- //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // PBQP Graph class. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_CODEGEN_PBQP_GRAPH_H 
- #define LLVM_CODEGEN_PBQP_GRAPH_H 
-   
- #include "llvm/ADT/STLExtras.h" 
- #include <algorithm> 
- #include <cassert> 
- #include <iterator> 
- #include <limits> 
- #include <vector> 
-   
- namespace llvm { 
- namespace PBQP { 
-   
-   class GraphBase { 
-   public: 
-     using NodeId = unsigned; 
-     using EdgeId = unsigned; 
-   
-     /// Returns a value representing an invalid (non-existent) node. 
-     static NodeId invalidNodeId() { 
-       return std::numeric_limits<NodeId>::max(); 
-     } 
-   
-     /// Returns a value representing an invalid (non-existent) edge. 
-     static EdgeId invalidEdgeId() { 
-       return std::numeric_limits<EdgeId>::max(); 
-     } 
-   }; 
-   
-   /// PBQP Graph class. 
-   /// Instances of this class describe PBQP problems. 
-   /// 
-   template <typename SolverT> 
-   class Graph : public GraphBase { 
-   private: 
-     using CostAllocator = typename SolverT::CostAllocator; 
-   
-   public: 
-     using RawVector = typename SolverT::RawVector; 
-     using RawMatrix = typename SolverT::RawMatrix; 
-     using Vector = typename SolverT::Vector; 
-     using Matrix = typename SolverT::Matrix; 
-     using VectorPtr = typename CostAllocator::VectorPtr; 
-     using MatrixPtr = typename CostAllocator::MatrixPtr; 
-     using NodeMetadata = typename SolverT::NodeMetadata; 
-     using EdgeMetadata = typename SolverT::EdgeMetadata; 
-     using GraphMetadata = typename SolverT::GraphMetadata; 
-   
-   private: 
-     class NodeEntry { 
-     public: 
-       using AdjEdgeList = std::vector<EdgeId>; 
-       using AdjEdgeIdx = AdjEdgeList::size_type; 
-       using AdjEdgeItr = AdjEdgeList::const_iterator; 
-   
-       NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} 
-   
-       static AdjEdgeIdx getInvalidAdjEdgeIdx() { 
-         return std::numeric_limits<AdjEdgeIdx>::max(); 
-       } 
-   
-       AdjEdgeIdx addAdjEdgeId(EdgeId EId) { 
-         AdjEdgeIdx Idx = AdjEdgeIds.size(); 
-         AdjEdgeIds.push_back(EId); 
-         return Idx; 
-       } 
-   
-       void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { 
-         // Swap-and-pop for fast removal. 
-         //   1) Update the adj index of the edge currently at back(). 
-         //   2) Move last Edge down to Idx. 
-         //   3) pop_back() 
-         // If Idx == size() - 1 then the setAdjEdgeIdx and swap are 
-         // redundant, but both operations are cheap. 
