//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file contains the declaration of the MachineInstr class, which is the
 
// basic representation for all target dependent machine instructions used by
 
// the back end.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
 
#define LLVM_CODEGEN_MACHINEINSTR_H
 
 
 
#include "llvm/ADT/DenseMapInfo.h"
 
#include "llvm/ADT/PointerSumType.h"
 
#include "llvm/ADT/SmallSet.h"
 
#include "llvm/ADT/ilist.h"
 
#include "llvm/ADT/ilist_node.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/CodeGen/MachineMemOperand.h"
 
#include "llvm/CodeGen/MachineOperand.h"
 
#include "llvm/CodeGen/TargetOpcodes.h"
 
#include "llvm/IR/DebugLoc.h"
 
#include "llvm/IR/InlineAsm.h"
 
#include "llvm/MC/MCInstrDesc.h"
 
#include "llvm/MC/MCSymbol.h"
 
#include "llvm/Support/ArrayRecycler.h"
 
#include "llvm/Support/TrailingObjects.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstdint>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class DILabel;
 
class Instruction;
 
class MDNode;
 
class AAResults;
 
template <typename T> class ArrayRef;
 
class DIExpression;
 
class DILocalVariable;
 
class MachineBasicBlock;
 
class MachineFunction;
 
class MachineRegisterInfo;
 
class ModuleSlotTracker;
 
class raw_ostream;
 
template <typename T> class SmallVectorImpl;
 
class SmallBitVector;
 
class StringRef;
 
class TargetInstrInfo;
 
class TargetRegisterClass;
 
class TargetRegisterInfo;
 
 
 
//===----------------------------------------------------------------------===//
 
/// Representation of each machine instruction.
 
///
 
/// This class isn't a POD type, but it must have a trivial destructor. When a
 
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
 
/// without having their destructor called.
 
///
 
class MachineInstr
 
    : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
 
                                    ilist_sentinel_tracking<true>> {
 
public:
 
  using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
 
 
 
  /// Flags to specify different kinds of comments to output in
 
  /// assembly code.  These flags carry semantic information not
 
  /// otherwise easily derivable from the IR text.
 
  ///
 
  enum CommentFlag {
 
    ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
 
    NoSchedComment = 0x2,
 
    TAsmComments = 0x4    // Target Asm comments should start from this value.
 
  };
 
 
 
  enum MIFlag {
 
    NoFlags      = 0,
 
    FrameSetup   = 1 << 0,              // Instruction is used as a part of
 
                                        // function frame setup code.
 
    FrameDestroy = 1 << 1,              // Instruction is used as a part of
 
                                        // function frame destruction code.
 
    BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
 
    BundledSucc  = 1 << 3,              // Instruction has bundled successors.
 
    FmNoNans     = 1 << 4,              // Instruction does not support Fast
 
                                        // math nan values.
 
    FmNoInfs     = 1 << 5,              // Instruction does not support Fast
 
                                        // math infinity values.
 
    FmNsz        = 1 << 6,              // Instruction is not required to retain
 
                                        // signed zero values.
 
    FmArcp       = 1 << 7,              // Instruction supports Fast math
 
                                        // reciprocal approximations.
 
    FmContract   = 1 << 8,              // Instruction supports Fast math
 
                                        // contraction operations like fma.
 
    FmAfn        = 1 << 9,              // Instruction may map to Fast math
 
                                        // intrinsic approximation.
 
    FmReassoc    = 1 << 10,             // Instruction supports Fast math
 
                                        // reassociation of operand order.
 
    NoUWrap      = 1 << 11,             // Instruction supports binary operator
 
                                        // no unsigned wrap.
 
    NoSWrap      = 1 << 12,             // Instruction supports binary operator
 
                                        // no signed wrap.
 
    IsExact      = 1 << 13,             // Instruction supports division is
 
                                        // known to be exact.
 
    NoFPExcept   = 1 << 14,             // Instruction does not raise
 
                                        // floatint-point exceptions.
 
    NoMerge      = 1 << 15,             // Passes that drop source location info
 
                                        // (e.g. branch folding) should skip
 
                                        // this instruction.
 
  };
 
 
 
private:
 
  const MCInstrDesc *MCID;              // Instruction descriptor.
 
  MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
 
 
 
  // Operands are allocated by an ArrayRecycler.
 
  MachineOperand *Operands = nullptr;   // Pointer to the first operand.
 
  unsigned NumOperands = 0;             // Number of operands on instruction.
 
 
 
  uint16_t Flags = 0;                   // Various bits of additional
 
                                        // information about machine
 
                                        // instruction.
 
 
 
  uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
 
                                        // the AsmPrinter to emit helpful
 
                                        // comments.  This is *not* semantic
 
                                        // information.  Do not use this for
 
                                        // anything other than to convey comment
 
                                        // information to AsmPrinter.
 
