//===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file provides an interface for customizing the standard MachineScheduler
 
// pass. Note that the entire pass may be replaced as follows:
 
//
 
// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
 
//   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
 
//   ...}
 
//
 
// The MachineScheduler pass is only responsible for choosing the regions to be
 
// scheduled. Targets can override the DAG builder and scheduler without
 
// replacing the pass as follows:
 
//
 
// ScheduleDAGInstrs *<Target>PassConfig::
 
// createMachineScheduler(MachineSchedContext *C) {
 
//   return new CustomMachineScheduler(C);
 
// }
 
//
 
// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
 
// scheduling while updating the instruction stream, register pressure, and live
 
// intervals. Most targets don't need to override the DAG builder and list
 
// scheduler, but subtargets that require custom scheduling heuristics may
 
// plugin an alternate MachineSchedStrategy. The strategy is responsible for
 
// selecting the highest priority node from the list:
 
//
 
// ScheduleDAGInstrs *<Target>PassConfig::
 
// createMachineScheduler(MachineSchedContext *C) {
 
//   return new ScheduleDAGMILive(C, CustomStrategy(C));
 
// }
 
//
 
// The DAG builder can also be customized in a sense by adding DAG mutations
 
// that will run after DAG building and before list scheduling. DAG mutations
 
// can adjust dependencies based on target-specific knowledge or add weak edges
 
// to aid heuristics:
 
//
 
// ScheduleDAGInstrs *<Target>PassConfig::
 
// createMachineScheduler(MachineSchedContext *C) {
 
//   ScheduleDAGMI *DAG = createGenericSchedLive(C);
 
//   DAG->addMutation(new CustomDAGMutation(...));
 
//   return DAG;
 
// }
 
//
 
// A target that supports alternative schedulers can use the
 
// MachineSchedRegistry to allow command line selection. This can be done by
 
// implementing the following boilerplate:
 
//
 
// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
 
//  return new CustomMachineScheduler(C);
 
// }
 
// static MachineSchedRegistry
 
// SchedCustomRegistry("custom", "Run my target's custom scheduler",
 
//                     createCustomMachineSched);
 
//
 
//
 
// Finally, subtargets that don't need to implement custom heuristics but would
 
// like to configure the GenericScheduler's policy for a given scheduler region,
 
// including scheduling direction and register pressure tracking policy, can do
 
// this:
 
//
 
// void <SubTarget>Subtarget::
 
// overrideSchedPolicy(MachineSchedPolicy &Policy,
 
//                     unsigned NumRegionInstrs) const {
 
//   Policy.<Flag> = true;
 
// }
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
 
#define LLVM_CODEGEN_MACHINESCHEDULER_H
 
 
 
#include "llvm/ADT/APInt.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/BitVector.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/Twine.h"
 
#include "llvm/CodeGen/MachineBasicBlock.h"
 
#include "llvm/CodeGen/MachinePassRegistry.h"
 
#include "llvm/CodeGen/RegisterPressure.h"
 
#include "llvm/CodeGen/ScheduleDAG.h"
 
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
 
#include "llvm/CodeGen/ScheduleDAGMutation.h"
 
#include "llvm/CodeGen/TargetSchedule.h"
 
#include "llvm/Support/CommandLine.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <memory>
 
#include <string>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
extern cl::opt<bool> ForceTopDown;
 
extern cl::opt<bool> ForceBottomUp;
 
extern cl::opt<bool> VerifyScheduling;
 
#ifndef NDEBUG
 
extern cl::opt<bool> ViewMISchedDAGs;
 
extern cl::opt<bool> PrintDAGs;
 
#else
 
extern const bool ViewMISchedDAGs;
 
extern const bool PrintDAGs;
 
#endif
 
 
 
class AAResults;
 
class LiveIntervals;
 
class MachineDominatorTree;
 
class MachineFunction;
 
class MachineInstr;
 
class MachineLoopInfo;
 
class RegisterClassInfo;
 
class SchedDFSResult;
 
class ScheduleHazardRecognizer;
 
class TargetInstrInfo;
 
class TargetPassConfig;
 
class TargetRegisterInfo;
 
 
 
/// MachineSchedContext provides enough context from the MachineScheduler pass
 
/// for the target to instantiate a scheduler.
 
struct MachineSchedContext {
 
  MachineFunction *MF = nullptr;
 
  const MachineLoopInfo *MLI = nullptr;
 
  const MachineDominatorTree *MDT = nullptr;
 
  const TargetPassConfig *PassConfig = nullptr;
 
  AAResults *AA = nullptr;
 
  LiveIntervals *LIS = nullptr;
 
 
 
  RegisterClassInfo *RegClassInfo;
 
 
 
  MachineSchedContext();
 
  virtual ~MachineSchedContext();
 
};
 
 
 
/// MachineSchedRegistry provides a selection of available machine instruction
 
/// schedulers.
 
class MachineSchedRegistry
 
    : public MachinePassRegistryNode<
 
          ScheduleDAGInstrs *(*)(MachineSchedContext *)> {
 
public:
 
  using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *);
 
 
 
  // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
 
  using FunctionPassCtor = ScheduleDAGCtor;
 
 
 
  static MachinePassRegistry<ScheduleDAGCtor> Registry;
 
 
 
  MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
 
      : MachinePassRegistryNode(N, D, C) {
 
    Registry.Add(this);
 
  }
 
 
 
  ~MachineSchedRegistry() { Registry.Remove(this); }
 
 
 
  // Accessors.
 
