//===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
 
//
 
// Software pipelining (SWP) is an instruction scheduling technique for loops
 
// that overlap loop iterations and exploits ILP via a compiler transformation.
 
//
 
// Swing Modulo Scheduling is an implementation of software pipelining
 
// that generates schedules that are near optimal in terms of initiation
 
// interval, register requirements, and stage count. See the papers:
 
//
 
// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
 
// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
 
// Conference on Parallel Architectures and Compilation Techiniques.
 
//
 
// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
 
// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
 
// Transactions on Computers, Vol. 50, No. 3, 2001.
 
//
 
// "An Implementation of Swing Modulo Scheduling With Extensions for
 
// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
 
// Urbana-Champaign, 2005.
 
//
 
//
 
// The SMS algorithm consists of three main steps after computing the minimal
 
// initiation interval (MII).
 
// 1) Analyze the dependence graph and compute information about each
 
//    instruction in the graph.
 
// 2) Order the nodes (instructions) by priority based upon the heuristics
 
//    described in the algorithm.
 
// 3) Attempt to schedule the nodes in the specified order using the MII.
 
//
 
//===----------------------------------------------------------------------===//
 
#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
 
#define LLVM_CODEGEN_MACHINEPIPELINER_H
 
 
 
#include "llvm/ADT/SetVector.h"
 
#include "llvm/CodeGen/DFAPacketizer.h"
 
#include "llvm/CodeGen/MachineDominators.h"
 
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
 
#include "llvm/CodeGen/RegisterClassInfo.h"
 
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
 
#include "llvm/CodeGen/ScheduleDAGMutation.h"
 
#include "llvm/CodeGen/TargetInstrInfo.h"
 
#include "llvm/InitializePasses.h"
 
 
 
#include <deque>
 
 
 
namespace llvm {
 
 
 
class AAResults;
 
class NodeSet;
 
class SMSchedule;
 
 
 
extern cl::opt<bool> SwpEnableCopyToPhi;
 
extern cl::opt<int> SwpForceIssueWidth;
 
 
 
/// The main class in the implementation of the target independent
 
/// software pipeliner pass.
 
class MachinePipeliner : public MachineFunctionPass {
 
public:
 
  MachineFunction *MF = nullptr;
 
  MachineOptimizationRemarkEmitter *ORE = nullptr;
 
  const MachineLoopInfo *MLI = nullptr;
 
  const MachineDominatorTree *MDT = nullptr;
 
  const InstrItineraryData *InstrItins;
 
  const TargetInstrInfo *TII = nullptr;
 
  RegisterClassInfo RegClassInfo;
 
  bool disabledByPragma = false;
 
  unsigned II_setByPragma = 0;
 
 
 
#ifndef NDEBUG
 
  static int NumTries;
 
#endif
 
 
 
  /// Cache the target analysis information about the loop.
 
  struct LoopInfo {
 
    MachineBasicBlock *TBB = nullptr;
 
    MachineBasicBlock *FBB = nullptr;
 
    SmallVector<MachineOperand, 4> BrCond;
 
    MachineInstr *LoopInductionVar = nullptr;
 
    MachineInstr *LoopCompare = nullptr;
 
    std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopPipelinerInfo =
 
        nullptr;
 
  };
 
  LoopInfo LI;
 
 
 
  static char ID;
 
 
 
  MachinePipeliner() : MachineFunctionPass(ID) {
 
    initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
 
  }
 
 
 
  bool runOnMachineFunction(MachineFunction &MF) override;
 
 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
 
 
private:
 
  void preprocessPhiNodes(MachineBasicBlock &B);
 
  bool canPipelineLoop(MachineLoop &L);
 
  bool scheduleLoop(MachineLoop &L);
 
  bool swingModuloScheduler(MachineLoop &L);
 
  void setPragmaPipelineOptions(MachineLoop &L);
 
};
 
 
 
/// This class builds the dependence graph for the instructions in a loop,
 
/// and attempts to schedule the instructions using the SMS algorithm.
 
class SwingSchedulerDAG : public ScheduleDAGInstrs {
 
  MachinePipeliner &Pass;
 