 
 
  // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
 
  // to properly pack.
 
  using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
 
  OperandCapacity CapOperands;          // Capacity of the Operands array.
 
 
 
  /// Internal implementation detail class that provides out-of-line storage for
 
  /// extra info used by the machine instruction when this info cannot be stored
 
  /// in-line within the instruction itself.
 
  ///
 
  /// This has to be defined eagerly due to the implementation constraints of
 
  /// `PointerSumType` where it is used.
 
  class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *,
 
                                          MCSymbol *, MDNode *, uint32_t> {
 
  public:
 
    static ExtraInfo *create(BumpPtrAllocator &Allocator,
 
                             ArrayRef<MachineMemOperand *> MMOs,
 
                             MCSymbol *PreInstrSymbol = nullptr,
 
                             MCSymbol *PostInstrSymbol = nullptr,
 
                             MDNode *HeapAllocMarker = nullptr,
 
                             MDNode *PCSections = nullptr,
 
                             uint32_t CFIType = 0) {
 
      bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
 
      bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
 
      bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
 
      bool HasCFIType = CFIType != 0;
 
      bool HasPCSections = PCSections != nullptr;
 
      auto *Result = new (Allocator.Allocate(
 
          totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>(
 
              MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
 
              HasHeapAllocMarker + HasPCSections, HasCFIType),
 
          alignof(ExtraInfo)))
 
          ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
 
                    HasHeapAllocMarker, HasPCSections, HasCFIType);
 
 
 
      // Copy the actual data into the trailing objects.
 
      std::copy(MMOs.begin(), MMOs.end(),
 
                Result->getTrailingObjects<MachineMemOperand *>());
 
 
 
      if (HasPreInstrSymbol)
 
        Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
 
      if (HasPostInstrSymbol)
 
        Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
 
            PostInstrSymbol;
 
      if (HasHeapAllocMarker)
 
        Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
 
      if (HasPCSections)
 
        Result->getTrailingObjects<MDNode *>()[HasHeapAllocMarker] =
 
            PCSections;
 
      if (HasCFIType)
 
        Result->getTrailingObjects<uint32_t>()[0] = CFIType;
 
 
 
      return Result;
 
    }
 
 
 
    ArrayRef<MachineMemOperand *> getMMOs() const {
 
      return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
 
    }
 
 
 
    MCSymbol *getPreInstrSymbol() const {
 
      return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
 
    }
 
 
 
    MCSymbol *getPostInstrSymbol() const {
 
      return HasPostInstrSymbol
 
                 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
 
                 : nullptr;
 
    }
 
 
 
    MDNode *getHeapAllocMarker() const {
 
      return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
 
    }
 
 
 
    MDNode *getPCSections() const {
 
      return HasPCSections
 
                 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker]
 
                 : nullptr;
 
    }
 
 
 
    uint32_t getCFIType() const {
 
      return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0;
 
    }
 
 
 
  private:
 
    friend TrailingObjects;
 
 
 
    // Description of the extra info, used to interpret the actual optional
 
    // data appended.
 
    //
 
    // Note that this is not terribly space optimized. This leaves a great deal
 
    // of flexibility to fit more in here later.
 
    const int NumMMOs;
 
    const bool HasPreInstrSymbol;
 
    const bool HasPostInstrSymbol;
 
    const bool HasHeapAllocMarker;
 
    const bool HasPCSections;
 
    const bool HasCFIType;
 
 
 
    // Implement the `TrailingObjects` internal API.
 
    size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
 
      return NumMMOs;
 
    }
 
    size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
 
      return HasPreInstrSymbol + HasPostInstrSymbol;
 
    }
 
    size_t numTrailingObjects(OverloadToken<MDNode *>) const {
 
      return HasHeapAllocMarker + HasPCSections;
 
    }
 
    size_t numTrailingObjects(OverloadToken<uint32_t>) const {
 
      return HasCFIType;
 
    }
 
 
 
    // Just a boring constructor to allow us to initialize the sizes. Always use
 
    // the `create` routine above.
 
    ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
 
              bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType)
 
        : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
 
          HasPostInstrSymbol(HasPostInstrSymbol),
 
          HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections),
 
          HasCFIType(HasCFIType) {}
 
  };
 
 
 
  /// Enumeration of the kinds of inline extra info available. It is important
 
  /// that the `MachineMemOperand` inline kind has a tag value of zero to make
 
  /// it accessible as an `ArrayRef`.
 
  enum ExtraInfoInlineKinds {
 
    EIIK_MMO = 0,
 
    EIIK_PreInstrSymbol,
 
    EIIK_PostInstrSymbol,
 
    EIIK_OutOfLine
 
  };
 
 
 
  // We store extra information about the instruction here. The common case is
 
  // expected to be nothing or a single pointer (typically a MMO or a symbol).
 
  // We work to optimize this common case by storing it inline here rather than
 
  // requiring a separate allocation, but we fall back to an allocation when
 
  // multiple pointers are needed.
 