  //
 
  MachineSchedRegistry *getNext() const {
 
    return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
 
  }
 
 
 
  static MachineSchedRegistry *getList() {
 
    return (MachineSchedRegistry *)Registry.getList();
 
  }
 
 
 
  static void setListener(MachinePassRegistryListener<FunctionPassCtor> *L) {
 
    Registry.setListener(L);
 
  }
 
};
 
 
 
class ScheduleDAGMI;
 
 
 
/// Define a generic scheduling policy for targets that don't provide their own
 
/// MachineSchedStrategy. This can be overriden for each scheduling region
 
/// before building the DAG.
 
struct MachineSchedPolicy {
 
  // Allow the scheduler to disable register pressure tracking.
 
  bool ShouldTrackPressure = false;
 
  /// Track LaneMasks to allow reordering of independent subregister writes
 
  /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
 
  bool ShouldTrackLaneMasks = false;
 
 
 
  // Allow the scheduler to force top-down or bottom-up scheduling. If neither
 
  // is true, the scheduler runs in both directions and converges.
 
  bool OnlyTopDown = false;
 
  bool OnlyBottomUp = false;
 
 
 
  // Disable heuristic that tries to fetch nodes from long dependency chains
 
  // first.
 
  bool DisableLatencyHeuristic = false;
 
 
 
  // Compute DFSResult for use in scheduling heuristics.
 
  bool ComputeDFSResult = false;
 
 
 
  MachineSchedPolicy() = default;
 
};
 
 
 
/// MachineSchedStrategy - Interface to the scheduling algorithm used by
 
/// ScheduleDAGMI.
 
///
 
/// Initialization sequence:
 
///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
 
class MachineSchedStrategy {
 
  virtual void anchor();
 
 
 
public:
 
  virtual ~MachineSchedStrategy() = default;
 
 
 
  /// Optionally override the per-region scheduling policy.
 
  virtual void initPolicy(MachineBasicBlock::iterator Begin,
 
                          MachineBasicBlock::iterator End,
 
                          unsigned NumRegionInstrs) {}
 
 
 
  virtual void dumpPolicy() const {}
 
 
 
  /// Check if pressure tracking is needed before building the DAG and
 
  /// initializing this strategy. Called after initPolicy.
 
  virtual bool shouldTrackPressure() const { return true; }
 
 
 
  /// Returns true if lanemasks should be tracked. LaneMask tracking is
 
  /// necessary to reorder independent subregister defs for the same vreg.
 
  /// This has to be enabled in combination with shouldTrackPressure().
 
  virtual bool shouldTrackLaneMasks() const { return false; }
 
 
 
  // If this method returns true, handling of the scheduling regions
 
  // themselves (in case of a scheduling boundary in MBB) will be done
 
  // beginning with the topmost region of MBB.
 
  virtual bool doMBBSchedRegionsTopDown() const { return false; }
 
 
 
  /// Initialize the strategy after building the DAG for a new region.
 
  virtual void initialize(ScheduleDAGMI *DAG) = 0;
 
 
 
  /// Tell the strategy that MBB is about to be processed.
 
  virtual void enterMBB(MachineBasicBlock *MBB) {};
 
 
 
  /// Tell the strategy that current MBB is done.
 
  virtual void leaveMBB() {};
 
 
 
  /// Notify this strategy that all roots have been released (including those
 
  /// that depend on EntrySU or ExitSU).
 
  virtual void registerRoots() {}
 
 
 
  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
 
  /// schedule the node at the top of the unscheduled region. Otherwise it will
 
  /// be scheduled at the bottom.
 
  virtual SUnit *pickNode(bool &IsTopNode) = 0;
 
 
 
  /// Scheduler callback to notify that a new subtree is scheduled.
 
  virtual void scheduleTree(unsigned SubtreeID) {}
 
 
 
  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
 
  /// instruction and updated scheduled/remaining flags in the DAG nodes.
 
  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
 
 
 
  /// When all predecessor dependencies have been resolved, free this node for
 
  /// top-down scheduling.
 
  virtual void releaseTopNode(SUnit *SU) = 0;
 
 
 
  /// When all successor dependencies have been resolved, free this node for
 
  /// bottom-up scheduling.
 
  virtual void releaseBottomNode(SUnit *SU) = 0;
 
};
 
 
 
/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
 
/// schedules machine instructions according to the given MachineSchedStrategy
 
/// without much extra book-keeping. This is the common functionality between
 
/// PreRA and PostRA MachineScheduler.
 
class ScheduleDAGMI : public ScheduleDAGInstrs {
 
protected:
 
  AAResults *AA;
 
  LiveIntervals *LIS;
 
  std::unique_ptr<MachineSchedStrategy> SchedImpl;
 
 
 
  /// Ordered list of DAG postprocessing steps.
 
  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
 
 
 
  /// The top of the unscheduled zone.
 
