10. //
  11. //===----------------------------------------------------------------------===//
  12.  
  13. #ifndef LLVM_CODEGEN_PBQP_GRAPH_H
  14. #define LLVM_CODEGEN_PBQP_GRAPH_H
  15.  
  16. #include "llvm/ADT/STLExtras.h"
  17. #include <algorithm>
  18. #include <cassert>
  19. #include <iterator>
  20. #include <limits>
  21. #include <vector>
  22.  
  23. namespace llvm {
  24. namespace PBQP {
  25.  
  26.   class GraphBase {
  27.   public:
  28.     using NodeId = unsigned;
  29.     using EdgeId = unsigned;
  30.  
  31.     /// Returns a value representing an invalid (non-existent) node.
  32.     static NodeId invalidNodeId() {
  33.       return std::numeric_limits<NodeId>::max();
  34.     }
  35.  
  36.     /// Returns a value representing an invalid (non-existent) edge.
  37.     static EdgeId invalidEdgeId() {
  38.       return std::numeric_limits<EdgeId>::max();
  39.     }
  40.   };
  41.  
  42.   /// PBQP Graph class.
  43.   /// Instances of this class describe PBQP problems.
  44.   ///
  45.   template <typename SolverT>
  46.   class Graph : public GraphBase {
  47.   private:
  48.     using CostAllocator = typename SolverT::CostAllocator;
  49.  
  50.   public:
  51.     using RawVector = typename SolverT::RawVector;
  52.     using RawMatrix = typename SolverT::RawMatrix;
  53.     using Vector = typename SolverT::Vector;
  54.     using Matrix = typename SolverT::Matrix;
  55.     using VectorPtr = typename CostAllocator::VectorPtr;
  56.     using MatrixPtr = typename CostAllocator::MatrixPtr;
  57.     using NodeMetadata = typename SolverT::NodeMetadata;
  58.     using EdgeMetadata = typename SolverT::EdgeMetadata;
  59.     using GraphMetadata = typename SolverT::GraphMetadata;
  60.  
  61.   private:
  62.     class NodeEntry {
  63.     public:
  64.       using AdjEdgeList = std::vector<EdgeId>;
  65.       using AdjEdgeIdx = AdjEdgeList::size_type;
  66.       using AdjEdgeItr = AdjEdgeList::const_iterator;
  67.  
  68.       NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
  69.  
  70.       static AdjEdgeIdx getInvalidAdjEdgeIdx() {
  71.         return std::numeric_limits<AdjEdgeIdx>::max();
  72.       }
  73.  
  74.       AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
  75.         AdjEdgeIdx Idx = AdjEdgeIds.size();
  76.         AdjEdgeIds.push_back(EId);
  77.         return Idx;
  78.       }
  79.  
  80.       void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
  81.         // Swap-and-pop for fast removal.
  82.         //   1) Update the adj index of the edge currently at back().
  83.         //   2) Move last Edge down to Idx.
  84.         //   3) pop_back()
  85.         // If Idx == size() - 1 then the setAdjEdgeIdx and swap are
  86.         // redundant, but both operations are cheap.
  87.         G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
  88.         AdjEdgeIds[Idx] = AdjEdgeIds.back();
  89.         AdjEdgeIds.pop_back();
  90.       }
  91.  
  92.       const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
  93.  
  94.       VectorPtr Costs;
  95.       NodeMetadata Metadata;
  96.  
  97.     private:
  98.       AdjEdgeList AdjEdgeIds;
  99.     };
  100.  
  101.     class EdgeEntry {
  102.     public:
  103.       EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
  104.           : Costs(std::move(Costs)) {
  105.         NIds[0] = N1Id;
  106.         NIds[1] = N2Id;
  107.         ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
  108.         ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
  109.       }
  110.  
  111.       void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
  112.         assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
  113.                "Edge already connected to NIds[NIdx].");
  114.         NodeEntry &N = G.getNode(NIds[NIdx]);
  115.         ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
  116.       }
  117.  
  118.       void connect(Graph &G, EdgeId ThisEdgeId) {
  119.         connectToN(G, ThisEdgeId, 0);
  120.         connectToN(G, ThisEdgeId, 1);
  121.       }
  122.  