  /// The minimum initiation interval between iterations for this schedule.
 
  unsigned MII = 0;
 
  /// The maximum initiation interval between iterations for this schedule.
 
  unsigned MAX_II = 0;
 
  /// Set to true if a valid pipelined schedule is found for the loop.
 
  bool Scheduled = false;
 
  MachineLoop &Loop;
 
  LiveIntervals &LIS;
 
  const RegisterClassInfo &RegClassInfo;
 
  unsigned II_setByPragma = 0;
 
  TargetInstrInfo::PipelinerLoopInfo *LoopPipelinerInfo = nullptr;
 
 
 
  /// A toplogical ordering of the SUnits, which is needed for changing
 
  /// dependences and iterating over the SUnits.
 
  ScheduleDAGTopologicalSort Topo;
 
 
 
  struct NodeInfo {
 
    int ASAP = 0;
 
    int ALAP = 0;
 
    int ZeroLatencyDepth = 0;
 
    int ZeroLatencyHeight = 0;
 
 
 
    NodeInfo() = default;
 
  };
 
  /// Computed properties for each node in the graph.
 
  std::vector<NodeInfo> ScheduleInfo;
 
 
 
  enum OrderKind { BottomUp = 0, TopDown = 1 };
 
  /// Computed node ordering for scheduling.
 
  SetVector<SUnit *> NodeOrder;
 
 
 
  using NodeSetType = SmallVector<NodeSet, 8>;
 
  using ValueMapTy = DenseMap<unsigned, unsigned>;
 
  using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
 
  using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
 
 
 
  /// Instructions to change when emitting the final schedule.
 
  DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
 
 
 
  /// We may create a new instruction, so remember it because it
 
  /// must be deleted when the pass is finished.
 
  DenseMap<MachineInstr*, MachineInstr *> NewMIs;
 
 
 
  /// Ordered list of DAG postprocessing steps.
 
  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
 
 
 
  /// Helper class to implement Johnson's circuit finding algorithm.
 
  class Circuits {
 
    std::vector<SUnit> &SUnits;
 
    SetVector<SUnit *> Stack;
 
    BitVector Blocked;
 
    SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
 
    SmallVector<SmallVector<int, 4>, 16> AdjK;
 
    // Node to Index from ScheduleDAGTopologicalSort
 
    std::vector<int> *Node2Idx;
 
    unsigned NumPaths;
 
    static unsigned MaxPaths;
 
 
 
  public:
 
    Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
 
        : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
 
      Node2Idx = new std::vector<int>(SUs.size());
 
      unsigned Idx = 0;
 
      for (const auto &NodeNum : Topo)
 
        Node2Idx->at(NodeNum) = Idx++;
 
    }
 
 
 
    ~Circuits() { delete Node2Idx; }
 
 
 
    /// Reset the data structures used in the circuit algorithm.
 
    void reset() {
 
      Stack.clear();
 
      Blocked.reset();
 
      B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
 
      NumPaths = 0;
 
    }
 
 
 
    void createAdjacencyStructure(SwingSchedulerDAG *DAG);
 
    bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
 
    void unblock(int U);
 
  };
 
 
 
  struct CopyToPhiMutation : public ScheduleDAGMutation {
 
    void apply(ScheduleDAGInstrs *DAG) override;
 
  };
 
 
 
public:
 
  SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
 
                    const RegisterClassInfo &rci, unsigned II,
 
                    TargetInstrInfo::PipelinerLoopInfo *PLI)
 
      : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
 
        RegClassInfo(rci), II_setByPragma(II), LoopPipelinerInfo(PLI),
 
        Topo(SUnits, &ExitSU) {
 
    P.MF->getSubtarget().getSMSMutations(Mutations);
 
    if (SwpEnableCopyToPhi)
 
      Mutations.push_back(std::make_unique<CopyToPhiMutation>());
 
  }
 
 
 
  void schedule() override;
 
  void finishBlock() override;
 
 
 
  /// Return true if the loop kernel has been scheduled.
 
  bool hasNewSchedule() { return Scheduled; }
 
 
 
  /// Return the earliest time an instruction may be scheduled.
 
