//===- lib/CodeGen/MachineTraceMetrics.h - Super-scalar metrics -*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the interface for the MachineTraceMetrics analysis pass
 
// that estimates CPU resource usage and critical data dependency paths through
 
// preferred traces. This is useful for super-scalar CPUs where execution speed
 
// can be limited both by data dependencies and by limited execution resources.
 
//
 
// Out-of-order CPUs will often be executing instructions from multiple basic
 
// blocks at the same time. This makes it difficult to estimate the resource
 
// usage accurately in a single basic block. Resources can be estimated better
 
// by looking at a trace through the current basic block.
 
//
 
// For every block, the MachineTraceMetrics pass will pick a preferred trace
 
// that passes through the block. The trace is chosen based on loop structure,
 
// branch probabilities, and resource usage. The intention is to pick likely
 
// traces that would be the most affected by code transformations.
 
//
 
// It is expensive to compute a full arbitrary trace for every block, so to
 
// save some computations, traces are chosen to be convergent. This means that
 
// if the traces through basic blocks A and B ever cross when moving away from
 
// A and B, they never diverge again. This applies in both directions - If the
 
// traces meet above A and B, they won't diverge when going further back.
 
//
 
// Traces tend to align with loops. The trace through a block in an inner loop
 
// will begin at the loop entry block and end at a back edge. If there are
 
// nested loops, the trace may begin and end at those instead.
 
//
 
// For each trace, we compute the critical path length, which is the number of
 
// cycles required to execute the trace when execution is limited by data
 
// dependencies only. We also compute the resource height, which is the number
 
// of cycles required to execute all instructions in the trace when ignoring
 
// data dependencies.
 
//
 
// Every instruction in the current block has a slack - the number of cycles
 
// execution of the instruction can be delayed without extending the critical
 
// path.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_MACHINETRACEMETRICS_H
 
#define LLVM_CODEGEN_MACHINETRACEMETRICS_H
 
 
 
#include "llvm/ADT/SparseSet.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/CodeGen/MachineBasicBlock.h"
 
#include "llvm/CodeGen/MachineFunctionPass.h"
 
#include "llvm/CodeGen/TargetSchedule.h"
 
 
 
namespace llvm {
 
 
 
class AnalysisUsage;
 
class MachineFunction;
 
class MachineInstr;
 
class MachineLoop;
 
class MachineLoopInfo;
 
class MachineRegisterInfo;
 
struct MCSchedClassDesc;
 
class raw_ostream;
 
class TargetInstrInfo;
 
class TargetRegisterInfo;
 
 
 
// Keep track of physreg data dependencies by recording each live register unit.
 
// Associate each regunit with an instruction operand. Depending on the
 
// direction instructions are scanned, it could be the operand that defined the
 
// regunit, or the highest operand to read the regunit.
 
struct LiveRegUnit {
 
  unsigned RegUnit;
 
  unsigned Cycle = 0;
 
  const MachineInstr *MI = nullptr;
 
  unsigned Op = 0;
 
 
 
  unsigned getSparseSetIndex() const { return RegUnit; }
 
 
 
  LiveRegUnit(unsigned RU) : RegUnit(RU) {}
 
};
 
 
 
 
 
class MachineTraceMetrics : public MachineFunctionPass {
 
  const MachineFunction *MF = nullptr;
 
  const TargetInstrInfo *TII = nullptr;
 
  const TargetRegisterInfo *TRI = nullptr;
 
  const MachineRegisterInfo *MRI = nullptr;
 
  const MachineLoopInfo *Loops = nullptr;
 
  TargetSchedModel SchedModel;
 
 
 
public:
 
  friend class Ensemble;
 
  friend class Trace;
 
 
 
  class Ensemble;
 
 
 
  static char ID;
 
 
 
  MachineTraceMetrics();
 
 
 
  void getAnalysisUsage(AnalysisUsage&) const override;
 
  bool runOnMachineFunction(MachineFunction&) override;
 
  void releaseMemory() override;
 
  void verifyAnalysis() const override;
 
 
 
  /// Per-basic block information that doesn't depend on the trace through the
 
  /// block.
 
  struct FixedBlockInfo {
 
    /// The number of non-trivial instructions in the block.
 
    /// Doesn't count PHI and COPY instructions that are likely to be removed.
 
    unsigned InstrCount = ~0u;
 
 
 
    /// True when the block contains calls.
 
    bool HasCalls = false;
 
 
 
    FixedBlockInfo() = default;
 
 
 
    /// Returns true when resource information for this block has been computed.
 
    bool hasResources() const { return InstrCount != ~0u; }
 
 
 
    /// Invalidate resource information.
 
    void invalidate() { InstrCount = ~0u; }
 
  };
 
 
 
  /// Get the fixed resource information about MBB. Compute it on demand.
 
  const FixedBlockInfo *getResources(const MachineBasicBlock*);
 
 
 
  /// Get the scaled number of cycles used per processor resource in MBB.
 