  PointerSumType<ExtraInfoInlineKinds,
 
                 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
 
                 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
 
                 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
 
                 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
 
      Info;
 
 
 
  DebugLoc DbgLoc; // Source line information.
 
 
 
  /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
 
  /// defined by this instruction.
 
  unsigned DebugInstrNum;
 
 
 
  // Intrusive list support
 
  friend struct ilist_traits<MachineInstr>;
 
  friend struct ilist_callback_traits<MachineBasicBlock>;
 
  void setParent(MachineBasicBlock *P) { Parent = P; }
 
 
 
  /// This constructor creates a copy of the given
 
  /// MachineInstr in the given MachineFunction.
 
  MachineInstr(MachineFunction &, const MachineInstr &);
 
 
 
  /// This constructor create a MachineInstr and add the implicit operands.
 
  /// It reserves space for number of operands specified by
 
  /// MCInstrDesc.  An explicit DebugLoc is supplied.
 
  MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL,
 
               bool NoImp = false);
 
 
 
  // MachineInstrs are pool-allocated and owned by MachineFunction.
 
  friend class MachineFunction;
 
 
 
  void
 
  dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
 
            SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
 
 
 
public:
 
  MachineInstr(const MachineInstr &) = delete;
 
  MachineInstr &operator=(const MachineInstr &) = delete;
 
  // Use MachineFunction::DeleteMachineInstr() instead.
 
  ~MachineInstr() = delete;
 
 
 
  const MachineBasicBlock* getParent() const { return Parent; }
 
  MachineBasicBlock* getParent() { return Parent; }
 
 
 
  /// Move the instruction before \p MovePos.
 
  void moveBefore(MachineInstr *MovePos);
 
 
 
  /// Return the function that contains the basic block that this instruction
 
  /// belongs to.
 
  ///
 
  /// Note: this is undefined behaviour if the instruction does not have a
 
  /// parent.
 
  const MachineFunction *getMF() const;
 
  MachineFunction *getMF() {
 
    return const_cast<MachineFunction *>(
 
        static_cast<const MachineInstr *>(this)->getMF());
 
  }
 
 
 
  /// Return the asm printer flags bitvector.
 
  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
 
 
 
  /// Clear the AsmPrinter bitvector.
 
  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
 
 
 
  /// Return whether an AsmPrinter flag is set.
 
  bool getAsmPrinterFlag(CommentFlag Flag) const {
 
    return AsmPrinterFlags & Flag;
 
  }
 
 
 
  /// Set a flag for the AsmPrinter.
 
  void setAsmPrinterFlag(uint8_t Flag) {
 
    AsmPrinterFlags |= Flag;
 
  }
 
 
 
  /// Clear specific AsmPrinter flags.
 
  void clearAsmPrinterFlag(CommentFlag Flag) {
 
    AsmPrinterFlags &= ~Flag;
 
  }
 
 
 
  /// Return the MI flags bitvector.
 
  uint16_t getFlags() const {
 
    return Flags;
 
  }
 
 
 
  /// Return whether an MI flag is set.
 
  bool getFlag(MIFlag Flag) const {
 
    return Flags & Flag;
 
  }
 
 
 
  /// Set a MI flag.
 
  void setFlag(MIFlag Flag) {
 
    Flags |= (uint16_t)Flag;
 
  }
 
 
 
  void setFlags(unsigned flags) {
 
    // Filter out the automatically maintained flags.
 
    unsigned Mask = BundledPred | BundledSucc;
 
    Flags = (Flags & Mask) | (flags & ~Mask);
 
  }
 
 
 
  /// clearFlag - Clear a MI flag.
 
  void clearFlag(MIFlag Flag) {
 
    Flags &= ~((uint16_t)Flag);
 
  }
 
 
 
  /// Return true if MI is in a bundle (but not the first MI in a bundle).
 
  ///
 
  /// A bundle looks like this before it's finalized:
 
  ///   ----------------
 
  ///   |      MI      |
 
  ///   ----------------
 
  ///          |
 
  ///   ----------------
 
  ///   |      MI    * |
 
  ///   ----------------
 
  ///          |
 
  ///   ----------------
 
  ///   |      MI    * |
 
  ///   ----------------
 
  /// In this case, the first MI starts a bundle but is not inside a bundle, the
 
  /// next 2 MIs are considered "inside" the bundle.
 