  123.       void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
  124.         if (NId == NIds[0])
  125.           ThisEdgeAdjIdxs[0] = NewIdx;
  126.         else {
  127.           assert(NId == NIds[1] && "Edge not connected to NId");
  128.           ThisEdgeAdjIdxs[1] = NewIdx;
  129.         }
  130.       }
  131.  
  132.       void disconnectFromN(Graph &G, unsigned NIdx) {
  133.         assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
  134.                "Edge not connected to NIds[NIdx].");
  135.         NodeEntry &N = G.getNode(NIds[NIdx]);
  136.         N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
  137.         ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
  138.       }
  139.  
  140.       void disconnectFrom(Graph &G, NodeId NId) {
  141.         if (NId == NIds[0])
  142.           disconnectFromN(G, 0);
  143.         else {
  144.           assert(NId == NIds[1] && "Edge does not connect NId");
  145.           disconnectFromN(G, 1);
  146.         }
  147.       }
  148.  
  149.       NodeId getN1Id() const { return NIds[0]; }
  150.       NodeId getN2Id() const { return NIds[1]; }
  151.  
  152.       MatrixPtr Costs;
  153.       EdgeMetadata Metadata;
  154.  
  155.     private:
  156.       NodeId NIds[2];
  157.       typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
  158.     };
  159.  
  160.     // ----- MEMBERS -----
  161.  
  162.     GraphMetadata Metadata;
  163.     CostAllocator CostAlloc;
  164.     SolverT *Solver = nullptr;
  165.  
  166.     using NodeVector = std::vector<NodeEntry>;
  167.     using FreeNodeVector = std::vector<NodeId>;
  168.     NodeVector Nodes;
  169.     FreeNodeVector FreeNodeIds;
  170.  
  171.     using EdgeVector = std::vector<EdgeEntry>;
  172.     using FreeEdgeVector = std::vector<EdgeId>;
  173.     EdgeVector Edges;
  174.     FreeEdgeVector FreeEdgeIds;
  175.  
  176.     Graph(const Graph &Other) {}
  177.  
  178.     // ----- INTERNAL METHODS -----
  179.  
  180.     NodeEntry &getNode(NodeId NId) {
  181.       assert(NId < Nodes.size() && "Out of bound NodeId");
  182.       return Nodes[NId];
  183.     }
  184.     const NodeEntry &getNode(NodeId NId) const {
  185.       assert(NId < Nodes.size() && "Out of bound NodeId");
  186.       return Nodes[NId];
  187.     }
  188.  
  189.     EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
  190.     const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
  191.  
  192.     NodeId addConstructedNode(NodeEntry N) {
  193.       NodeId NId = 0;
  194.       if (!FreeNodeIds.empty()) {
  195.         NId = FreeNodeIds.back();
  196.         FreeNodeIds.pop_back();
  197.         Nodes[NId] = std::move(N);
  198.       } else {
  199.         NId = Nodes.size();
  200.         Nodes.push_back(std::move(N));
  201.       }
  202.       return NId;
  203.     }
  204.  
  205.     EdgeId addConstructedEdge(EdgeEntry E) {
  206.       assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
  207.              "Attempt to add duplicate edge.");
  208.       EdgeId EId = 0;
  209.       if (!FreeEdgeIds.empty()) {
  210.         EId = FreeEdgeIds.back();
  211.         FreeEdgeIds.pop_back();
  212.         Edges[EId] = std::move(E);
  213.       } else {
  214.         EId = Edges.size();
  215.         Edges.push_back(std::move(E));
  216.       }
  217.  
  218.       EdgeEntry &NE = getEdge(EId);
  219.  
  220.       // Add the edge to the adjacency sets of its nodes.
  221.       NE.connect(*this, EId);
  222.       return EId;
  223.     }
  224.  
  225.     void operator=(const Graph &Other) {}
  226.  
  227.   public:
  228.     using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
  229.  
  230.     class NodeItr {
  231.     public:
  232.       using iterator_category = std::forward_iterator_tag;
  233.       using value_type = NodeId;
  234.       using difference_type = int;
  235.       using pointer = NodeId *;
  236.       using reference = NodeId &;
  237.  