  int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
 
 
 
  /// Return the latest time an instruction my be scheduled.
 
  int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
 
 
 
  /// The mobility function, which the number of slots in which
 
  /// an instruction may be scheduled.
 
  int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
 
 
 
  /// The depth, in the dependence graph, for a node.
 
  unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
 
 
 
  /// The maximum unweighted length of a path from an arbitrary node to the
 
  /// given node in which each edge has latency 0
 
  int getZeroLatencyDepth(SUnit *Node) {
 
    return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
 
  }
 
 
 
  /// The height, in the dependence graph, for a node.
 
  unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
 
 
 
  /// The maximum unweighted length of a path from the given node to an
 
  /// arbitrary node in which each edge has latency 0
 
  int getZeroLatencyHeight(SUnit *Node) {
 
    return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
 
  }
 
 
 
  /// Return true if the dependence is a back-edge in the data dependence graph.
 
  /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
 
  /// using an anti dependence from a Phi to an instruction.
 
  bool isBackedge(SUnit *Source, const SDep &Dep) {
 
    if (Dep.getKind() != SDep::Anti)
 
      return false;
 
    return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
 
  }
 
 
 
  bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
 
 
 
  /// The distance function, which indicates that operation V of iteration I
 
  /// depends on operations U of iteration I-distance.
 
  unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
 
    // Instructions that feed a Phi have a distance of 1. Computing larger
 
    // values for arrays requires data dependence information.
 
    if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
 
      return 1;
 
    return 0;
 
  }
 
 
 
  void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
 
 
 
  void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
 
 
 
  /// Return the new base register that was stored away for the changed
 
  /// instruction.
 
  unsigned getInstrBaseReg(SUnit *SU) {
 
    DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
 
        InstrChanges.find(SU);
 
    if (It != InstrChanges.end())
 
      return It->second.first;
 
    return 0;
 
  }
 
 
 
  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
 
    Mutations.push_back(std::move(Mutation));
 
  }
 
 
 
  static bool classof(const ScheduleDAGInstrs *DAG) { return true; }
 
 
 
private:
 
  void addLoopCarriedDependences(AAResults *AA);
 
  void updatePhiDependences();
 
  void changeDependences();
 
  unsigned calculateResMII();
 
  unsigned calculateRecMII(NodeSetType &RecNodeSets);
 
  void findCircuits(NodeSetType &NodeSets);
 
  void fuseRecs(NodeSetType &NodeSets);
 
  void removeDuplicateNodes(NodeSetType &NodeSets);
 
  void computeNodeFunctions(NodeSetType &NodeSets);
 
  void registerPressureFilter(NodeSetType &NodeSets);
 
  void colocateNodeSets(NodeSetType &NodeSets);
 
  void checkNodeSets(NodeSetType &NodeSets);
 
  void groupRemainingNodes(NodeSetType &NodeSets);
 
  void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
 
                         SetVector<SUnit *> &NodesAdded);
 
  void computeNodeOrder(NodeSetType &NodeSets);
 
  void checkValidNodeOrder(const NodeSetType &Circuits) const;
 
  bool schedulePipeline(SMSchedule &Schedule);
 
  bool computeDelta(MachineInstr &MI, unsigned &Delta);
 
  MachineInstr *findDefInLoop(Register Reg);
 
  bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
 
                             unsigned &OffsetPos, unsigned &NewBase,
 
                             int64_t &NewOffset);
 
  void postprocessDAG();
 
  /// Set the Minimum Initiation Interval for this schedule attempt.
 
  void setMII(unsigned ResMII, unsigned RecMII);
 
  /// Set the Maximum Initiation Interval for this schedule attempt.
 
  void setMAX_II();
 
};
 
 
 
/// A NodeSet contains a set of SUnit DAG nodes with additional information
 
/// that assigns a priority to the set.
 
class NodeSet {
 
  SetVector<SUnit *> Nodes;
 
  bool HasRecurrence = false;
 
  unsigned RecMII = 0;
 
  int MaxMOV = 0;
 
  unsigned MaxDepth = 0;
 
  unsigned Colocate = 0;
 
