//==- llvm/CodeGen/MachineMemOperand.h - MachineMemOperand class -*- C++ -*-==//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains the declaration of the MachineMemOperand class, which is a
 
// description of a memory reference. It is used to help track dependencies
 
// in the backend.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_MACHINEMEMOPERAND_H
 
#define LLVM_CODEGEN_MACHINEMEMOPERAND_H
 
 
 
#include "llvm/ADT/BitmaskEnum.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/CodeGen/PseudoSourceValue.h"
 
#include "llvm/IR/DerivedTypes.h"
 
#include "llvm/IR/Value.h" // PointerLikeTypeTraits<Value*>
 
#include "llvm/Support/AtomicOrdering.h"
 
#include "llvm/Support/DataTypes.h"
 
#include "llvm/Support/LowLevelTypeImpl.h"
 
 
 
namespace llvm {
 
 
 
class FoldingSetNodeID;
 
class MDNode;
 
class raw_ostream;
 
class MachineFunction;
 
class ModuleSlotTracker;
 
class TargetInstrInfo;
 
 
 
/// This class contains a discriminated union of information about pointers in
 
/// memory operands, relating them back to LLVM IR or to virtual locations (such
 
/// as frame indices) that are exposed during codegen.
 
struct MachinePointerInfo {
 
  /// This is the IR pointer value for the access, or it is null if unknown.
 
  PointerUnion<const Value *, const PseudoSourceValue *> V;
 
 
 
  /// Offset - This is an offset from the base Value*.
 
  int64_t Offset;
 
 
 
  unsigned AddrSpace = 0;
 
 
 
  uint8_t StackID;
 
 
 
  explicit MachinePointerInfo(const Value *v, int64_t offset = 0,
 
                              uint8_t ID = 0)
 
      : V(v), Offset(offset), StackID(ID) {
 
    AddrSpace = v ? v->getType()->getPointerAddressSpace() : 0;
 
  }
 
 
 
  explicit MachinePointerInfo(const PseudoSourceValue *v, int64_t offset = 0,
 
                              uint8_t ID = 0)
 
      : V(v), Offset(offset), StackID(ID) {
 
    AddrSpace = v ? v->getAddressSpace() : 0;
 
  }
 
 
 
  explicit MachinePointerInfo(unsigned AddressSpace = 0, int64_t offset = 0)
 
      : V((const Value *)nullptr), Offset(offset), AddrSpace(AddressSpace),
 
        StackID(0) {}
 
 
 
  explicit MachinePointerInfo(
 
    PointerUnion<const Value *, const PseudoSourceValue *> v,
 
    int64_t offset = 0,
 
    uint8_t ID = 0)
 
    : V(v), Offset(offset), StackID(ID) {
 
    if (V) {
 
      if (const auto *ValPtr = V.dyn_cast<const Value*>())
 
        AddrSpace = ValPtr->getType()->getPointerAddressSpace();
 
      else
 
        AddrSpace = V.get<const PseudoSourceValue*>()->getAddressSpace();
 
    }
 
  }
 
 
 
  MachinePointerInfo getWithOffset(int64_t O) const {
 
    if (V.isNull())
 
      return MachinePointerInfo(AddrSpace, Offset + O);
 
    if (V.is<const Value*>())
 
      return MachinePointerInfo(V.get<const Value*>(), Offset + O, StackID);
 
    return MachinePointerInfo(V.get<const PseudoSourceValue*>(), Offset + O,
 
                              StackID);
 
  }
 
 
 
  /// Return true if memory region [V, V+Offset+Size) is known to be
 
  /// dereferenceable.
 
  bool isDereferenceable(unsigned Size, LLVMContext &C,
 
                         const DataLayout &DL) const;
 
 
 
  /// Return the LLVM IR address space number that this pointer points into.
 
  unsigned getAddrSpace() const;
 
 
 
  /// Return a MachinePointerInfo record that refers to the constant pool.
 
  static MachinePointerInfo getConstantPool(MachineFunction &MF);
 