  238.       NodeItr(NodeId CurNId, const Graph &G)
  239.         : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
  240.         this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
  241.       }
  242.  
  243.       bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
  244.       bool operator!=(const NodeItr &O) const { return !(*this == O); }
  245.       NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
  246.       NodeId operator*() const { return CurNId; }
  247.  
  248.     private:
  249.       NodeId findNextInUse(NodeId NId) const {
  250.         while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
  251.           ++NId;
  252.         }
  253.         return NId;
  254.       }
  255.  
  256.       NodeId CurNId, EndNId;
  257.       const FreeNodeVector &FreeNodeIds;
  258.     };
  259.  
  260.     class EdgeItr {
  261.     public:
  262.       EdgeItr(EdgeId CurEId, const Graph &G)
  263.         : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
  264.         this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
  265.       }
  266.  
  267.       bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
  268.       bool operator!=(const EdgeItr &O) const { return !(*this == O); }
  269.       EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
  270.       EdgeId operator*() const { return CurEId; }
  271.  
  272.     private:
  273.       EdgeId findNextInUse(EdgeId EId) const {
  274.         while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
  275.           ++EId;
  276.         }
  277.         return EId;
  278.       }
  279.  
  280.       EdgeId CurEId, EndEId;
  281.       const FreeEdgeVector &FreeEdgeIds;
  282.     };
  283.  
  284.     class NodeIdSet {
  285.     public:
  286.       NodeIdSet(const Graph &G) : G(G) {}
  287.  
  288.       NodeItr begin() const { return NodeItr(0, G); }
  289.       NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
  290.  
  291.       bool empty() const { return G.Nodes.empty(); }
  292.  
  293.       typename NodeVector::size_type size() const {
  294.         return G.Nodes.size() - G.FreeNodeIds.size();
  295.       }
  296.  
  297.     private:
  298.       const Graph& G;
  299.     };
  300.  
  301.     class EdgeIdSet {
  302.     public:
  303.       EdgeIdSet(const Graph &G) : G(G) {}
  304.  
  305.       EdgeItr begin() const { return EdgeItr(0, G); }
  306.       EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
  307.  
  308.       bool empty() const { return G.Edges.empty(); }
  309.  
  310.       typename NodeVector::size_type size() const {
  311.         return G.Edges.size() - G.FreeEdgeIds.size();
  312.       }
  313.  
  314.     private:
  315.       const Graph& G;
  316.     };
  317.  
  318.     class AdjEdgeIdSet {
  319.     public:
  320.       AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
  321.  
  322.       typename NodeEntry::AdjEdgeItr begin() const {
  323.         return NE.getAdjEdgeIds().begin();
  324.       }
  325.  
  326.       typename NodeEntry::AdjEdgeItr end() const {
  327.         return NE.getAdjEdgeIds().end();
  328.       }
  329.  
  330.       bool empty() const { return NE.getAdjEdgeIds().empty(); }
  331.  
  332.       typename NodeEntry::AdjEdgeList::size_type size() const {
  333.         return NE.getAdjEdgeIds().size();
  334.       }
  335.  
  336.     private:
  337.       const NodeEntry &NE;
  338.     };
  339.  
  340.     /// Construct an empty PBQP graph.
  341.     Graph() = default;
  342.  
  343.     /// Construct an empty PBQP graph with the given graph metadata.
  344.     Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
  345.  
  346.     /// Get a reference to the graph metadata.
  347.     GraphMetadata& getMetadata() { return Metadata; }
  348.  
  349.     /// Get a const-reference to the graph metadata.
  350.     const GraphMetadata& getMetadata() const { return Metadata; }
  351.  
  352.     /// Lock this graph to the given solver instance in preparation
  353.     /// for running the solver. This method will call solver.handleAddNode for
  354.     /// each node in the graph, and handleAddEdge for each edge, to give the
  355.     /// solver an opportunity to set up any requried metadata.
  356.     void setSolver(SolverT &S) {
  357.       assert(!Solver && "Solver already set. Call unsetSolver().");
  358.       Solver = &S;
  359.       for (auto NId : nodeIds())
  360.         Solver->handleAddNode(NId);
  361.       for (auto EId : edgeIds())
  362.         Solver->handleAddEdge(EId);
  363.     }
  364.  