  MachineBasicBlock::iterator CurrentTop;
 
 
 
  /// The bottom of the unscheduled zone.
 
  MachineBasicBlock::iterator CurrentBottom;
 
 
 
  /// Record the next node in a scheduled cluster.
 
  const SUnit *NextClusterPred = nullptr;
 
  const SUnit *NextClusterSucc = nullptr;
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  /// The number of instructions scheduled so far. Used to cut off the
 
  /// scheduler at the point determined by misched-cutoff.
 
  unsigned NumInstrsScheduled = 0;
 
#endif
 
 
 
public:
 
  ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
 
                bool RemoveKillFlags)
 
      : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
 
        LIS(C->LIS), SchedImpl(std::move(S)) {}
 
 
 
  // Provide a vtable anchor
 
  ~ScheduleDAGMI() override;
 
 
 
  /// If this method returns true, handling of the scheduling regions
 
  /// themselves (in case of a scheduling boundary in MBB) will be done
 
  /// beginning with the topmost region of MBB.
 
  bool doMBBSchedRegionsTopDown() const override {
 
    return SchedImpl->doMBBSchedRegionsTopDown();
 
  }
 
 
 
  // Returns LiveIntervals instance for use in DAG mutators and such.
 
  LiveIntervals *getLIS() const { return LIS; }
 
 
 
  /// Return true if this DAG supports VReg liveness and RegPressure.
 
  virtual bool hasVRegLiveness() const { return false; }
 
 
 
  /// Add a postprocessing step to the DAG builder.
 
  /// Mutations are applied in the order that they are added after normal DAG
 
  /// building and before MachineSchedStrategy initialization.
 
  ///
 
  /// ScheduleDAGMI takes ownership of the Mutation object.
 
  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
 
    if (Mutation)
 
      Mutations.push_back(std::move(Mutation));
 
  }
 
 
 
  MachineBasicBlock::iterator top() const { return CurrentTop; }
 
  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
 
 
 
  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
 
  /// region. This covers all instructions in a block, while schedule() may only
 
  /// cover a subset.
 
  void enterRegion(MachineBasicBlock *bb,
 
                   MachineBasicBlock::iterator begin,
 
                   MachineBasicBlock::iterator end,
 
                   unsigned regioninstrs) override;
 
 
 
  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
 
  /// reorderable instructions.
 
  void schedule() override;
 
 
 
  void startBlock(MachineBasicBlock *bb) override;
 
  void finishBlock() override;
 
 
 
  /// Change the position of an instruction within the basic block and update
 
  /// live ranges and region boundary iterators.
 
  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
 
 
 
  const SUnit *getNextClusterPred() const { return NextClusterPred; }
 
 
 
  const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
 
 
 
  void viewGraph(const Twine &Name, const Twine &Title) override;
 
  void viewGraph() override;
 
 
 
protected:
 
  // Top-Level entry points for the schedule() driver...
 
 
 
  /// Apply each ScheduleDAGMutation step in order. This allows different
 
  /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
 
  void postprocessDAG();
 
 
 
  /// Release ExitSU predecessors and setup scheduler queues.
 
  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
 
 
 
  /// Update scheduler DAG and queues after scheduling an instruction.
 
  void updateQueues(SUnit *SU, bool IsTopNode);
 
 
 
  /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
 
  void placeDebugValues();
 
 
 
  /// dump the scheduled Sequence.
 
  void dumpSchedule() const;
 
 
 
  // Lesser helpers...
 
  bool checkSchedLimit();
 
 
 
  void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
 
                             SmallVectorImpl<SUnit*> &BotRoots);
 
 
 
  void releaseSucc(SUnit *SU, SDep *SuccEdge);
 
  void releaseSuccessors(SUnit *SU);
 
  void releasePred(SUnit *SU, SDep *PredEdge);
 
  void releasePredecessors(SUnit *SU);
 
};
 
 
 
/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
 
/// machine instructions while updating LiveIntervals and tracking regpressure.
 
class ScheduleDAGMILive : public ScheduleDAGMI {
 
protected:
 
  RegisterClassInfo *RegClassInfo;
 
 
 
  /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
 
  /// will be empty.
 
  SchedDFSResult *DFSResult = nullptr;
 
  BitVector ScheduledTrees;
 
 
 
  MachineBasicBlock::iterator LiveRegionEnd;
 
 
 
  /// Maps vregs to the SUnits of their uses in the current scheduling region.
 
  VReg2SUnitMultiMap VRegUses;
 
 
 
  // Map each SU to its summary of pressure changes. This array is updated for
 
  // liveness during bottom-up scheduling. Top-down scheduling may proceed but
 
  // has no affect on the pressure diffs.
 
  PressureDiffs SUPressureDiffs;
 
 
 
  /// Register pressure in this region computed by initRegPressure.
 
  bool ShouldTrackPressure = false;
 
  bool ShouldTrackLaneMasks = false;
 
  IntervalPressure RegPressure;
 
  RegPressureTracker RPTracker;
 
 
 
  /// List of pressure sets that exceed the target's pressure limit before
 
  /// scheduling, listed in increasing set ID order. Each pressure set is paired
 
  /// with its max pressure in the currently scheduled regions.
 
  std::vector<PressureChange> RegionCriticalPSets;
 
 
 
  /// The top of the unscheduled zone.
 