 
 
  /// Return a MachinePointerInfo record that refers to the specified
 
  /// FrameIndex.
 
  static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI,
 
                                          int64_t Offset = 0);
 
 
 
  /// Return a MachinePointerInfo record that refers to a jump table entry.
 
  static MachinePointerInfo getJumpTable(MachineFunction &MF);
 
 
 
  /// Return a MachinePointerInfo record that refers to a GOT entry.
 
  static MachinePointerInfo getGOT(MachineFunction &MF);
 
 
 
  /// Stack pointer relative access.
 
  static MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset,
 
                                     uint8_t ID = 0);
 
 
 
  /// Stack memory without other information.
 
  static MachinePointerInfo getUnknownStack(MachineFunction &MF);
 
};
 
 
 
 
 
//===----------------------------------------------------------------------===//
 
/// A description of a memory reference used in the backend.
 
/// Instead of holding a StoreInst or LoadInst, this class holds the address
 
/// Value of the reference along with a byte size and offset. This allows it
 
/// to describe lowered loads and stores. Also, the special PseudoSourceValue
 
/// objects can be used to represent loads and stores to memory locations
 
/// that aren't explicit in the regular LLVM IR.
 
///
 
class MachineMemOperand {
 
public:
 
  /// Flags values. These may be or'd together.
 
  enum Flags : uint16_t {
 
    // No flags set.
 
    MONone = 0,
 
    /// The memory access reads data.
 
    MOLoad = 1u << 0,
 
    /// The memory access writes data.
 
    MOStore = 1u << 1,
 
    /// The memory access is volatile.
 
    MOVolatile = 1u << 2,
 
    /// The memory access is non-temporal.
 
    MONonTemporal = 1u << 3,
 
    /// The memory access is dereferenceable (i.e., doesn't trap).
 
    MODereferenceable = 1u << 4,
 
    /// The memory access always returns the same value (or traps).
 
    MOInvariant = 1u << 5,
 
 
 
    // Reserved for use by target-specific passes.
 
    // Targets may override getSerializableMachineMemOperandTargetFlags() to
 
    // enable MIR serialization/parsing of these flags.  If more of these flags
 
    // are added, the MIR printing/parsing code will need to be updated as well.
 
    MOTargetFlag1 = 1u << 6,
 
    MOTargetFlag2 = 1u << 7,
 
    MOTargetFlag3 = 1u << 8,
 
 
 
    LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ MOTargetFlag3)
 
  };
 
 
 
private:
 
  /// Atomic information for this memory operation.
 
  struct MachineAtomicInfo {
 
    /// Synchronization scope ID for this memory operation.
 
    unsigned SSID : 8;            // SyncScope::ID
 
    /// Atomic ordering requirements for this memory operation. For cmpxchg
 
    /// atomic operations, atomic ordering requirements when store occurs.
 
    unsigned Ordering : 4;        // enum AtomicOrdering
 
    /// For cmpxchg atomic operations, atomic ordering requirements when store
 
    /// does not occur.
 
    unsigned FailureOrdering : 4; // enum AtomicOrdering
 
  };
 
 
 
  MachinePointerInfo PtrInfo;
 
 
 
  /// Track the memory type of the access. An access size which is unknown or
 
  /// too large to be represented by LLT should use the invalid LLT.
 
  LLT MemoryType;
 
 
 
  Flags FlagVals;
 
  Align BaseAlign;
 
  MachineAtomicInfo AtomicInfo;
 
  AAMDNodes AAInfo;
 
  const MDNode *Ranges;
 
 
 
public:
 
  /// Construct a MachineMemOperand object with the specified PtrInfo, flags,
 
  /// size, and base alignment. For atomic operations the synchronization scope
 
  /// and atomic ordering requirements must also be specified. For cmpxchg
 
  /// atomic operations the atomic ordering requirements when store does not
 
  /// occur must also be specified.
 