  /// This is an array with SchedModel.getNumProcResourceKinds() entries.
 
  /// The getResources() function above must have been called first.
 
  ///
 
  /// These numbers have already been scaled by SchedModel.getResourceFactor().
 
  ArrayRef<unsigned> getProcResourceCycles(unsigned MBBNum) const;
 
 
 
  /// A virtual register or regunit required by a basic block or its trace
 
  /// successors.
 
  struct LiveInReg {
 
    /// The virtual register required, or a register unit.
 
    Register Reg;
 
 
 
    /// For virtual registers: Minimum height of the defining instruction.
 
    /// For regunits: Height of the highest user in the trace.
 
    unsigned Height;
 
 
 
    LiveInReg(Register Reg, unsigned Height = 0) : Reg(Reg), Height(Height) {}
 
  };
 
 
 
  /// Per-basic block information that relates to a specific trace through the
 
  /// block. Convergent traces means that only one of these is required per
 
  /// block in a trace ensemble.
 
  struct TraceBlockInfo {
 
    /// Trace predecessor, or NULL for the first block in the trace.
 
    /// Valid when hasValidDepth().
 
    const MachineBasicBlock *Pred = nullptr;
 
 
 
    /// Trace successor, or NULL for the last block in the trace.
 
    /// Valid when hasValidHeight().
 
    const MachineBasicBlock *Succ = nullptr;
 
 
 
    /// The block number of the head of the trace. (When hasValidDepth()).
 
    unsigned Head;
 
 
 
    /// The block number of the tail of the trace. (When hasValidHeight()).
 
    unsigned Tail;
 
 
 
    /// Accumulated number of instructions in the trace above this block.
 
    /// Does not include instructions in this block.
 
    unsigned InstrDepth = ~0u;
 
 
 
    /// Accumulated number of instructions in the trace below this block.
 
    /// Includes instructions in this block.
 
    unsigned InstrHeight = ~0u;
 
 
 
    TraceBlockInfo() = default;
 
 
 
    /// Returns true if the depth resources have been computed from the trace
 
    /// above this block.
 
    bool hasValidDepth() const { return InstrDepth != ~0u; }
 
 
 
    /// Returns true if the height resources have been computed from the trace
 
    /// below this block.
 
    bool hasValidHeight() const { return InstrHeight != ~0u; }
 
 
 
    /// Invalidate depth resources when some block above this one has changed.
 
    void invalidateDepth() { InstrDepth = ~0u; HasValidInstrDepths = false; }
 
 
 
    /// Invalidate height resources when a block below this one has changed.
 
    void invalidateHeight() { InstrHeight = ~0u; HasValidInstrHeights = false; }
 
 
 
    /// Assuming that this is a dominator of TBI, determine if it contains
 
    /// useful instruction depths. A dominating block can be above the current
 
    /// trace head, and any dependencies from such a far away dominator are not
 
    /// expected to affect the critical path.
 
    ///
 
    /// Also returns true when TBI == this.
 
    bool isUsefulDominator(const TraceBlockInfo &TBI) const {
 
      // The trace for TBI may not even be calculated yet.
 
      if (!hasValidDepth() || !TBI.hasValidDepth())
 
        return false;
 
      // Instruction depths are only comparable if the traces share a head.
 
      if (Head != TBI.Head)
 
        return false;
 
      // It is almost always the case that TBI belongs to the same trace as
 
      // this block, but rare convoluted cases involving irreducible control
 
      // flow, a dominator may share a trace head without actually being on the
 
      // same trace as TBI. This is not a big problem as long as it doesn't
 
      // increase the instruction depth.
 
      return HasValidInstrDepths && InstrDepth <= TBI.InstrDepth;
 
    }
 
 
 
    // Data-dependency-related information. Per-instruction depth and height
 
    // are computed from data dependencies in the current trace, using
 
    // itinerary data.
 
 
 
    /// Instruction depths have been computed. This implies hasValidDepth().
 
    bool HasValidInstrDepths = false;
 
 
 
    /// Instruction heights have been computed. This implies hasValidHeight().
 
    bool HasValidInstrHeights = false;
 
 
 
    /// Critical path length. This is the number of cycles in the longest data
 
    /// dependency chain through the trace. This is only valid when both
 
    /// HasValidInstrDepths and HasValidInstrHeights are set.
 
    unsigned CriticalPath;
 
 
 
    /// Live-in registers. These registers are defined above the current block
 
    /// and used by this block or a block below it.
 