  365.     /// Release from solver instance.
  366.     void unsetSolver() {
  367.       assert(Solver && "Solver not set.");
  368.       Solver = nullptr;
  369.     }
  370.  
  371.     /// Add a node with the given costs.
  372.     /// @param Costs Cost vector for the new node.
  373.     /// @return Node iterator for the added node.
  374.     template <typename OtherVectorT>
  375.     NodeId addNode(OtherVectorT Costs) {
  376.       // Get cost vector from the problem domain
  377.       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
  378.       NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
  379.       if (Solver)
  380.         Solver->handleAddNode(NId);
  381.       return NId;
  382.     }
  383.  
  384.     /// Add a node bypassing the cost allocator.
  385.     /// @param Costs Cost vector ptr for the new node (must be convertible to
  386.     ///        VectorPtr).
  387.     /// @return Node iterator for the added node.
  388.     ///
  389.     ///   This method allows for fast addition of a node whose costs don't need
  390.     /// to be passed through the cost allocator. The most common use case for
  391.     /// this is when duplicating costs from an existing node (when using a
  392.     /// pooling allocator). These have already been uniqued, so we can avoid
  393.     /// re-constructing and re-uniquing them by attaching them directly to the
  394.     /// new node.
  395.     template <typename OtherVectorPtrT>
  396.     NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
  397.       NodeId NId = addConstructedNode(NodeEntry(Costs));
  398.       if (Solver)
  399.         Solver->handleAddNode(NId);
  400.       return NId;
  401.     }
  402.  
  403.     /// Add an edge between the given nodes with the given costs.
  404.     /// @param N1Id First node.
  405.     /// @param N2Id Second node.
  406.     /// @param Costs Cost matrix for new edge.
  407.     /// @return Edge iterator for the added edge.
  408.     template <typename OtherVectorT>
  409.     EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
  410.       assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
  411.              getNodeCosts(N2Id).getLength() == Costs.getCols() &&
  412.              "Matrix dimensions mismatch.");
  413.       // Get cost matrix from the problem domain.
  414.       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
  415.       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
  416.       if (Solver)
  417.         Solver->handleAddEdge(EId);
  418.       return EId;
  419.     }
  420.  
  421.     /// Add an edge bypassing the cost allocator.
  422.     /// @param N1Id First node.
  423.     /// @param N2Id Second node.
  424.     /// @param Costs Cost matrix for new edge.
  425.     /// @return Edge iterator for the added edge.
  426.     ///
  427.     ///   This method allows for fast addition of an edge whose costs don't need
  428.     /// to be passed through the cost allocator. The most common use case for
  429.     /// this is when duplicating costs from an existing edge (when using a
  430.     /// pooling allocator). These have already been uniqued, so we can avoid
  431.     /// re-constructing and re-uniquing them by attaching them directly to the
  432.     /// new edge.
  433.     template <typename OtherMatrixPtrT>
  434.     NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
  435.                                          OtherMatrixPtrT Costs) {
  436.       assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
  437.              getNodeCosts(N2Id).getLength() == Costs->getCols() &&
  438.              "Matrix dimensions mismatch.");
  439.       // Get cost matrix from the problem domain.
  440.       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
  441.       if (Solver)
  442.         Solver->handleAddEdge(EId);
  443.       return EId;
  444.     }
  445.  
  446.     /// Returns true if the graph is empty.
  447.     bool empty() const { return NodeIdSet(*this).empty(); }
  448.  
  449.     NodeIdSet nodeIds() const { return NodeIdSet(*this); }
  450.     EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
  451.  
  452.     AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
  453.  
  454.     /// Get the number of nodes in the graph.
  455.     /// @return Number of nodes in the graph.
  456.     unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
  457.  
  458.     /// Get the number of edges in the graph.
  459.     /// @return Number of edges in the graph.
  460.     unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
  461.  
  462.     /// Set a node's cost vector.
  463.     /// @param NId Node to update.
  464.     /// @param Costs New costs to set.