  SUnit *ExceedPressure = nullptr;
 
  unsigned Latency = 0;
 
 
 
public:
 
  using iterator = SetVector<SUnit *>::const_iterator;
 
 
 
  NodeSet() = default;
 
  NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
 
    Latency = 0;
 
    for (const SUnit *Node : Nodes) {
 
      DenseMap<SUnit *, unsigned> SuccSUnitLatency;
 
      for (const SDep &Succ : Node->Succs) {
 
        auto SuccSUnit = Succ.getSUnit();
 
        if (!Nodes.count(SuccSUnit))
 
          continue;
 
        unsigned CurLatency = Succ.getLatency();
 
        unsigned MaxLatency = 0;
 
        if (SuccSUnitLatency.count(SuccSUnit))
 
          MaxLatency = SuccSUnitLatency[SuccSUnit];
 
        if (CurLatency > MaxLatency)
 
          SuccSUnitLatency[SuccSUnit] = CurLatency;
 
      }
 
      for (auto SUnitLatency : SuccSUnitLatency)
 
        Latency += SUnitLatency.second;
 
    }
 
  }
 
 
 
  bool insert(SUnit *SU) { return Nodes.insert(SU); }
 
 
 
  void insert(iterator S, iterator E) { Nodes.insert(S, E); }
 
 
 
  template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
 
    return Nodes.remove_if(P);
 
  }
 
 
 
  unsigned count(SUnit *SU) const { return Nodes.count(SU); }
 
 
 
  bool hasRecurrence() { return HasRecurrence; };
 
 
 
  unsigned size() const { return Nodes.size(); }
 
 
 
  bool empty() const { return Nodes.empty(); }
 
 
 
  SUnit *getNode(unsigned i) const { return Nodes[i]; };
 
 
 
  void setRecMII(unsigned mii) { RecMII = mii; };
 
 
 
  void setColocate(unsigned c) { Colocate = c; };
 
 
 
  void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
 
 
 
  bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
 
 
 
  int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
 
 
 
  int getRecMII() { return RecMII; }
 
 
 
  /// Summarize node functions for the entire node set.
 
  void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
 
    for (SUnit *SU : *this) {
 
      MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
 
      MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
 
    }
 
  }
 
 
 
  unsigned getLatency() { return Latency; }
 
 
 
  unsigned getMaxDepth() { return MaxDepth; }
 
 
 
  void clear() {
 
    Nodes.clear();
 
    RecMII = 0;
 
    HasRecurrence = false;
 
    MaxMOV = 0;
 
    MaxDepth = 0;
 
    Colocate = 0;
 
    ExceedPressure = nullptr;
 
  }
 
 
 
  operator SetVector<SUnit *> &() { return Nodes; }
 
 
 
  /// Sort the node sets by importance. First, rank them by recurrence MII,
 
  /// then by mobility (least mobile done first), and finally by depth.
 
  /// Each node set may contain a colocate value which is used as the first
 
  /// tie breaker, if it's set.
 
  bool operator>(const NodeSet &RHS) const {
 
    if (RecMII == RHS.RecMII) {
 
      if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
 
        return Colocate < RHS.Colocate;
 
      if (MaxMOV == RHS.MaxMOV)
 
        return MaxDepth > RHS.MaxDepth;
 
      return MaxMOV < RHS.MaxMOV;
 
    }
 
    return RecMII > RHS.RecMII;
 
  }
 
 
 
  bool operator==(const NodeSet &RHS) const {
 
    return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
 
           MaxDepth == RHS.MaxDepth;
 
  }
 
 
 
  bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
 
 
 
  iterator begin() { return Nodes.begin(); }
 
  iterator end() { return Nodes.end(); }
 
  void print(raw_ostream &os) const;
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
  LLVM_DUMP_METHOD void dump() const;
 
#endif
 
};
 
 
 
// 16 was selected based on the number of ProcResource kinds for all
 
// existing Subtargets, so that SmallVector don't need to resize too often.
 
static const int DefaultProcResSize = 16;
 
 
 
class ResourceManager {
 
private:
 
  const MCSubtargetInfo *STI;
 
  const MCSchedModel &SM;
 
  const TargetSubtargetInfo *ST;
 
  const TargetInstrInfo *TII;
 