    /// This does not include PHI uses in the current block, but it does
 
    /// include PHI uses in deeper blocks.
 
    SmallVector<LiveInReg, 4> LiveIns;
 
 
 
    void print(raw_ostream&) const;
 
  };
 
 
 
  /// InstrCycles represents the cycle height and depth of an instruction in a
 
  /// trace.
 
  struct InstrCycles {
 
    /// Earliest issue cycle as determined by data dependencies and instruction
 
    /// latencies from the beginning of the trace. Data dependencies from
 
    /// before the trace are not included.
 
    unsigned Depth;
 
 
 
    /// Minimum number of cycles from this instruction is issued to the of the
 
    /// trace, as determined by data dependencies and instruction latencies.
 
    unsigned Height;
 
  };
 
 
 
  /// A trace represents a plausible sequence of executed basic blocks that
 
  /// passes through the current basic block one. The Trace class serves as a
 
  /// handle to internal cached data structures.
 
  class Trace {
 
    Ensemble &TE;
 
    TraceBlockInfo &TBI;
 
 
 
    unsigned getBlockNum() const { return &TBI - &TE.BlockInfo[0]; }
 
 
 
  public:
 
    explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {}
 
 
 
    void print(raw_ostream&) const;
 
 
 
    /// Compute the total number of instructions in the trace.
 
    unsigned getInstrCount() const {
 
      return TBI.InstrDepth + TBI.InstrHeight;
 
    }
 
 
 
    /// Return the resource depth of the top/bottom of the trace center block.
 
    /// This is the number of cycles required to execute all instructions from
 
    /// the trace head to the trace center block. The resource depth only
 
    /// considers execution resources, it ignores data dependencies.
 
    /// When Bottom is set, instructions in the trace center block are included.
 
    unsigned getResourceDepth(bool Bottom) const;
 
 
 
    /// Return the resource length of the trace. This is the number of cycles
 
    /// required to execute the instructions in the trace if they were all
 
    /// independent, exposing the maximum instruction-level parallelism.
 
    ///
 
    /// Any blocks in Extrablocks are included as if they were part of the
 
    /// trace. Likewise, extra resources required by the specified scheduling
 
    /// classes are included. For the caller to account for extra machine
 
    /// instructions, it must first resolve each instruction's scheduling class.
 
    unsigned getResourceLength(
 
        ArrayRef<const MachineBasicBlock *> Extrablocks = std::nullopt,
 
        ArrayRef<const MCSchedClassDesc *> ExtraInstrs = std::nullopt,
 
        ArrayRef<const MCSchedClassDesc *> RemoveInstrs = std::nullopt) const;
 
 
 
    /// Return the length of the (data dependency) critical path through the
 
    /// trace.
 
    unsigned getCriticalPath() const { return TBI.CriticalPath; }
 
 
 
    /// Return the depth and height of MI. The depth is only valid for
 
    /// instructions in or above the trace center block. The height is only
 
    /// valid for instructions in or below the trace center block.
 
    InstrCycles getInstrCycles(const MachineInstr &MI) const {
 
      return TE.Cycles.lookup(&MI);
 
    }
 
 
 
    /// Return the slack of MI. This is the number of cycles MI can be delayed
 
    /// before the critical path becomes longer.
 
    /// MI must be an instruction in the trace center block.
 
    unsigned getInstrSlack(const MachineInstr &MI) const;
 
 
 
    /// Return the Depth of a PHI instruction in a trace center block successor.
 
    /// The PHI does not have to be part of the trace.
 
    unsigned getPHIDepth(const MachineInstr &PHI) const;
 
 
 
    /// A dependence is useful if the basic block of the defining instruction
 
    /// is part of the trace of the user instruction. It is assumed that DefMI
 
    /// dominates UseMI (see also isUsefulDominator).
 
    bool isDepInTrace(const MachineInstr &DefMI,
 
                      const MachineInstr &UseMI) const;
 
  };
 
 
 
  /// A trace ensemble is a collection of traces selected using the same
 
  /// strategy, for example 'minimum resource height'. There is one trace for
 
  /// every block in the function.
 
  class Ensemble {
 
    friend class Trace;
 
 
 
    SmallVector<TraceBlockInfo, 4> BlockInfo;
 
    DenseMap<const MachineInstr*, InstrCycles> Cycles;
 
    SmallVector<unsigned, 0> ProcResourceDepths;
 