  ///
 
  /// After a bundle is finalized, it looks like this:
 
  ///   ----------------
 
  ///   |    Bundle    |
 
  ///   ----------------
 
  ///          |
 
  ///   ----------------
 
  ///   |      MI    * |
 
  ///   ----------------
 
  ///          |
 
  ///   ----------------
 
  ///   |      MI    * |
 
  ///   ----------------
 
  ///          |
 
  ///   ----------------
 
  ///   |      MI    * |
 
  ///   ----------------
 
  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
 
  /// a bundle, but the next three MIs are.
 
  bool isInsideBundle() const {
 
    return getFlag(BundledPred);
 
  }
 
 
 
  /// Return true if this instruction part of a bundle. This is true
 
  /// if either itself or its following instruction is marked "InsideBundle".
 
  bool isBundled() const {
 
    return isBundledWithPred() || isBundledWithSucc();
 
  }
 
 
 
  /// Return true if this instruction is part of a bundle, and it is not the
 
  /// first instruction in the bundle.
 
  bool isBundledWithPred() const { return getFlag(BundledPred); }
 
 
 
  /// Return true if this instruction is part of a bundle, and it is not the
 
  /// last instruction in the bundle.
 
  bool isBundledWithSucc() const { return getFlag(BundledSucc); }
 
 
 
  /// Bundle this instruction with its predecessor. This can be an unbundled
 
  /// instruction, or it can be the first instruction in a bundle.
 
  void bundleWithPred();
 
 
 
  /// Bundle this instruction with its successor. This can be an unbundled
 
  /// instruction, or it can be the last instruction in a bundle.
 
  void bundleWithSucc();
 
 
 
  /// Break bundle above this instruction.
 
  void unbundleFromPred();
 
 
 
  /// Break bundle below this instruction.
 
  void unbundleFromSucc();
 
 
 
  /// Returns the debug location id of this MachineInstr.
 
  const DebugLoc &getDebugLoc() const { return DbgLoc; }
 
 
 
  /// Return the operand containing the offset to be used if this DBG_VALUE
 
  /// instruction is indirect; will be an invalid register if this value is
 
  /// not indirect, and an immediate with value 0 otherwise.
 
  const MachineOperand &getDebugOffset() const {
 
    assert(isNonListDebugValue() && "not a DBG_VALUE");
 
    return getOperand(1);
 
  }
 
  MachineOperand &getDebugOffset() {
 
    assert(isNonListDebugValue() && "not a DBG_VALUE");
 
    return getOperand(1);
 
  }
 
 
 
  /// Return the operand for the debug variable referenced by
 
  /// this DBG_VALUE instruction.
 
  const MachineOperand &getDebugVariableOp() const;
 
  MachineOperand &getDebugVariableOp();
 
 
 
  /// Return the debug variable referenced by
 
  /// this DBG_VALUE instruction.
 
  const DILocalVariable *getDebugVariable() const;
 
 
 
  /// Return the operand for the complex address expression referenced by
 
  /// this DBG_VALUE instruction.
 
  const MachineOperand &getDebugExpressionOp() const;
 
  MachineOperand &getDebugExpressionOp();
 
 
 
  /// Return the complex address expression referenced by
 
  /// this DBG_VALUE instruction.
 
  const DIExpression *getDebugExpression() const;
 
 
 
  /// Return the debug label referenced by
 
  /// this DBG_LABEL instruction.
 
  const DILabel *getDebugLabel() const;
 
 
 
  /// Fetch the instruction number of this MachineInstr. If it does not have
 
  /// one already, a new and unique number will be assigned.
 
  unsigned getDebugInstrNum();
 
 
 
  /// Fetch instruction number of this MachineInstr -- but before it's inserted
 
  /// into \p MF. Needed for transformations that create an instruction but
 
  /// don't immediately insert them.
 
  unsigned getDebugInstrNum(MachineFunction &MF);
 
 
 
  /// Examine the instruction number of this MachineInstr. May be zero if
 
  /// it hasn't been assigned a number yet.
 
  unsigned peekDebugInstrNum() const { return DebugInstrNum; }
 
 
 
  /// Set instruction number of this MachineInstr. Avoid using unless you're
 
  /// deserializing this information.
 
  void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
 
 
 
  /// Drop any variable location debugging information associated with this
 
  /// instruction. Use when an instruction is modified in such a way that it no
 
  /// longer defines the value it used to. Variable locations using that value
 
  /// will be dropped.
 
  void dropDebugNumber() { DebugInstrNum = 0; }
 
 
 
  /// Emit an error referring to the source location of this instruction.
 
  /// This should only be used for inline assembly that is somehow
 
  /// impossible to compile. Other errors should have been handled much
 
  /// earlier.
 