  465.     template <typename OtherVectorT>
  466.     void setNodeCosts(NodeId NId, OtherVectorT Costs) {
  467.       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
  468.       if (Solver)
  469.         Solver->handleSetNodeCosts(NId, *AllocatedCosts);
  470.       getNode(NId).Costs = AllocatedCosts;
  471.     }
  472.  
  473.     /// Get a VectorPtr to a node's cost vector. Rarely useful - use
  474.     ///        getNodeCosts where possible.
  475.     /// @param NId Node id.
  476.     /// @return VectorPtr to node cost vector.
  477.     ///
  478.     ///   This method is primarily useful for duplicating costs quickly by
  479.     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
  480.     /// getNodeCosts when dealing with node cost values.
  481.     const VectorPtr& getNodeCostsPtr(NodeId NId) const {
  482.       return getNode(NId).Costs;
  483.     }
  484.  
  485.     /// Get a node's cost vector.
  486.     /// @param NId Node id.
  487.     /// @return Node cost vector.
  488.     const Vector& getNodeCosts(NodeId NId) const {
  489.       return *getNodeCostsPtr(NId);
  490.     }
  491.  
  492.     NodeMetadata& getNodeMetadata(NodeId NId) {
  493.       return getNode(NId).Metadata;
  494.     }
  495.  
  496.     const NodeMetadata& getNodeMetadata(NodeId NId) const {
  497.       return getNode(NId).Metadata;
  498.     }
  499.  
  500.     typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
  501.       return getNode(NId).getAdjEdgeIds().size();
  502.     }
  503.  
  504.     /// Update an edge's cost matrix.
  505.     /// @param EId Edge id.
  506.     /// @param Costs New cost matrix.
  507.     template <typename OtherMatrixT>
  508.     void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
  509.       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
  510.       if (Solver)
  511.         Solver->handleUpdateCosts(EId, *AllocatedCosts);
  512.       getEdge(EId).Costs = AllocatedCosts;
  513.     }
  514.  
  515.     /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use
  516.     ///        getEdgeCosts where possible.
  517.     /// @param EId Edge id.
  518.     /// @return MatrixPtr to edge cost matrix.
  519.     ///
  520.     ///   This method is primarily useful for duplicating costs quickly by
  521.     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
  522.     /// getEdgeCosts when dealing with edge cost values.
  523.     const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
  524.       return getEdge(EId).Costs;
  525.     }
  526.  
  527.     /// Get an edge's cost matrix.
  528.     /// @param EId Edge id.
  529.     /// @return Edge cost matrix.
  530.     const Matrix& getEdgeCosts(EdgeId EId) const {
  531.       return *getEdge(EId).Costs;
  532.     }
  533.  
  534.     EdgeMetadata& getEdgeMetadata(EdgeId EId) {
  535.       return getEdge(EId).Metadata;
  536.     }
  537.  
  538.     const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
  539.       return getEdge(EId).Metadata;
  540.     }
  541.  
  542.     /// Get the first node connected to this edge.
  543.     /// @param EId Edge id.
  544.     /// @return The first node connected to the given edge.
  545.     NodeId getEdgeNode1Id(EdgeId EId) const {
  546.       return getEdge(EId).getN1Id();
  547.     }
  548.  
  549.     /// Get the second node connected to this edge.
  550.     /// @param EId Edge id.
  551.     /// @return The second node connected to the given edge.
  552.     NodeId getEdgeNode2Id(EdgeId EId) const {
  553.       return getEdge(EId).getN2Id();
  554.     }
  555.  
  556.     /// Get the "other" node connected to this edge.
  557.     /// @param EId Edge id.
  558.     /// @param NId Node id for the "given" node.
  559.     /// @return The iterator for the "other" node connected to this edge.
  560.     NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
  561.       EdgeEntry &E = getEdge(EId);
  562.       if (E.getN1Id() == NId) {
  563.         return E.getN2Id();
  564.       } // else
  565.       return E.getN1Id();
  566.     }
  567.  
  568.     /// Get the edge connecting two nodes.
  569.     /// @param N1Id First node id.
  570.     /// @param N2Id Second node id.
  571.     /// @return An id for edge (N1Id, N2Id) if such an edge exists,
  572.     ///         otherwise returns an invalid edge id.