-         G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); 
-         AdjEdgeIds[Idx] = AdjEdgeIds.back(); 
-         AdjEdgeIds.pop_back(); 
-       } 
-   
-       const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } 
-   
-       VectorPtr Costs; 
-       NodeMetadata Metadata; 
-   
-     private: 
-       AdjEdgeList AdjEdgeIds; 
-     }; 
-   
-     class EdgeEntry { 
-     public: 
-       EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) 
-           : Costs(std::move(Costs)) { 
-         NIds[0] = N1Id; 
-         NIds[1] = N2Id; 
-         ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); 
-         ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); 
-       } 
-   
-       void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { 
-         assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && 
-                "Edge already connected to NIds[NIdx]."); 
-         NodeEntry &N = G.getNode(NIds[NIdx]); 
-         ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); 
-       } 
-   
-       void connect(Graph &G, EdgeId ThisEdgeId) { 
-         connectToN(G, ThisEdgeId, 0); 
-         connectToN(G, ThisEdgeId, 1); 
-       } 
-   
-       void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { 
-         if (NId == NIds[0]) 
-           ThisEdgeAdjIdxs[0] = NewIdx; 
-         else { 
-           assert(NId == NIds[1] && "Edge not connected to NId"); 
-           ThisEdgeAdjIdxs[1] = NewIdx; 
-         } 
-       } 
-   
-       void disconnectFromN(Graph &G, unsigned NIdx) { 
-         assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && 
-                "Edge not connected to NIds[NIdx]."); 
-         NodeEntry &N = G.getNode(NIds[NIdx]); 
-         N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); 
-         ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); 
-       } 
-   
-       void disconnectFrom(Graph &G, NodeId NId) { 
-         if (NId == NIds[0]) 
-           disconnectFromN(G, 0); 
-         else { 
-           assert(NId == NIds[1] && "Edge does not connect NId"); 
-           disconnectFromN(G, 1); 
-         } 
-       } 
-   
-       NodeId getN1Id() const { return NIds[0]; } 
-       NodeId getN2Id() const { return NIds[1]; } 
-   
-       MatrixPtr Costs; 
-       EdgeMetadata Metadata; 
-   
-     private: 
-       NodeId NIds[2]; 
-       typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; 
-     }; 
-   
-     // ----- MEMBERS ----- 
-   
-     GraphMetadata Metadata; 
-     CostAllocator CostAlloc; 
-     SolverT *Solver = nullptr; 
-   
-     using NodeVector = std::vector<NodeEntry>; 
-     using FreeNodeVector = std::vector<NodeId>; 
-     NodeVector Nodes; 
-     FreeNodeVector FreeNodeIds; 
-   
-     using EdgeVector = std::vector<EdgeEntry>; 
-     using FreeEdgeVector = std::vector<EdgeId>; 
-     EdgeVector Edges; 
-     FreeEdgeVector FreeEdgeIds; 
-   
-     Graph(const Graph &Other) {} 
-   
-     // ----- INTERNAL METHODS ----- 
-   
-     NodeEntry &getNode(NodeId NId) { 
-       assert(NId < Nodes.size() && "Out of bound NodeId"); 
-       return Nodes[NId]; 
-     } 
-     const NodeEntry &getNode(NodeId NId) const { 
-       assert(NId < Nodes.size() && "Out of bound NodeId"); 
-       return Nodes[NId]; 
-     } 
-   
-     EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } 
-     const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } 
-   
-     NodeId addConstructedNode(NodeEntry N) { 
-       NodeId NId = 0; 
-       if (!FreeNodeIds.empty()) { 
-         NId = FreeNodeIds.back(); 
-         FreeNodeIds.pop_back(); 
-         Nodes[NId] = std::move(N); 
-       } else { 
-         NId = Nodes.size(); 
-         Nodes.push_back(std::move(N)); 
-       } 
-       return NId; 
-     } 
-   
-     EdgeId addConstructedEdge(EdgeEntry E) { 
-       assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && 
-              "Attempt to add duplicate edge."); 
-       EdgeId EId = 0; 
-       if (!FreeEdgeIds.empty()) { 
-         EId = FreeEdgeIds.back(); 
-         FreeEdgeIds.pop_back(); 
-         Edges[EId] = std::move(E); 
-       } else { 
-         EId = Edges.size(); 
-         Edges.push_back(std::move(E)); 
-       } 
-   
-       EdgeEntry &NE = getEdge(EId); 
-   
-       // Add the edge to the adjacency sets of its nodes. 