  MachineMemOperand(MachinePointerInfo PtrInfo, Flags flags, uint64_t s,
 
                    Align a, const AAMDNodes &AAInfo = AAMDNodes(),
 
                    const MDNode *Ranges = nullptr,
 
                    SyncScope::ID SSID = SyncScope::System,
 
                    AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
 
                    AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
 
  MachineMemOperand(MachinePointerInfo PtrInfo, Flags flags, LLT type, Align a,
 
                    const AAMDNodes &AAInfo = AAMDNodes(),
 
                    const MDNode *Ranges = nullptr,
 
                    SyncScope::ID SSID = SyncScope::System,
 
                    AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
 
                    AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
 
 
 
  const MachinePointerInfo &getPointerInfo() const { return PtrInfo; }
 
 
 
  /// Return the base address of the memory access. This may either be a normal
 
  /// LLVM IR Value, or one of the special values used in CodeGen.
 
  /// Special values are those obtained via
 
  /// PseudoSourceValue::getFixedStack(int), PseudoSourceValue::getStack, and
 
  /// other PseudoSourceValue member functions which return objects which stand
 
  /// for frame/stack pointer relative references and other special references
 
  /// which are not representable in the high-level IR.
 
  const Value *getValue() const { return PtrInfo.V.dyn_cast<const Value*>(); }
 
 
 
  const PseudoSourceValue *getPseudoValue() const {
 
    return PtrInfo.V.dyn_cast<const PseudoSourceValue*>();
 
  }
 
 
 
  const void *getOpaqueValue() const { return PtrInfo.V.getOpaqueValue(); }
 
 
 
  /// Return the raw flags of the source value, \see Flags.
 
  Flags getFlags() const { return FlagVals; }
 
 
 
  /// Bitwise OR the current flags with the given flags.
 
  void setFlags(Flags f) { FlagVals |= f; }
 
 
 
  /// For normal values, this is a byte offset added to the base address.
 
  /// For PseudoSourceValue::FPRel values, this is the FrameIndex number.
 
  int64_t getOffset() const { return PtrInfo.Offset; }
 
 
 
  unsigned getAddrSpace() const { return PtrInfo.getAddrSpace(); }
 
 
 
  /// Return the memory type of the memory reference. This should only be relied
 
  /// on for GlobalISel G_* operation legalization.
 
  LLT getMemoryType() const { return MemoryType; }
 
 
 
  /// Return the size in bytes of the memory reference.
 
  uint64_t getSize() const {
 
    return MemoryType.isValid() ? MemoryType.getSizeInBytes() : ~UINT64_C(0);
 
  }
 
 
 
  /// Return the size in bits of the memory reference.
 
  uint64_t getSizeInBits() const {
 
    return MemoryType.isValid() ? MemoryType.getSizeInBits() : ~UINT64_C(0);
 
  }
 
 
 
  LLT getType() const {
 
    return MemoryType;
 
  }
 
 
 
  /// Return the minimum known alignment in bytes of the actual memory
 
  /// reference.
 
  Align getAlign() const;
 
 
 
  /// Return the minimum known alignment in bytes of the base address, without
 
  /// the offset.
 
  Align getBaseAlign() const { return BaseAlign; }
 
 
 
  /// Return the AA tags for the memory reference.
 
  AAMDNodes getAAInfo() const { return AAInfo; }
 
 
 
  /// Return the range tag for the memory reference.
 
  const MDNode *getRanges() const { return Ranges; }
 
 
 
  /// Returns the synchronization scope ID for this memory operation.
 
  SyncScope::ID getSyncScopeID() const {
 
    return static_cast<SyncScope::ID>(AtomicInfo.SSID);
 
  }
 
 
 
  /// Return the atomic ordering requirements for this memory operation. For
 
  /// cmpxchg atomic operations, return the atomic ordering requirements when
 
  /// store occurs.
 
  AtomicOrdering getSuccessOrdering() const {
 
    return static_cast<AtomicOrdering>(AtomicInfo.Ordering);
 
  }
 
 
 
  /// For cmpxchg atomic operations, return the atomic ordering requirements
 
  /// when store does not occur.
 