  573.     EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
  574.       for (auto AEId : adjEdgeIds(N1Id)) {
  575.         if ((getEdgeNode1Id(AEId) == N2Id) ||
  576.             (getEdgeNode2Id(AEId) == N2Id)) {
  577.           return AEId;
  578.         }
  579.       }
  580.       return invalidEdgeId();
  581.     }
  582.  
  583.     /// Remove a node from the graph.
  584.     /// @param NId Node id.
  585.     void removeNode(NodeId NId) {
  586.       if (Solver)
  587.         Solver->handleRemoveNode(NId);
  588.       NodeEntry &N = getNode(NId);
  589.       // TODO: Can this be for-each'd?
  590.       for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
  591.              AEEnd = N.adjEdgesEnd();
  592.            AEItr != AEEnd;) {
  593.         EdgeId EId = *AEItr;
  594.         ++AEItr;
  595.         removeEdge(EId);
  596.       }
  597.       FreeNodeIds.push_back(NId);
  598.     }
  599.  
  600.     /// Disconnect an edge from the given node.
  601.     ///
  602.     /// Removes the given edge from the adjacency list of the given node.
  603.     /// This operation leaves the edge in an 'asymmetric' state: It will no
  604.     /// longer appear in an iteration over the given node's (NId's) edges, but
  605.     /// will appear in an iteration over the 'other', unnamed node's edges.
  606.     ///
  607.     /// This does not correspond to any normal graph operation, but exists to
  608.     /// support efficient PBQP graph-reduction based solvers. It is used to
  609.     /// 'effectively' remove the unnamed node from the graph while the solver
  610.     /// is performing the reduction. The solver will later call reconnectNode
  611.     /// to restore the edge in the named node's adjacency list.
  612.     ///
  613.     /// Since the degree of a node is the number of connected edges,
  614.     /// disconnecting an edge from a node 'u' will cause the degree of 'u' to
  615.     /// drop by 1.
  616.     ///
  617.     /// A disconnected edge WILL still appear in an iteration over the graph
  618.     /// edges.
  619.     ///
  620.     /// A disconnected edge should not be removed from the graph, it should be
  621.     /// reconnected first.
  622.     ///
  623.     /// A disconnected edge can be reconnected by calling the reconnectEdge
  624.     /// method.
  625.     void disconnectEdge(EdgeId EId, NodeId NId) {
  626.       if (Solver)
  627.         Solver->handleDisconnectEdge(EId, NId);
  628.  
  629.       EdgeEntry &E = getEdge(EId);
  630.       E.disconnectFrom(*this, NId);
  631.     }
  632.  
  633.     /// Convenience method to disconnect all neighbours from the given
  634.     ///        node.
  635.     void disconnectAllNeighborsFromNode(NodeId NId) {
  636.       for (auto AEId : adjEdgeIds(NId))
  637.         disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
  638.     }
  639.  
  640.     /// Re-attach an edge to its nodes.
  641.     ///
  642.     /// Adds an edge that had been previously disconnected back into the
  643.     /// adjacency set of the nodes that the edge connects.
  644.     void reconnectEdge(EdgeId EId, NodeId NId) {
  645.       EdgeEntry &E = getEdge(EId);
  646.       E.connectTo(*this, EId, NId);
  647.       if (Solver)
  648.         Solver->handleReconnectEdge(EId, NId);
  649.     }
  650.  
  651.     /// Remove an edge from the graph.
  652.     /// @param EId Edge id.
  653.     void removeEdge(EdgeId EId) {
  654.       if (Solver)
  655.         Solver->handleRemoveEdge(EId);
  656.       EdgeEntry &E = getEdge(EId);
  657.       E.disconnect();
  658.       FreeEdgeIds.push_back(EId);
  659.       Edges[EId].invalidate();
  660.     }
  661.  
  662.     /// Remove all nodes and edges from the graph.
  663.     void clear() {
  664.       Nodes.clear();
  665.       FreeNodeIds.clear();
  666.       Edges.clear();
  667.       FreeEdgeIds.clear();
  668.     }
  669.   };
  670.  
  671. } // end namespace PBQP
  672. } // end namespace llvm
  673.  
  674. #endif // LLVM_CODEGEN_PBQP_GRAPH_H
  675.