-       NE.connect(*this, EId); 
-       return EId; 
-     } 
-   
-     void operator=(const Graph &Other) {} 
-   
-   public: 
-     using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; 
-   
-     class NodeItr { 
-     public: 
-       using iterator_category = std::forward_iterator_tag; 
-       using value_type = NodeId; 
-       using difference_type = int; 
-       using pointer = NodeId *; 
-       using reference = NodeId &; 
-   
-       NodeItr(NodeId CurNId, const Graph &G) 
-         : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { 
-         this->CurNId = findNextInUse(CurNId); // Move to first in-use node id 
-       } 
-   
-       bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } 
-       bool operator!=(const NodeItr &O) const { return !(*this == O); } 
-       NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } 
-       NodeId operator*() const { return CurNId; } 
-   
-     private: 
-       NodeId findNextInUse(NodeId NId) const { 
-         while (NId < EndNId && is_contained(FreeNodeIds, NId)) { 
-           ++NId; 
-         } 
-         return NId; 
-       } 
-   
-       NodeId CurNId, EndNId; 
-       const FreeNodeVector &FreeNodeIds; 
-     }; 
-   
-     class EdgeItr { 
-     public: 
-       EdgeItr(EdgeId CurEId, const Graph &G) 
-         : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { 
-         this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id 
-       } 
-   
-       bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } 
-       bool operator!=(const EdgeItr &O) const { return !(*this == O); } 
-       EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } 
-       EdgeId operator*() const { return CurEId; } 
-   
-     private: 
-       EdgeId findNextInUse(EdgeId EId) const { 
-         while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { 
-           ++EId; 
-         } 
-         return EId; 
-       } 
-   
-       EdgeId CurEId, EndEId; 
-       const FreeEdgeVector &FreeEdgeIds; 
-     }; 
-   
-     class NodeIdSet { 
-     public: 
-       NodeIdSet(const Graph &G) : G(G) {} 
-   
-       NodeItr begin() const { return NodeItr(0, G); } 
-       NodeItr end() const { return NodeItr(G.Nodes.size(), G); } 
-   
-       bool empty() const { return G.Nodes.empty(); } 
-   
-       typename NodeVector::size_type size() const { 
-         return G.Nodes.size() - G.FreeNodeIds.size(); 
-       } 
-   
-     private: 
-       const Graph& G; 
-     }; 
-   
-     class EdgeIdSet { 
-     public: 
-       EdgeIdSet(const Graph &G) : G(G) {} 
-   
-       EdgeItr begin() const { return EdgeItr(0, G); } 
-       EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } 
-   
-       bool empty() const { return G.Edges.empty(); } 
-   
-       typename NodeVector::size_type size() const { 
-         return G.Edges.size() - G.FreeEdgeIds.size(); 
-       } 
-   
-     private: 
-       const Graph& G; 
-     }; 
-   
-     class AdjEdgeIdSet { 
-     public: 
-       AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} 
-   
-       typename NodeEntry::AdjEdgeItr begin() const { 
-         return NE.getAdjEdgeIds().begin(); 
-       } 
-   
-       typename NodeEntry::AdjEdgeItr end() const { 
-         return NE.getAdjEdgeIds().end(); 
-       } 
-   
-       bool empty() const { return NE.getAdjEdgeIds().empty(); } 
-   
-       typename NodeEntry::AdjEdgeList::size_type size() const { 
-         return NE.getAdjEdgeIds().size(); 
-       } 
-   
-     private: 
-       const NodeEntry &NE; 
-     }; 
-   
-     /// Construct an empty PBQP graph. 
-     Graph() = default; 
-   
-     /// Construct an empty PBQP graph with the given graph metadata. 
-     Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} 
-   
-     /// Get a reference to the graph metadata. 
-     GraphMetadata& getMetadata() { return Metadata; } 
-   
-     /// Get a const-reference to the graph metadata. 
-     const GraphMetadata& getMetadata() const { return Metadata; } 
-   
-     /// Lock this graph to the given solver instance in preparation 
-     /// for running the solver. This method will call solver.handleAddNode for 
-     /// each node in the graph, and handleAddEdge for each edge, to give the 
-     /// solver an opportunity to set up any requried metadata. 
-     void setSolver(SolverT &S) { 
-       assert(!Solver && "Solver already set. Call unsetSolver()."); 
-       Solver = &S; 
-       for (auto NId : nodeIds()) 
-         Solver->handleAddNode(NId); 
-       for (auto EId : edgeIds()) 
-         Solver->handleAddEdge(EId); 
-     } 
-   
-     /// Release from solver instance. 