  ///
 
  /// If this method returns, the caller should try to recover from the error.
 
  void emitError(StringRef Msg) const;
 
 
 
  /// Returns the target instruction descriptor of this MachineInstr.
 
  const MCInstrDesc &getDesc() const { return *MCID; }
 
 
 
  /// Returns the opcode of this MachineInstr.
 
  unsigned getOpcode() const { return MCID->Opcode; }
 
 
 
  /// Retuns the total number of operands.
 
  unsigned getNumOperands() const { return NumOperands; }
 
 
 
  /// Returns the total number of operands which are debug locations.
 
  unsigned getNumDebugOperands() const {
 
    return std::distance(debug_operands().begin(), debug_operands().end());
 
  }
 
 
 
  const MachineOperand& getOperand(unsigned i) const {
 
    assert(i < getNumOperands() && "getOperand() out of range!");
 
    return Operands[i];
 
  }
 
  MachineOperand& getOperand(unsigned i) {
 
    assert(i < getNumOperands() && "getOperand() out of range!");
 
    return Operands[i];
 
  }
 
 
 
  MachineOperand &getDebugOperand(unsigned Index) {
 
    assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
 
    return *(debug_operands().begin() + Index);
 
  }
 
  const MachineOperand &getDebugOperand(unsigned Index) const {
 
    assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
 
    return *(debug_operands().begin() + Index);
 
  }
 
 
 
  SmallSet<Register, 4> getUsedDebugRegs() const {
 
    assert(isDebugValue() && "not a DBG_VALUE*");
 
    SmallSet<Register, 4> UsedRegs;
 
    for (const auto &MO : debug_operands())
 
      if (MO.isReg() && MO.getReg())
 
        UsedRegs.insert(MO.getReg());
 
    return UsedRegs;
 
  }
 
 
 
  /// Returns whether this debug value has at least one debug operand with the
 
  /// register \p Reg.
 
  bool hasDebugOperandForReg(Register Reg) const {
 
    return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
 
      return Op.isReg() && Op.getReg() == Reg;
 
    });
 
  }
 
 
 
  /// Returns a range of all of the operands that correspond to a debug use of
 
  /// \p Reg.
 
  template <typename Operand, typename Instruction>
 
  static iterator_range<
 
      filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
 
  getDebugOperandsForReg(Instruction *MI, Register Reg) {
 
    std::function<bool(Operand & Op)> OpUsesReg(
 
        [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
 
    return make_filter_range(MI->debug_operands(), OpUsesReg);
 
  }
 
  iterator_range<filter_iterator<const MachineOperand *,
 
                                 std::function<bool(const MachineOperand &Op)>>>
 
  getDebugOperandsForReg(Register Reg) const {
 
    return MachineInstr::getDebugOperandsForReg<const MachineOperand,
 
                                                const MachineInstr>(this, Reg);
 
  }
 
  iterator_range<filter_iterator<MachineOperand *,
 
                                 std::function<bool(MachineOperand &Op)>>>
 
  getDebugOperandsForReg(Register Reg) {
 
    return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
 
        this, Reg);
 
  }
 
 
 
  bool isDebugOperand(const MachineOperand *Op) const {
 
    return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
 
  }
 
 
 
  unsigned getDebugOperandIndex(const MachineOperand *Op) const {
 
    assert(isDebugOperand(Op) && "Expected a debug operand.");
 
    return std::distance(adl_begin(debug_operands()), Op);
 
  }
 
 
 
  /// Returns the total number of definitions.
 
  unsigned getNumDefs() const {
 
    return getNumExplicitDefs() + MCID->implicit_defs().size();
 
  }
 
 
 
  /// Returns true if the instruction has implicit definition.
 
  bool hasImplicitDef() const {
 
    for (const MachineOperand &MO : implicit_operands())
 
      if (MO.isDef() && MO.isImplicit())
 
        return true;
 
    return false;
 
  }
 
 
 
  /// Returns the implicit operands number.
 
  unsigned getNumImplicitOperands() const {
 
    return getNumOperands() - getNumExplicitOperands();
 
  }
 
 
 
  /// Return true if operand \p OpIdx is a subregister index.
 
  bool isOperandSubregIdx(unsigned OpIdx) const {
 
    assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type.");
 
    if (isExtractSubreg() && OpIdx == 2)
 
      return true;
 
    if (isInsertSubreg() && OpIdx == 3)
 
      return true;
 
    if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
 
      return true;
 
    if (isSubregToReg() && OpIdx == 3)
 
      return true;
 
    return false;
 
  }
 
 
 
  /// Returns the number of non-implicit operands.
 
  unsigned getNumExplicitOperands() const;
 
 
 
  /// Returns the number of non-implicit definitions.
 
  unsigned getNumExplicitDefs() const;
 
 
 
  /// iterator/begin/end - Iterate over all operands of a machine instruction.
 
  using mop_iterator = MachineOperand *;
 
  using const_mop_iterator = const MachineOperand *;
 
 
 
  mop_iterator operands_begin() { return Operands; }
 
  mop_iterator operands_end() { return Operands + NumOperands; }
 
 
 
  const_mop_iterator operands_begin() const { return Operands; }
 
  const_mop_iterator operands_end() const { return Operands + NumOperands; }
 
 
 
  iterator_range<mop_iterator> operands() {
 
    return make_range(operands_begin(), operands_end());
 
  }
 
  iterator_range<const_mop_iterator> operands() const {
 
    return make_range(operands_begin(), operands_end());
 