  IntervalPressure TopPressure;
 
  RegPressureTracker TopRPTracker;
 
 
 
  /// The bottom of the unscheduled zone.
 
  IntervalPressure BotPressure;
 
  RegPressureTracker BotRPTracker;
 
 
 
public:
 
  ScheduleDAGMILive(MachineSchedContext *C,
 
                    std::unique_ptr<MachineSchedStrategy> S)
 
      : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
 
        RegClassInfo(C->RegClassInfo), RPTracker(RegPressure),
 
        TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
 
 
 
  ~ScheduleDAGMILive() override;
 
 
 
  /// Return true if this DAG supports VReg liveness and RegPressure.
 
  bool hasVRegLiveness() const override { return true; }
 
 
 
  /// Return true if register pressure tracking is enabled.
 
  bool isTrackingPressure() const { return ShouldTrackPressure; }
 
 
 
  /// Get current register pressure for the top scheduled instructions.
 
  const IntervalPressure &getTopPressure() const { return TopPressure; }
 
  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
 
 
 
  /// Get current register pressure for the bottom scheduled instructions.
 
  const IntervalPressure &getBotPressure() const { return BotPressure; }
 
  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
 
 
 
  /// Get register pressure for the entire scheduling region before scheduling.
 
  const IntervalPressure &getRegPressure() const { return RegPressure; }
 
 
 
  const std::vector<PressureChange> &getRegionCriticalPSets() const {
 
    return RegionCriticalPSets;
 
  }
 
 
 
  PressureDiff &getPressureDiff(const SUnit *SU) {
 
    return SUPressureDiffs[SU->NodeNum];
 
  }
 
  const PressureDiff &getPressureDiff(const SUnit *SU) const {
 
    return SUPressureDiffs[SU->NodeNum];
 
  }
 
 
 
  /// Compute a DFSResult after DAG building is complete, and before any
 
  /// queue comparisons.
 
  void computeDFSResult();
 
 
 
  /// Return a non-null DFS result if the scheduling strategy initialized it.
 
  const SchedDFSResult *getDFSResult() const { return DFSResult; }
 
 
 
  BitVector &getScheduledTrees() { return ScheduledTrees; }
 
 
 
  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
 
  /// region. This covers all instructions in a block, while schedule() may only
 
  /// cover a subset.
 
  void enterRegion(MachineBasicBlock *bb,
 
                   MachineBasicBlock::iterator begin,
 
                   MachineBasicBlock::iterator end,
 
                   unsigned regioninstrs) override;
 
 
 
  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
 
  /// reorderable instructions.
 
  void schedule() override;
 
 
 
  /// Compute the cyclic critical path through the DAG.
 
  unsigned computeCyclicCriticalPath();
 
 
 
  void dump() const override;
 
 
 
protected:
 
  // Top-Level entry points for the schedule() driver...
 
 
 
  /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
 
  /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
 
  /// region, TopTracker and BottomTracker will be initialized to the top and
 
  /// bottom of the DAG region without covereing any unscheduled instruction.
 
  void buildDAGWithRegPressure();
 
 
 
  /// Release ExitSU predecessors and setup scheduler queues. Re-position
 
  /// the Top RP tracker in case the region beginning has changed.
 
  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
 
 
 
  /// Move an instruction and update register pressure.
 
  void scheduleMI(SUnit *SU, bool IsTopNode);
 
 
 
  // Lesser helpers...
 
 
 
  void initRegPressure();
 
 
 
  void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
 
 
 
  void updateScheduledPressure(const SUnit *SU,
 
                               const std::vector<unsigned> &NewMaxPressure);
 
 
 
  void collectVRegUses(SUnit &SU);
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
///
 
/// Helpers for implementing custom MachineSchedStrategy classes. These take
 
/// care of the book-keeping associated with list scheduling heuristics.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
 
/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
 
/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
 
///
 
/// This is a convenience class that may be used by implementations of
 
/// MachineSchedStrategy.
 
class ReadyQueue {
 
  unsigned ID;
 
  std::string Name;
 
  std::vector<SUnit*> Queue;
 
 
 
public:
 
  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
 
 
 
  unsigned getID() const { return ID; }
 
 
 
  StringRef getName() const { return Name; }
 
 
 
  // SU is in this queue if it's NodeQueueID is a superset of this ID.
 
  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
 
 
 
  bool empty() const { return Queue.empty(); }
 
 
 
  void clear() { Queue.clear(); }
 
 
 
  unsigned size() const { return Queue.size(); }
 
 
 
  using iterator = std::vector<SUnit*>::iterator;
 
 
 
  iterator begin() { return Queue.begin(); }
 
 
 
  iterator end() { return Queue.end(); }
 
 
 
  ArrayRef<SUnit*> elements() { return Queue; }
 
 
 
  iterator find(SUnit *SU) { return llvm::find(Queue, SU); }
 
 
 
  void push(SUnit *SU) {
 
    Queue.push_back(SU);
 
    SU->NodeQueueId |= ID;
 
  }
 
 
 
  iterator remove(iterator I) {
 
    (*I)->NodeQueueId &= ~ID;
 