-     void unsetSolver() { 
-       assert(Solver && "Solver not set."); 
-       Solver = nullptr; 
-     } 
-   
-     /// Add a node with the given costs. 
-     /// @param Costs Cost vector for the new node. 
-     /// @return Node iterator for the added node. 
-     template <typename OtherVectorT> 
-     NodeId addNode(OtherVectorT Costs) { 
-       // Get cost vector from the problem domain 
-       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); 
-       NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); 
-       if (Solver) 
-         Solver->handleAddNode(NId); 
-       return NId; 
-     } 
-   
-     /// Add a node bypassing the cost allocator. 
-     /// @param Costs Cost vector ptr for the new node (must be convertible to 
-     ///        VectorPtr). 
-     /// @return Node iterator for the added node. 
-     /// 
-     ///   This method allows for fast addition of a node whose costs don't need 
-     /// to be passed through the cost allocator. The most common use case for 
-     /// this is when duplicating costs from an existing node (when using a 
-     /// pooling allocator). These have already been uniqued, so we can avoid 
-     /// re-constructing and re-uniquing them by attaching them directly to the 
-     /// new node. 
-     template <typename OtherVectorPtrT> 
-     NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { 
-       NodeId NId = addConstructedNode(NodeEntry(Costs)); 
-       if (Solver) 
-         Solver->handleAddNode(NId); 
-       return NId; 
-     } 
-   
-     /// Add an edge between the given nodes with the given costs. 
-     /// @param N1Id First node. 
-     /// @param N2Id Second node. 
-     /// @param Costs Cost matrix for new edge. 
-     /// @return Edge iterator for the added edge. 
-     template <typename OtherVectorT> 
-     EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { 
-       assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && 
-              getNodeCosts(N2Id).getLength() == Costs.getCols() && 
-              "Matrix dimensions mismatch."); 
-       // Get cost matrix from the problem domain. 
-       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); 
-       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); 
-       if (Solver) 
-         Solver->handleAddEdge(EId); 
-       return EId; 
-     } 
-   
-     /// Add an edge bypassing the cost allocator. 
-     /// @param N1Id First node. 
-     /// @param N2Id Second node. 
-     /// @param Costs Cost matrix for new edge. 
-     /// @return Edge iterator for the added edge. 
-     /// 
-     ///   This method allows for fast addition of an edge whose costs don't need 
-     /// to be passed through the cost allocator. The most common use case for 
-     /// this is when duplicating costs from an existing edge (when using a 
-     /// pooling allocator). These have already been uniqued, so we can avoid 
-     /// re-constructing and re-uniquing them by attaching them directly to the 
-     /// new edge. 
-     template <typename OtherMatrixPtrT> 
-     NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, 
-                                          OtherMatrixPtrT Costs) { 
-       assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && 
-              getNodeCosts(N2Id).getLength() == Costs->getCols() && 
-              "Matrix dimensions mismatch."); 
-       // Get cost matrix from the problem domain. 
-       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); 
-       if (Solver) 
-         Solver->handleAddEdge(EId); 
-       return EId; 
-     } 
-   
-     /// Returns true if the graph is empty. 
-     bool empty() const { return NodeIdSet(*this).empty(); } 
-   
-     NodeIdSet nodeIds() const { return NodeIdSet(*this); } 
-     EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } 
-   
-     AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } 
-   
-     /// Get the number of nodes in the graph. 
-     /// @return Number of nodes in the graph. 
-     unsigned getNumNodes() const { return NodeIdSet(*this).size(); } 
-   
-     /// Get the number of edges in the graph. 
-     /// @return Number of edges in the graph. 
-     unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } 
-   
-     /// Set a node's cost vector. 
-     /// @param NId Node to update. 
-     /// @param Costs New costs to set. 