  }
 
  iterator_range<mop_iterator> explicit_operands() {
 
    return make_range(operands_begin(),
 
                      operands_begin() + getNumExplicitOperands());
 
  }
 
  iterator_range<const_mop_iterator> explicit_operands() const {
 
    return make_range(operands_begin(),
 
                      operands_begin() + getNumExplicitOperands());
 
  }
 
  iterator_range<mop_iterator> implicit_operands() {
 
    return make_range(explicit_operands().end(), operands_end());
 
  }
 
  iterator_range<const_mop_iterator> implicit_operands() const {
 
    return make_range(explicit_operands().end(), operands_end());
 
  }
 
  /// Returns a range over all operands that are used to determine the variable
 
  /// location for this DBG_VALUE instruction.
 
  iterator_range<mop_iterator> debug_operands() {
 
    assert((isDebugValueLike()) && "Must be a debug value instruction.");
 
    return isNonListDebugValue()
 
               ? make_range(operands_begin(), operands_begin() + 1)
 
               : make_range(operands_begin() + 2, operands_end());
 
  }
 
  /// \copydoc debug_operands()
 
  iterator_range<const_mop_iterator> debug_operands() const {
 
    assert((isDebugValueLike()) && "Must be a debug value instruction.");
 
    return isNonListDebugValue()
 
               ? make_range(operands_begin(), operands_begin() + 1)
 
               : make_range(operands_begin() + 2, operands_end());
 
  }
 
  /// Returns a range over all explicit operands that are register definitions.
 
  /// Implicit definition are not included!
 
  iterator_range<mop_iterator> defs() {
 
    return make_range(operands_begin(),
 
                      operands_begin() + getNumExplicitDefs());
 
  }
 
  /// \copydoc defs()
 
  iterator_range<const_mop_iterator> defs() const {
 
    return make_range(operands_begin(),
 
                      operands_begin() + getNumExplicitDefs());
 
  }
 
  /// Returns a range that includes all operands that are register uses.
 
  /// This may include unrelated operands which are not register uses.
 
  iterator_range<mop_iterator> uses() {
 
    return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
 
  }
 
  /// \copydoc uses()
 
  iterator_range<const_mop_iterator> uses() const {
 
    return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
 
  }
 
  iterator_range<mop_iterator> explicit_uses() {
 
    return make_range(operands_begin() + getNumExplicitDefs(),
 
                      operands_begin() + getNumExplicitOperands());
 
  }
 
  iterator_range<const_mop_iterator> explicit_uses() const {
 
    return make_range(operands_begin() + getNumExplicitDefs(),
 
                      operands_begin() + getNumExplicitOperands());
 
  }
 
 
 
  /// Returns the number of the operand iterator \p I points to.
 
  unsigned getOperandNo(const_mop_iterator I) const {
 
    return I - operands_begin();
 
  }
 
 
 
  /// Access to memory operands of the instruction. If there are none, that does
 
  /// not imply anything about whether the function accesses memory. Instead,
 
  /// the caller must behave conservatively.
 
  ArrayRef<MachineMemOperand *> memoperands() const {
 
    if (!Info)
 
      return {};
 
 
 
    if (Info.is<EIIK_MMO>())
 
      return ArrayRef(Info.getAddrOfZeroTagPointer(), 1);
 
 
 
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
 
      return EI->getMMOs();
 
 
 
    return {};
 
  }
 
 
 
  /// Access to memory operands of the instruction.
 
  ///
 
  /// If `memoperands_begin() == memoperands_end()`, that does not imply
 
  /// anything about whether the function accesses memory. Instead, the caller
 
  /// must behave conservatively.
 
  mmo_iterator memoperands_begin() const { return memoperands().begin(); }
 
 
 
  /// Access to memory operands of the instruction.
 
  ///
 
  /// If `memoperands_begin() == memoperands_end()`, that does not imply
 
  /// anything about whether the function accesses memory. Instead, the caller
 
  /// must behave conservatively.
 
  mmo_iterator memoperands_end() const { return memoperands().end(); }
 
 
 
  /// Return true if we don't have any memory operands which described the
 
  /// memory access done by this instruction.  If this is true, calling code
 
  /// must be conservative.
 
  bool memoperands_empty() const { return memoperands().empty(); }
 
 
 
  /// Return true if this instruction has exactly one MachineMemOperand.
 
  bool hasOneMemOperand() const { return memoperands().size() == 1; }
 
 
 
  /// Return the number of memory operands.
 
  unsigned getNumMemOperands() const { return memoperands().size(); }
 
 
 
  /// Helper to extract a pre-instruction symbol if one has been added.
 
  MCSymbol *getPreInstrSymbol() const {
 
    if (!Info)
 
      return nullptr;
 
    if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
 
      return S;
 
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
 
      return EI->getPreInstrSymbol();
 
 
 
    return nullptr;
 
  }
 
 
 
  /// Helper to extract a post-instruction symbol if one has been added.
 