    *I = Queue.back();
 
    unsigned idx = I - Queue.begin();
 
    Queue.pop_back();
 
    return Queue.begin() + idx;
 
  }
 
 
 
  void dump() const;
 
};
 
 
 
/// Summarize the unscheduled region.
 
struct SchedRemainder {
 
  // Critical path through the DAG in expected latency.
 
  unsigned CriticalPath;
 
  unsigned CyclicCritPath;
 
 
 
  // Scaled count of micro-ops left to schedule.
 
  unsigned RemIssueCount;
 
 
 
  bool IsAcyclicLatencyLimited;
 
 
 
  // Unscheduled resources
 
  SmallVector<unsigned, 16> RemainingCounts;
 
 
 
  SchedRemainder() { reset(); }
 
 
 
  void reset() {
 
    CriticalPath = 0;
 
    CyclicCritPath = 0;
 
    RemIssueCount = 0;
 
    IsAcyclicLatencyLimited = false;
 
    RemainingCounts.clear();
 
  }
 
 
 
  void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
 
};
 
 
 
/// Each Scheduling boundary is associated with ready queues. It tracks the
 
/// current cycle in the direction of movement, and maintains the state
 
/// of "hazards" and other interlocks at the current cycle.
 
class SchedBoundary {
 
public:
 
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
 
  enum {
 
    TopQID = 1,
 
    BotQID = 2,
 
    LogMaxQID = 2
 
  };
 
 
 
  ScheduleDAGMI *DAG = nullptr;
 
  const TargetSchedModel *SchedModel = nullptr;
 
  SchedRemainder *Rem = nullptr;
 
 
 
  ReadyQueue Available;
 
  ReadyQueue Pending;
 
 
 
  ScheduleHazardRecognizer *HazardRec = nullptr;
 
 
 
private:
 
  /// True if the pending Q should be checked/updated before scheduling another
 
  /// instruction.
 
  bool CheckPending;
 
 
 
  /// Number of cycles it takes to issue the instructions scheduled in this
 
  /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
 
  /// See getStalls().
 
  unsigned CurrCycle;
 
 
 
  /// Micro-ops issued in the current cycle
 
  unsigned CurrMOps;
 
 
 
  /// MinReadyCycle - Cycle of the soonest available instruction.
 
  unsigned MinReadyCycle;
 
 
 
  // The expected latency of the critical path in this scheduled zone.
 
  unsigned ExpectedLatency;
 
 
 
  // The latency of dependence chains leading into this zone.
 
  // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
 
  // For each cycle scheduled: DLat -= 1.
 
  unsigned DependentLatency;
 
 
 
  /// Count the scheduled (issued) micro-ops that can be retired by
 
  /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
 
  unsigned RetiredMOps;
 
 
 
  // Count scheduled resources that have been executed. Resources are
 
  // considered executed if they become ready in the time that it takes to
 
  // saturate any resource including the one in question. Counts are scaled
 
  // for direct comparison with other resources. Counts can be compared with
 
  // MOps * getMicroOpFactor and Latency * getLatencyFactor.
 
  SmallVector<unsigned, 16> ExecutedResCounts;
 
 
 
  /// Cache the max count for a single resource.
 
  unsigned MaxExecutedResCount;
 
 
 
  // Cache the critical resources ID in this scheduled zone.
 
  unsigned ZoneCritResIdx;
 
 
 
  // Is the scheduled region resource limited vs. latency limited.
 
  bool IsResourceLimited;
 
 
 
  // Record the highest cycle at which each resource has been reserved by a
 
  // scheduled instruction.
 
  SmallVector<unsigned, 16> ReservedCycles;
 
 
 
  /// For each PIdx, stores first index into ReservedCycles that corresponds to
 
  /// it.
 
  ///
 
  /// For example, consider the following 3 resources (ResourceCount =
 
  /// 3):
 
  ///
 
  ///   +------------+--------+
 
  ///   |ResourceName|NumUnits|
 
  ///   +------------+--------+
 
  ///   |     X      |    2   |
 
  ///   +------------+--------+
 
  ///   |     Y      |    3   |
 
  ///   +------------+--------+
 
  ///   |     Z      |    1   |
 
  ///   +------------+--------+
 
  ///
 
  /// In this case, the total number of resource instances is 6. The
 
  /// vector \ref ReservedCycles will have a slot for each instance. The
 
  /// vector \ref ReservedCyclesIndex will track at what index the first
 
  /// instance of the resource is found in the vector of \ref
 
  /// ReservedCycles:
 
  ///
 
  ///                              Indexes of instances in ReservedCycles
 
  ///                              0   1   2   3   4  5
 
  /// ReservedCyclesIndex[0] = 0; [X0, X1,
 
  /// ReservedCyclesIndex[1] = 2;          Y0, Y1, Y2
 
  /// ReservedCyclesIndex[2] = 5;                     Z
 
  SmallVector<unsigned, 16> ReservedCyclesIndex;
 
 
 
  // For each PIdx, stores the resource group IDs of its subunits
 
  SmallVector<APInt, 16> ResourceGroupSubUnitMasks;
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  // Remember the greatest possible stall as an upper bound on the number of
 
  // times we should retry the pending queue because of a hazard.
 
  unsigned MaxObservedStall;
 
#endif
 
 
 
public:
 
  /// Pending queues extend the ready queues with the same ID and the
 
  /// PendingFlag set.
 