-     template <typename OtherVectorT> 
-     void setNodeCosts(NodeId NId, OtherVectorT Costs) { 
-       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); 
-       if (Solver) 
-         Solver->handleSetNodeCosts(NId, *AllocatedCosts); 
-       getNode(NId).Costs = AllocatedCosts; 
-     } 
-   
-     /// Get a VectorPtr to a node's cost vector. Rarely useful - use 
-     ///        getNodeCosts where possible. 
-     /// @param NId Node id. 
-     /// @return VectorPtr to node cost vector. 
-     /// 
-     ///   This method is primarily useful for duplicating costs quickly by 
-     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer 
-     /// getNodeCosts when dealing with node cost values. 
-     const VectorPtr& getNodeCostsPtr(NodeId NId) const { 
-       return getNode(NId).Costs; 
-     } 
-   
-     /// Get a node's cost vector. 
-     /// @param NId Node id. 
-     /// @return Node cost vector. 
-     const Vector& getNodeCosts(NodeId NId) const { 
-       return *getNodeCostsPtr(NId); 
-     } 
-   
-     NodeMetadata& getNodeMetadata(NodeId NId) { 
-       return getNode(NId).Metadata; 
-     } 
-   
-     const NodeMetadata& getNodeMetadata(NodeId NId) const { 
-       return getNode(NId).Metadata; 
-     } 
-   
-     typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { 
-       return getNode(NId).getAdjEdgeIds().size(); 
-     } 
-   
-     /// Update an edge's cost matrix. 
-     /// @param EId Edge id. 
-     /// @param Costs New cost matrix. 
-     template <typename OtherMatrixT> 
-     void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { 
-       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); 
-       if (Solver) 
-         Solver->handleUpdateCosts(EId, *AllocatedCosts); 
-       getEdge(EId).Costs = AllocatedCosts; 
-     } 
-   
-     /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use 
-     ///        getEdgeCosts where possible. 
-     /// @param EId Edge id. 
-     /// @return MatrixPtr to edge cost matrix. 
-     /// 
-     ///   This method is primarily useful for duplicating costs quickly by 
-     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer 
-     /// getEdgeCosts when dealing with edge cost values. 
-     const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { 
-       return getEdge(EId).Costs; 
-     } 
-   
-     /// Get an edge's cost matrix. 
-     /// @param EId Edge id. 
-     /// @return Edge cost matrix. 
-     const Matrix& getEdgeCosts(EdgeId EId) const { 
-       return *getEdge(EId).Costs; 
-     } 
-   
-     EdgeMetadata& getEdgeMetadata(EdgeId EId) { 
-       return getEdge(EId).Metadata; 
-     } 
-   
-     const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { 
-       return getEdge(EId).Metadata; 
-     } 
-   
-     /// Get the first node connected to this edge. 
-     /// @param EId Edge id. 
-     /// @return The first node connected to the given edge. 
-     NodeId getEdgeNode1Id(EdgeId EId) const { 
-       return getEdge(EId).getN1Id(); 
-     } 
-   
-     /// Get the second node connected to this edge. 
-     /// @param EId Edge id. 
-     /// @return The second node connected to the given edge. 
-     NodeId getEdgeNode2Id(EdgeId EId) const { 
-       return getEdge(EId).getN2Id(); 
-     } 
-   
-     /// Get the "other" node connected to this edge. 
-     /// @param EId Edge id. 
-     /// @param NId Node id for the "given" node. 
-     /// @return The iterator for the "other" node connected to this edge. 
-     NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { 
-       EdgeEntry &E = getEdge(EId); 
-       if (E.getN1Id() == NId) { 
-         return E.getN2Id(); 
-       } // else 
-       return E.getN1Id(); 
-     } 
-   
-     /// Get the edge connecting two nodes. 
-     /// @param N1Id First node id. 
-     /// @param N2Id Second node id. 
-     /// @return An id for edge (N1Id, N2Id) if such an edge exists, 
-     ///         otherwise returns an invalid edge id. 