  MCSymbol *getPostInstrSymbol() const {
 
    if (!Info)
 
      return nullptr;
 
    if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
 
      return S;
 
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
 
      return EI->getPostInstrSymbol();
 
 
 
    return nullptr;
 
  }
 
 
 
  /// Helper to extract a heap alloc marker if one has been added.
 
  MDNode *getHeapAllocMarker() const {
 
    if (!Info)
 
      return nullptr;
 
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
 
      return EI->getHeapAllocMarker();
 
 
 
    return nullptr;
 
  }
 
 
 
  /// Helper to extract PCSections metadata target sections.
 
  MDNode *getPCSections() const {
 
    if (!Info)
 
      return nullptr;
 
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
 
      return EI->getPCSections();
 
 
 
    return nullptr;
 
  }
 
 
 
  /// Helper to extract a CFI type hash if one has been added.
 
  uint32_t getCFIType() const {
 
    if (!Info)
 
      return 0;
 
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
 
      return EI->getCFIType();
 
 
 
    return 0;
 
  }
 
 
 
  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
 
  /// queries but they are bundle aware.
 
 
 
  enum QueryType {
 
    IgnoreBundle,    // Ignore bundles
 
    AnyInBundle,     // Return true if any instruction in bundle has property
 
    AllInBundle      // Return true if all instructions in bundle have property
 
  };
 
 
 
  /// Return true if the instruction (or in the case of a bundle,
 
  /// the instructions inside the bundle) has the specified property.
 
  /// The first argument is the property being queried.
 
  /// The second argument indicates whether the query should look inside
 
  /// instruction bundles.
 
  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
 
    assert(MCFlag < 64 &&
 
           "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
 
    // Inline the fast path for unbundled or bundle-internal instructions.
 
    if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
 
      return getDesc().getFlags() & (1ULL << MCFlag);
 
 
 
    // If this is the first instruction in a bundle, take the slow path.
 
    return hasPropertyInBundle(1ULL << MCFlag, Type);
 
  }
 
 
 
  /// Return true if this is an instruction that should go through the usual
 
  /// legalization steps.
 
  bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::PreISelOpcode, Type);
 
  }
 
 
 
  /// Return true if this instruction can have a variable number of operands.
 
  /// In this case, the variable operands will be after the normal
 
  /// operands but before the implicit definitions and uses (if any are
 
  /// present).
 
  bool isVariadic(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::Variadic, Type);
 
  }
 
 
 
  /// Set if this instruction has an optional definition, e.g.
 
  /// ARM instructions which can set condition code if 's' bit is set.
 
  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::HasOptionalDef, Type);
 
  }
 
 
 
  /// Return true if this is a pseudo instruction that doesn't
 
  /// correspond to a real machine instruction.
 
  bool isPseudo(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::Pseudo, Type);
 
  }
 
 
 
  /// Return true if this instruction doesn't produce any output in the form of
 
  /// executable instructions.
 
  bool isMetaInstruction(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::Meta, Type);
 
  }
 
 
 
  bool isReturn(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::Return, Type);
 
  }
 
 
 
  /// Return true if this is an instruction that marks the end of an EH scope,
 
  /// i.e., a catchpad or a cleanuppad instruction.
 
  bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::EHScopeReturn, Type);
 
  }
 
 
 
  bool isCall(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::Call, Type);
 
  }
 
 
 
  /// Return true if this is a call instruction that may have an associated
 
  /// call site entry in the debug info.
 
  bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
 
  /// Return true if copying, moving, or erasing this instruction requires
 
  /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
 
  /// \ref eraseCallSiteInfo).
 
  bool shouldUpdateCallSiteInfo() const;
 
 
 
  /// Returns true if the specified instruction stops control flow
 
  /// from executing the instruction immediately following it.  Examples include
 
  /// unconditional branches and return instructions.
 
  bool isBarrier(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::Barrier, Type);
 
  }
 
 
 
  /// Returns true if this instruction part of the terminator for a basic block.
 
  /// Typically this is things like return and branch instructions.
 
  ///
 
  /// Various passes use this to insert code into the bottom of a basic block,
 
  /// but before control flow occurs.
 
  bool isTerminator(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::Terminator, Type);
 
  }
 
 
 
  /// Returns true if this is a conditional, unconditional, or indirect branch.
 
  /// Predicates below can be used to discriminate between
 
  /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
 
  /// get more information.
 
  bool isBranch(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::Branch, Type);
 
  }
 
 
 
  /// Return true if this is an indirect branch, such as a
 
  /// branch through a register.
 
  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::IndirectBranch, Type);
 
  }
 
 
 
  /// Return true if this is a branch which may fall
 
  /// through to the next instruction or may transfer control flow to some other
 
  /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
 
  /// information about this branch.
 