  SchedBoundary(unsigned ID, const Twine &Name):
 
    Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") {
 
    reset();
 
  }
 
 
 
  ~SchedBoundary();
 
 
 
  void reset();
 
 
 
  void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
 
            SchedRemainder *rem);
 
 
 
  bool isTop() const {
 
    return Available.getID() == TopQID;
 
  }
 
 
 
  /// Number of cycles to issue the instructions scheduled in this zone.
 
  unsigned getCurrCycle() const { return CurrCycle; }
 
 
 
  /// Micro-ops issued in the current cycle
 
  unsigned getCurrMOps() const { return CurrMOps; }
 
 
 
  // The latency of dependence chains leading into this zone.
 
  unsigned getDependentLatency() const { return DependentLatency; }
 
 
 
  /// Get the number of latency cycles "covered" by the scheduled
 
  /// instructions. This is the larger of the critical path within the zone
 
  /// and the number of cycles required to issue the instructions.
 
  unsigned getScheduledLatency() const {
 
    return std::max(ExpectedLatency, CurrCycle);
 
  }
 
 
 
  unsigned getUnscheduledLatency(SUnit *SU) const {
 
    return isTop() ? SU->getHeight() : SU->getDepth();
 
  }
 
 
 
  unsigned getResourceCount(unsigned ResIdx) const {
 
    return ExecutedResCounts[ResIdx];
 
  }
 
 
 
  /// Get the scaled count of scheduled micro-ops and resources, including
 
  /// executed resources.
 
  unsigned getCriticalCount() const {
 
    if (!ZoneCritResIdx)
 
      return RetiredMOps * SchedModel->getMicroOpFactor();
 
    return getResourceCount(ZoneCritResIdx);
 
  }
 
 
 
  /// Get a scaled count for the minimum execution time of the scheduled
 
  /// micro-ops that are ready to execute by getExecutedCount. Notice the
 
  /// feedback loop.
 
  unsigned getExecutedCount() const {
 
    return std::max(CurrCycle * SchedModel->getLatencyFactor(),
 
                    MaxExecutedResCount);
 
  }
 
 
 
  unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
 
 
 
  // Is the scheduled region resource limited vs. latency limited.
 
  bool isResourceLimited() const { return IsResourceLimited; }
 
 
 
  /// Get the difference between the given SUnit's ready time and the current
 
  /// cycle.
 
  unsigned getLatencyStallCycles(SUnit *SU);
 
 
 
  unsigned getNextResourceCycleByInstance(unsigned InstanceIndex,
 
                                          unsigned Cycles);
 
 
 
  std::pair<unsigned, unsigned> getNextResourceCycle(const MCSchedClassDesc *SC,
 
                                                     unsigned PIdx,
 
                                                     unsigned Cycles);
 
 
 
  bool isUnbufferedGroup(unsigned PIdx) const {
 
    return SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin &&
 
           !SchedModel->getProcResource(PIdx)->BufferSize;
 
  }
 
 
 
  bool checkHazard(SUnit *SU);
 
 
 
  unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
 
 
 
  unsigned getOtherResourceCount(unsigned &OtherCritIdx);
 
 
 
  /// Release SU to make it ready. If it's not in hazard, remove it from
 
  /// pending queue (if already in) and push into available queue.
 
  /// Otherwise, push the SU into pending queue.
 
  ///
 
  /// @param SU The unit to be released.
 
  /// @param ReadyCycle Until which cycle the unit is ready.
 
  /// @param InPQueue Whether SU is already in pending queue.
 
  /// @param Idx Position offset in pending queue (if in it).
 
  void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
 
                   unsigned Idx = 0);
 
 
 
  void bumpCycle(unsigned NextCycle);
 
 
 
  void incExecutedResources(unsigned PIdx, unsigned Count);
 
 
 
  unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx,
 
                         unsigned Cycles, unsigned ReadyCycle);
 
 
 
  void bumpNode(SUnit *SU);
 
 
 
  void releasePending();
 
 
 
  void removeReady(SUnit *SU);
 
 
 
  /// Call this before applying any other heuristics to the Available queue.
 
  /// Updates the Available/Pending Q's if necessary and returns the single
 
  /// available instruction, or NULL if there are multiple candidates.
 
  SUnit *pickOnlyChoice();
 
 
 
  /// Dump the state of the information that tracks resource usage.
 
  void dumpReservedCycles() const;
 
  void dumpScheduledState() const;
 
};
 
 
 
/// Base class for GenericScheduler. This class maintains information about
 
/// scheduling candidates based on TargetSchedModel making it easy to implement
 
/// heuristics for either preRA or postRA scheduling.
 
class GenericSchedulerBase : public MachineSchedStrategy {
 
public:
 
  /// Represent the type of SchedCandidate found within a single queue.
 