  AtomicOrdering getFailureOrdering() const {
 
    return static_cast<AtomicOrdering>(AtomicInfo.FailureOrdering);
 
  }
 
 
 
  /// Return a single atomic ordering that is at least as strong as both the
 
  /// success and failure orderings for an atomic operation.  (For operations
 
  /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
 
  AtomicOrdering getMergedOrdering() const {
 
    return getMergedAtomicOrdering(getSuccessOrdering(), getFailureOrdering());
 
  }
 
 
 
  bool isLoad() const { return FlagVals & MOLoad; }
 
  bool isStore() const { return FlagVals & MOStore; }
 
  bool isVolatile() const { return FlagVals & MOVolatile; }
 
  bool isNonTemporal() const { return FlagVals & MONonTemporal; }
 
  bool isDereferenceable() const { return FlagVals & MODereferenceable; }
 
  bool isInvariant() const { return FlagVals & MOInvariant; }
 
 
 
  /// Returns true if this operation has an atomic ordering requirement of
 
  /// unordered or higher, false otherwise.
 
  bool isAtomic() const {
 
    return getSuccessOrdering() != AtomicOrdering::NotAtomic;
 
  }
 
 
 
  /// Returns true if this memory operation doesn't have any ordering
 
  /// constraints other than normal aliasing. Volatile and (ordered) atomic
 
  /// memory operations can't be reordered.
 
  bool isUnordered() const {
 
    return (getSuccessOrdering() == AtomicOrdering::NotAtomic ||
 
            getSuccessOrdering() == AtomicOrdering::Unordered) &&
 
           !isVolatile();
 
  }
 
 
 
  /// Update this MachineMemOperand to reflect the alignment of MMO, if it has a
 
  /// greater alignment. This must only be used when the new alignment applies
 
  /// to all users of this MachineMemOperand.
 
  void refineAlignment(const MachineMemOperand *MMO);
 
 
 
  /// Change the SourceValue for this MachineMemOperand. This should only be
 
  /// used when an object is being relocated and all references to it are being
 
  /// updated.
 
  void setValue(const Value *NewSV) { PtrInfo.V = NewSV; }
 
  void setValue(const PseudoSourceValue *NewSV) { PtrInfo.V = NewSV; }
 
  void setOffset(int64_t NewOffset) { PtrInfo.Offset = NewOffset; }
 
 
 
  /// Reset the tracked memory type.
 
  void setType(LLT NewTy) {
 
    MemoryType = NewTy;
 
  }
 
 
 
  /// Profile - Gather unique data for the object.
 
  ///
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  /// Support for operator<<.
 
  /// @{
 
  void print(raw_ostream &OS, ModuleSlotTracker &MST,
 
             SmallVectorImpl<StringRef> &SSNs, const LLVMContext &Context,
 
             const MachineFrameInfo *MFI, const TargetInstrInfo *TII) const;
 
  /// @}
 
 
 
  friend bool operator==(const MachineMemOperand &LHS,
 
                         const MachineMemOperand &RHS) {
 
    return LHS.getValue() == RHS.getValue() &&
 
           LHS.getPseudoValue() == RHS.getPseudoValue() &&
 
           LHS.getSize() == RHS.getSize() &&
 
           LHS.getOffset() == RHS.getOffset() &&
 
           LHS.getFlags() == RHS.getFlags() &&
 
           LHS.getAAInfo() == RHS.getAAInfo() &&
 
           LHS.getRanges() == RHS.getRanges() &&
 
           LHS.getAlign() == RHS.getAlign() &&
 
           LHS.getAddrSpace() == RHS.getAddrSpace();
 
  }
 
 
 
  friend bool operator!=(const MachineMemOperand &LHS,
 
                         const MachineMemOperand &RHS) {
 
    return !(LHS == RHS);
 
  }
 
};
 
 
 
} // End llvm namespace
 
 
 
#endif