-     EdgeId findEdge(NodeId N1Id, NodeId N2Id) { 
-       for (auto AEId : adjEdgeIds(N1Id)) { 
-         if ((getEdgeNode1Id(AEId) == N2Id) || 
-             (getEdgeNode2Id(AEId) == N2Id)) { 
-           return AEId; 
-         } 
-       } 
-       return invalidEdgeId(); 
-     } 
-   
-     /// Remove a node from the graph. 
-     /// @param NId Node id. 
-     void removeNode(NodeId NId) { 
-       if (Solver) 
-         Solver->handleRemoveNode(NId); 
-       NodeEntry &N = getNode(NId); 
-       // TODO: Can this be for-each'd? 
-       for (AdjEdgeItr AEItr = N.adjEdgesBegin(), 
-              AEEnd = N.adjEdgesEnd(); 
-            AEItr != AEEnd;) { 
-         EdgeId EId = *AEItr; 
-         ++AEItr; 
-         removeEdge(EId); 
-       } 
-       FreeNodeIds.push_back(NId); 
-     } 
-   
-     /// Disconnect an edge from the given node. 
-     /// 
-     /// Removes the given edge from the adjacency list of the given node. 
-     /// This operation leaves the edge in an 'asymmetric' state: It will no 
-     /// longer appear in an iteration over the given node's (NId's) edges, but 
-     /// will appear in an iteration over the 'other', unnamed node's edges. 
-     /// 
-     /// This does not correspond to any normal graph operation, but exists to 
-     /// support efficient PBQP graph-reduction based solvers. It is used to 
-     /// 'effectively' remove the unnamed node from the graph while the solver 
-     /// is performing the reduction. The solver will later call reconnectNode 
-     /// to restore the edge in the named node's adjacency list. 
-     /// 
-     /// Since the degree of a node is the number of connected edges, 
-     /// disconnecting an edge from a node 'u' will cause the degree of 'u' to 
-     /// drop by 1. 
-     /// 
-     /// A disconnected edge WILL still appear in an iteration over the graph 
-     /// edges. 
-     /// 
-     /// A disconnected edge should not be removed from the graph, it should be 
-     /// reconnected first. 
-     /// 
-     /// A disconnected edge can be reconnected by calling the reconnectEdge 
-     /// method. 
-     void disconnectEdge(EdgeId EId, NodeId NId) { 
-       if (Solver) 
-         Solver->handleDisconnectEdge(EId, NId); 
-   
-       EdgeEntry &E = getEdge(EId); 
-       E.disconnectFrom(*this, NId); 
-     } 
-   
-     /// Convenience method to disconnect all neighbours from the given 
-     ///        node. 
-     void disconnectAllNeighborsFromNode(NodeId NId) { 
-       for (auto AEId : adjEdgeIds(NId)) 
-         disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); 
-     } 
-   
-     /// Re-attach an edge to its nodes. 
-     /// 
-     /// Adds an edge that had been previously disconnected back into the 
-     /// adjacency set of the nodes that the edge connects. 
-     void reconnectEdge(EdgeId EId, NodeId NId) { 
-       EdgeEntry &E = getEdge(EId); 
-       E.connectTo(*this, EId, NId); 
-       if (Solver) 
-         Solver->handleReconnectEdge(EId, NId); 
-     } 
-   
-     /// Remove an edge from the graph. 
-     /// @param EId Edge id. 
-     void removeEdge(EdgeId EId) { 
-       if (Solver) 
-         Solver->handleRemoveEdge(EId); 
-       EdgeEntry &E = getEdge(EId); 
-       E.disconnect(); 
-       FreeEdgeIds.push_back(EId); 
-       Edges[EId].invalidate(); 
-     } 
-   
-     /// Remove all nodes and edges from the graph. 
-     void clear() { 
-       Nodes.clear(); 
-       FreeNodeIds.clear(); 
-       Edges.clear(); 
-       FreeEdgeIds.clear(); 
-     } 
-   }; 
-   
- } // end namespace PBQP 
- } // end namespace llvm 
-   
- #endif // LLVM_CODEGEN_PBQP_GRAPH_H 
-