  /// pickNodeBidirectional depends on these listed by decreasing priority.
 
  enum CandReason : uint8_t {
 
    NoCand, Only1, PhysReg, RegExcess, RegCritical, Stall, Cluster, Weak,
 
    RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
 
    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
 
 
 
#ifndef NDEBUG
 
  static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
 
#endif
 
 
 
  /// Policy for scheduling the next instruction in the candidate's zone.
 
  struct CandPolicy {
 
    bool ReduceLatency = false;
 
    unsigned ReduceResIdx = 0;
 
    unsigned DemandResIdx = 0;
 
 
 
    CandPolicy() = default;
 
 
 
    bool operator==(const CandPolicy &RHS) const {
 
      return ReduceLatency == RHS.ReduceLatency &&
 
             ReduceResIdx == RHS.ReduceResIdx &&
 
             DemandResIdx == RHS.DemandResIdx;
 
    }
 
    bool operator!=(const CandPolicy &RHS) const {
 
      return !(*this == RHS);
 
    }
 
  };
 
 
 
  /// Status of an instruction's critical resource consumption.
 
  struct SchedResourceDelta {
 
    // Count critical resources in the scheduled region required by SU.
 
    unsigned CritResources = 0;
 
 
 
    // Count critical resources from another region consumed by SU.
 
    unsigned DemandedResources = 0;
 
 
 
    SchedResourceDelta() = default;
 
 
 
    bool operator==(const SchedResourceDelta &RHS) const {
 
      return CritResources == RHS.CritResources
 
        && DemandedResources == RHS.DemandedResources;
 
    }
 
    bool operator!=(const SchedResourceDelta &RHS) const {
 
      return !operator==(RHS);
 
    }
 
  };
 
 
 
  /// Store the state used by GenericScheduler heuristics, required for the
 
  /// lifetime of one invocation of pickNode().
 
  struct SchedCandidate {
 
    CandPolicy Policy;
 
 
 
    // The best SUnit candidate.
 
    SUnit *SU;
 
 
 
    // The reason for this candidate.
 
    CandReason Reason;
 
 
 
    // Whether this candidate should be scheduled at top/bottom.
 
    bool AtTop;
 
 
 
    // Register pressure values for the best candidate.
 
    RegPressureDelta RPDelta;
 
 
 
    // Critical resource consumption of the best candidate.
 
    SchedResourceDelta ResDelta;
 
 
 
    SchedCandidate() { reset(CandPolicy()); }
 
    SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
 
 
 
    void reset(const CandPolicy &NewPolicy) {
 
      Policy = NewPolicy;
 
      SU = nullptr;
 
      Reason = NoCand;
 
      AtTop = false;
 
      RPDelta = RegPressureDelta();
 
      ResDelta = SchedResourceDelta();
 
    }
 
 
 
    bool isValid() const { return SU; }
 
 
 
    // Copy the status of another candidate without changing policy.
 
    void setBest(SchedCandidate &Best) {
 
      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
 
      SU = Best.SU;
 
      Reason = Best.Reason;
 
      AtTop = Best.AtTop;
 
      RPDelta = Best.RPDelta;
 
      ResDelta = Best.ResDelta;
 
    }
 
 
 
    void initResourceDelta(const ScheduleDAGMI *DAG,
 
                           const TargetSchedModel *SchedModel);
 
  };
 
 
 
protected:
 
  const MachineSchedContext *Context;
 
  const TargetSchedModel *SchedModel = nullptr;
 
  const TargetRegisterInfo *TRI = nullptr;
 
 
 
  SchedRemainder Rem;
 
 
 
  GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {}
 
 
 
  void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
 
                 SchedBoundary *OtherZone);
 
 
 
#ifndef NDEBUG
 
  void traceCandidate(const SchedCandidate &Cand);
 
#endif
 
 
 
private:
 
  bool shouldReduceLatency(const CandPolicy &Policy, SchedBoundary &CurrZone,
 
                           bool ComputeRemLatency, unsigned &RemLatency) const;
 
};
 
 
 
// Utility functions used by heuristics in tryCandidate().
 
bool tryLess(int TryVal, int CandVal,
 
             GenericSchedulerBase::SchedCandidate &TryCand,
 
             GenericSchedulerBase::SchedCandidate &Cand,
 
             GenericSchedulerBase::CandReason Reason);
 
bool tryGreater(int TryVal, int CandVal,
 
                GenericSchedulerBase::SchedCandidate &TryCand,
 
                GenericSchedulerBase::SchedCandidate &Cand,
 
                GenericSchedulerBase::CandReason Reason);
 
bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
 
                GenericSchedulerBase::SchedCandidate &Cand,
 
                SchedBoundary &Zone);
 
bool tryPressure(const PressureChange &TryP,
 
                 const PressureChange &CandP,
 
                 GenericSchedulerBase::SchedCandidate &TryCand,
 
                 GenericSchedulerBase::SchedCandidate &Cand,
 
                 GenericSchedulerBase::CandReason Reason,
 
                 const TargetRegisterInfo *TRI,
 
                 const MachineFunction &MF);
 
unsigned getWeakLeft(const SUnit *SU, bool isTop);
 
int biasPhysReg(const SUnit *SU, bool isTop);
 
 
 
/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
 
/// the schedule.
 
class GenericScheduler : public GenericSchedulerBase {
 
public:
 
  GenericScheduler(const MachineSchedContext *C):
 