  SwingSchedulerDAG *DAG;
 
  const bool UseDFA;
 
  /// DFA resources for each slot
 
  llvm::SmallVector<std::unique_ptr<DFAPacketizer>> DFAResources;
 
  /// Modulo Reservation Table. When a resource with ID R is consumed in cycle
 
  /// C, it is counted in MRT[C mod II][R]. (Used when UseDFA == F)
 
  llvm::SmallVector<llvm::SmallVector<uint64_t, DefaultProcResSize>> MRT;
 
  /// The number of scheduled micro operations for each slot. Micro operations
 
  /// are assumed to be scheduled one per cycle, starting with the cycle in
 
  /// which the instruction is scheduled.
 
  llvm::SmallVector<int> NumScheduledMops;
 
  /// Each processor resource is associated with a so-called processor resource
 
  /// mask. This vector allows to correlate processor resource IDs with
 
  /// processor resource masks. There is exactly one element per each processor
 
  /// resource declared by the scheduling model.
 
  llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceMasks;
 
  int InitiationInterval;
 
  /// The number of micro operations that can be scheduled at a cycle.
 
  int IssueWidth;
 
 
 
  int calculateResMIIDFA() const;
 
  /// Check if MRT is overbooked
 
  bool isOverbooked() const;
 
  /// Reserve resources on MRT
 
  void reserveResources(const MCSchedClassDesc *SCDesc, int Cycle);
 
  /// Unreserve resources on MRT
 
  void unreserveResources(const MCSchedClassDesc *SCDesc, int Cycle);
 
 
 
  /// Return M satisfying Dividend = Divisor * X + M, 0 < M < Divisor.
 
  /// The slot on MRT to reserve a resource for the cycle C is positiveModulo(C,
 
  /// II).
 
  int positiveModulo(int Dividend, int Divisor) const {
 
    assert(Divisor > 0);
 
    int R = Dividend % Divisor;
 
    if (R < 0)
 
      R += Divisor;
 
    return R;
 
  }
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
  LLVM_DUMP_METHOD void dumpMRT() const;
 
#endif
 
 
 
public:
 
  ResourceManager(const TargetSubtargetInfo *ST, SwingSchedulerDAG *DAG)
 
      : STI(ST), SM(ST->getSchedModel()), ST(ST), TII(ST->getInstrInfo()),
 
        DAG(DAG), UseDFA(ST->useDFAforSMS()),
 
        ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
 
        IssueWidth(SM.IssueWidth) {
 
    initProcResourceVectors(SM, ProcResourceMasks);
 
    if (IssueWidth <= 0)
 
      // If IssueWidth is not specified, set a sufficiently large value
 
      IssueWidth = 100;
 
    if (SwpForceIssueWidth > 0)
 
      IssueWidth = SwpForceIssueWidth;
 
  }
 
 
 
  void initProcResourceVectors(const MCSchedModel &SM,
 
                               SmallVectorImpl<uint64_t> &Masks);
 
 
 
  /// Check if the resources occupied by a machine instruction are available
 
  /// in the current state.
 
  bool canReserveResources(SUnit &SU, int Cycle);
 
 
 
  /// Reserve the resources occupied by a machine instruction and change the
 
  /// current state to reflect that change.
 
  void reserveResources(SUnit &SU, int Cycle);
 
 
 
  int calculateResMII() const;
 
 
 
  /// Initialize resources with the initiation interval II.
 
  void init(int II);
 
};
 
 
 
/// This class represents the scheduled code.  The main data structure is a
 
/// map from scheduled cycle to instructions.  During scheduling, the
 
/// data structure explicitly represents all stages/iterations.   When
 
/// the algorithm finshes, the schedule is collapsed into a single stage,
 
/// which represents instructions from different loop iterations.
 
///
 
/// The SMS algorithm allows negative values for cycles, so the first cycle
 
/// in the schedule is the smallest cycle value.
 
class SMSchedule {
 
private:
 
  /// Map from execution cycle to instructions.
 
  DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
 
 
 
  /// Map from instruction to execution cycle.
 
  std::map<SUnit *, int> InstrToCycle;
 
 
 
  /// Keep track of the first cycle value in the schedule.  It starts
 
  /// as zero, but the algorithm allows negative values.
 
  int FirstCycle = 0;
 
 
 
  /// Keep track of the last cycle value in the schedule.
 
  int LastCycle = 0;
 
 
 
  /// The initiation interval (II) for the schedule.
 
  int InitiationInterval = 0;
 
 
 
  /// Target machine information.
 
  const TargetSubtargetInfo &ST;
 
 
 
  /// Virtual register information.
 
  MachineRegisterInfo &MRI;
 
 
 
  ResourceManager ProcItinResources;
 
 
 
public:
 
  SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG)
 
      : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
 
        ProcItinResources(&ST, DAG) {}
 
 
 
  void reset() {
 
    ScheduledInstrs.clear();
 
    InstrToCycle.clear();
 
    FirstCycle = 0;
 
    LastCycle = 0;
 
    InitiationInterval = 0;
 
  }
 
 
 
  /// Set the initiation interval for this schedule.
 
  void setInitiationInterval(int ii) {
 
    InitiationInterval = ii;
 
    ProcItinResources.init(ii);
 
  }
 
 
 
  /// Return the initiation interval for this schedule.
 
  int getInitiationInterval() const { return InitiationInterval; }
 
 
 
  /// Return the first cycle in the completed schedule.  This
 
  /// can be a negative value.
 
  int getFirstCycle() const { return FirstCycle; }
 
 
 
  /// Return the last cycle in the finalized schedule.
 
  int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
 
 
 
  /// Return the cycle of the earliest scheduled instruction in the dependence
 
  /// chain.
 
  int earliestCycleInChain(const SDep &Dep);
 
 
 
  /// Return the cycle of the latest scheduled instruction in the dependence
 
  /// chain.
 
  int latestCycleInChain(const SDep &Dep);
 
 
 
  void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
 
                    int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
 
  bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
 
 
 
  /// Iterators for the cycle to instruction map.
 
  using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
 
  using const_sched_iterator =
 
      DenseMap<int, std::deque<SUnit *>>::const_iterator;
 
 
 
  /// Return true if the instruction is scheduled at the specified stage.
 
  bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
 
    return (stageScheduled(SU) == (int)StageNum);
 
  }
 
 
 
  /// Return the stage for a scheduled instruction.  Return -1 if
 
  /// the instruction has not been scheduled.
 
  int stageScheduled(SUnit *SU) const {
 
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
 
    if (it == InstrToCycle.end())
 
      return -1;
 
    return (it->second - FirstCycle) / InitiationInterval;
 
  }
 
 
 
  /// Return the cycle for a scheduled instruction. This function normalizes
 
  /// the first cycle to be 0.
 
  unsigned cycleScheduled(SUnit *SU) const {
 
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
 
    assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
 
    return (it->second - FirstCycle) % InitiationInterval;
 
  }
 
 
 
  /// Return the maximum stage count needed for this schedule.
 
  unsigned getMaxStageCount() {
 
    return (LastCycle - FirstCycle) / InitiationInterval;
 
  }
 
 
 
  /// Return the instructions that are scheduled at the specified cycle.
 
  std::deque<SUnit *> &getInstructions(int cycle) {
 
    return ScheduledInstrs[cycle];
 
  }
 
 
 
  SmallSet<SUnit *, 8>
 
  computeUnpipelineableNodes(SwingSchedulerDAG *SSD,
 
                             TargetInstrInfo::PipelinerLoopInfo *PLI);
 
 
 
  bool
 
  normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD,
 
                                    TargetInstrInfo::PipelinerLoopInfo *PLI);
 
  bool isValidSchedule(SwingSchedulerDAG *SSD);
 
  void finalizeSchedule(SwingSchedulerDAG *SSD);
 
  void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
 
                       std::deque<SUnit *> &Insts);
 
  bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
 
  bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
 
                             MachineOperand &MO);
 
  void print(raw_ostream &os) const;
 
  void dump() const;
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_MACHINEPIPELINER_H