    SmallVector<unsigned, 0> ProcResourceHeights;
 
 
 
    void computeTrace(const MachineBasicBlock*);
 
    void computeDepthResources(const MachineBasicBlock*);
 
    void computeHeightResources(const MachineBasicBlock*);
 
    unsigned computeCrossBlockCriticalPath(const TraceBlockInfo&);
 
    void computeInstrDepths(const MachineBasicBlock*);
 
    void computeInstrHeights(const MachineBasicBlock*);
 
    void addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
 
                    ArrayRef<const MachineBasicBlock*> Trace);
 
 
 
  protected:
 
    MachineTraceMetrics &MTM;
 
 
 
    explicit Ensemble(MachineTraceMetrics*);
 
 
 
    virtual const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) =0;
 
    virtual const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) =0;
 
    const MachineLoop *getLoopFor(const MachineBasicBlock*) const;
 
    const TraceBlockInfo *getDepthResources(const MachineBasicBlock*) const;
 
    const TraceBlockInfo *getHeightResources(const MachineBasicBlock*) const;
 
    ArrayRef<unsigned> getProcResourceDepths(unsigned MBBNum) const;
 
    ArrayRef<unsigned> getProcResourceHeights(unsigned MBBNum) const;
 
 
 
  public:
 
    virtual ~Ensemble();
 
 
 
    virtual const char *getName() const = 0;
 
    void print(raw_ostream&) const;
 
    void invalidate(const MachineBasicBlock *MBB);
 
    void verify() const;
 
 
 
    /// Get the trace that passes through MBB.
 
    /// The trace is computed on demand.
 
    Trace getTrace(const MachineBasicBlock *MBB);
 
 
 
    /// Updates the depth of an machine instruction, given RegUnits.
 
    void updateDepth(TraceBlockInfo &TBI, const MachineInstr&,
 
                     SparseSet<LiveRegUnit> &RegUnits);
 
    void updateDepth(const MachineBasicBlock *, const MachineInstr&,
 
                     SparseSet<LiveRegUnit> &RegUnits);
 
 
 
    /// Updates the depth of the instructions from Start to End.
 
    void updateDepths(MachineBasicBlock::iterator Start,
 
                      MachineBasicBlock::iterator End,
 
                      SparseSet<LiveRegUnit> &RegUnits);
 
 
 
  };
 
 
 
  /// Strategies for selecting traces.
 
  enum Strategy {
 
    /// Select the trace through a block that has the fewest instructions.
 
    TS_MinInstrCount,
 
 
 
    TS_NumStrategies
 
  };
 
 
 
  /// Get the trace ensemble representing the given trace selection strategy.
 
  /// The returned Ensemble object is owned by the MachineTraceMetrics analysis,
 
  /// and valid for the lifetime of the analysis pass.
 
  Ensemble *getEnsemble(Strategy);
 
 
 
  /// Invalidate cached information about MBB. This must be called *before* MBB
 
  /// is erased, or the CFG is otherwise changed.
 
  ///
 
  /// This invalidates per-block information about resource usage for MBB only,
 
  /// and it invalidates per-trace information for any trace that passes
 
  /// through MBB.
 
  ///
 
  /// Call Ensemble::getTrace() again to update any trace handles.
 
  void invalidate(const MachineBasicBlock *MBB);
 
 
 
private:
 
  // One entry per basic block, indexed by block number.
 
  SmallVector<FixedBlockInfo, 4> BlockInfo;
 
 
 
  // Cycles consumed on each processor resource per block.
 
  // The number of processor resource kinds is constant for a given subtarget,
 
  // but it is not known at compile time. The number of cycles consumed by
 
  // block B on processor resource R is at ProcResourceCycles[B*Kinds + R]
 
  // where Kinds = SchedModel.getNumProcResourceKinds().
 
  SmallVector<unsigned, 0> ProcResourceCycles;
 
 
 
  // One ensemble per strategy.
 
  Ensemble* Ensembles[TS_NumStrategies];
 
 
 
  // Convert scaled resource usage to a cycle count that can be compared with
 
  // latencies.
 
  unsigned getCycles(unsigned Scaled) {
 
    unsigned Factor = SchedModel.getLatencyFactor();
 
    return (Scaled + Factor - 1) / Factor;
 
  }
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS,
 
                               const MachineTraceMetrics::Trace &Tr) {
 
  Tr.print(OS);
 
  return OS;
 
}
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS,
 
                               const MachineTraceMetrics::Ensemble &En) {
 
  En.print(OS);
 
  return OS;
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_MACHINETRACEMETRICS_H