    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"),
 
    Bot(SchedBoundary::BotQID, "BotQ") {}
 
 
 
  void initPolicy(MachineBasicBlock::iterator Begin,
 
                  MachineBasicBlock::iterator End,
 
                  unsigned NumRegionInstrs) override;
 
 
 
  void dumpPolicy() const override;
 
 
 
  bool shouldTrackPressure() const override {
 
    return RegionPolicy.ShouldTrackPressure;
 
  }
 
 
 
  bool shouldTrackLaneMasks() const override {
 
    return RegionPolicy.ShouldTrackLaneMasks;
 
  }
 
 
 
  void initialize(ScheduleDAGMI *dag) override;
 
 
 
  SUnit *pickNode(bool &IsTopNode) override;
 
 
 
  void schedNode(SUnit *SU, bool IsTopNode) override;
 
 
 
  void releaseTopNode(SUnit *SU) override {
 
    if (SU->isScheduled)
 
      return;
 
 
 
    Top.releaseNode(SU, SU->TopReadyCycle, false);
 
    TopCand.SU = nullptr;
 
  }
 
 
 
  void releaseBottomNode(SUnit *SU) override {
 
    if (SU->isScheduled)
 
      return;
 
 
 
    Bot.releaseNode(SU, SU->BotReadyCycle, false);
 
    BotCand.SU = nullptr;
 
  }
 
 
 
  void registerRoots() override;
 
 
 
protected:
 
  ScheduleDAGMILive *DAG = nullptr;
 
 
 
  MachineSchedPolicy RegionPolicy;
 
 
 
  // State of the top and bottom scheduled instruction boundaries.
 
  SchedBoundary Top;
 
  SchedBoundary Bot;
 
 
 
  /// Candidate last picked from Top boundary.
 
  SchedCandidate TopCand;
 
  /// Candidate last picked from Bot boundary.
 
  SchedCandidate BotCand;
 
 
 
  void checkAcyclicLatency();
 
 
 
  void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
 
                     const RegPressureTracker &RPTracker,
 
                     RegPressureTracker &TempTracker);
 
 
 
  virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand,
 
                            SchedBoundary *Zone) const;
 
 
 
  SUnit *pickNodeBidirectional(bool &IsTopNode);
 
 
 
  void pickNodeFromQueue(SchedBoundary &Zone,
 
                         const CandPolicy &ZonePolicy,
 
                         const RegPressureTracker &RPTracker,
 
                         SchedCandidate &Candidate);
 
 
 
  void reschedulePhysReg(SUnit *SU, bool isTop);
 
};
 
 
 
/// PostGenericScheduler - Interface to the scheduling algorithm used by
 
/// ScheduleDAGMI.
 
///
 
/// Callbacks from ScheduleDAGMI:
 
///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
 
class PostGenericScheduler : public GenericSchedulerBase {
 
protected:
 
  ScheduleDAGMI *DAG = nullptr;
 
  SchedBoundary Top;
 
  SmallVector<SUnit*, 8> BotRoots;
 
 
 
public:
 
  PostGenericScheduler(const MachineSchedContext *C):
 
    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
 
 
 
  ~PostGenericScheduler() override = default;
 
 
 
  void initPolicy(MachineBasicBlock::iterator Begin,
 
                  MachineBasicBlock::iterator End,
 
                  unsigned NumRegionInstrs) override {
 
    /* no configurable policy */
 
  }
 
 
 
  /// PostRA scheduling does not track pressure.
 
  bool shouldTrackPressure() const override { return false; }
 
 
 
  void initialize(ScheduleDAGMI *Dag) override;
 
 
 
  void registerRoots() override;
 
 
 
  SUnit *pickNode(bool &IsTopNode) override;
 
 
 
  void scheduleTree(unsigned SubtreeID) override {
 
    llvm_unreachable("PostRA scheduler does not support subtree analysis.");
 
  }
 
 
 
  void schedNode(SUnit *SU, bool IsTopNode) override;
 
 
 
  void releaseTopNode(SUnit *SU) override {
 
    if (SU->isScheduled)
 
      return;
 
    Top.releaseNode(SU, SU->TopReadyCycle, false);
 
  }
 
 
 
  // Only called for roots.
 
  void releaseBottomNode(SUnit *SU) override {
 
    BotRoots.push_back(SU);
 
  }
 
 
 
protected:
 
  virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
 
 
 
  void pickNodeFromQueue(SchedCandidate &Cand);
 
};
 
 
 
/// Create the standard converging machine scheduler. This will be used as the
 
/// default scheduler if the target does not set a default.
 
/// Adds default DAG mutations.
 
ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C);
 
 
 
/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
 
ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C);
 
 
 
std::unique_ptr<ScheduleDAGMutation>
 
createLoadClusterDAGMutation(const TargetInstrInfo *TII,
 
                             const TargetRegisterInfo *TRI);
 
 
 
std::unique_ptr<ScheduleDAGMutation>
 
createStoreClusterDAGMutation(const TargetInstrInfo *TII,
 
                              const TargetRegisterInfo *TRI);
 
 
 
std::unique_ptr<ScheduleDAGMutation>
 
createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
 
                               const TargetRegisterInfo *TRI);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_MACHINESCHEDULER_H