  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
 
    return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
 
  }
 
 
 
  /// Return true if this is a branch which always
 
  /// transfers control flow to some other block.  The
 
  /// TargetInstrInfo::analyzeBranch method can be used to get more information
 
  /// about this branch.
 
  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
 
    return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
 
  }
 
 
 
  /// Return true if this instruction has a predicate operand that
 
  /// controls execution.  It may be set to 'always', or may be set to other
 
  /// values.   There are various methods in TargetInstrInfo that can be used to
 
  /// control and modify the predicate in this instruction.
 
  bool isPredicable(QueryType Type = AllInBundle) const {
 
    // If it's a bundle than all bundled instructions must be predicable for this
 
    // to return true.
 
    return hasProperty(MCID::Predicable, Type);
 
  }
 
 
 
  /// Return true if this instruction is a comparison.
 
  bool isCompare(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::Compare, Type);
 
  }
 
 
 
  /// Return true if this instruction is a move immediate
 
  /// (including conditional moves) instruction.
 
  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::MoveImm, Type);
 
  }
 
 
 
  /// Return true if this instruction is a register move.
 
  /// (including moving values from subreg to reg)
 
  bool isMoveReg(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::MoveReg, Type);
 
  }
 
 
 
  /// Return true if this instruction is a bitcast instruction.
 
  bool isBitcast(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::Bitcast, Type);
 
  }
 
 
 
  /// Return true if this instruction is a select instruction.
 
  bool isSelect(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::Select, Type);
 
  }
 
 
 
  /// Return true if this instruction cannot be safely duplicated.
 
  /// For example, if the instruction has a unique labels attached
 
  /// to it, duplicating it would cause multiple definition errors.
 
  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
 
    if (getPreInstrSymbol() || getPostInstrSymbol())
 
      return true;
 
    return hasProperty(MCID::NotDuplicable, Type);
 
  }
 
 
 
  /// Return true if this instruction is convergent.
 
  /// Convergent instructions can not be made control-dependent on any
 
  /// additional values.
 
  bool isConvergent(QueryType Type = AnyInBundle) const {
 
    if (isInlineAsm()) {
 
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 
      if (ExtraInfo & InlineAsm::Extra_IsConvergent)
 
        return true;
 
    }
 
    return hasProperty(MCID::Convergent, Type);
 
  }
 
 
 
  /// Returns true if the specified instruction has a delay slot
 
  /// which must be filled by the code generator.
 
  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::DelaySlot, Type);
 
  }
 
 
 
  /// Return true for instructions that can be folded as
 
  /// memory operands in other instructions. The most common use for this
 
  /// is instructions that are simple loads from memory that don't modify
 
  /// the loaded value in any way, but it can also be used for instructions
 
  /// that can be expressed as constant-pool loads, such as V_SETALLONES
 
  /// on x86, to allow them to be folded when it is beneficial.
 
  /// This should only be set on instructions that return a value in their
 
  /// only virtual register definition.
 
  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::FoldableAsLoad, Type);
 
  }
 
 
 
  /// Return true if this instruction behaves
 
  /// the same way as the generic REG_SEQUENCE instructions.
 
  /// E.g., on ARM,
 
  /// dX VMOVDRR rY, rZ
 
  /// is equivalent to
 
  /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
 
  ///
 
  /// Note that for the optimizers to be able to take advantage of
 
  /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
 
  /// override accordingly.
 
  bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::RegSequence, Type);
 
  }
 
 
 
  /// Return true if this instruction behaves
 
  /// the same way as the generic EXTRACT_SUBREG instructions.
 
  /// E.g., on ARM,
 
  /// rX, rY VMOVRRD dZ
 
  /// is equivalent to two EXTRACT_SUBREG:
 
  /// rX = EXTRACT_SUBREG dZ, ssub_0
 
  /// rY = EXTRACT_SUBREG dZ, ssub_1
 
  ///
 
  /// Note that for the optimizers to be able to take advantage of
 
  /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
 
  /// override accordingly.
 
  bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::ExtractSubreg, Type);
 
  }
 
 
 
  /// Return true if this instruction behaves
 
  /// the same way as the generic INSERT_SUBREG instructions.
 
  /// E.g., on ARM,
 
  /// dX = VSETLNi32 dY, rZ, Imm
 
  /// is equivalent to a INSERT_SUBREG:
 
  /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
 
  ///
 
  /// Note that for the optimizers to be able to take advantage of
 
  /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
 
  /// override accordingly.
 
  bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::InsertSubreg, Type);
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Side Effect Analysis
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// Return true if this instruction could possibly read memory.
 
  /// Instructions with this flag set are not necessarily simple load
 
  /// instructions, they may load a value and modify it, for example.
 
  bool mayLoad(QueryType Type = AnyInBundle) const {
 
    if (isInlineAsm()) {
 
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 
      if (ExtraInfo & InlineAsm::Extra_MayLoad)
 
        return true;
 
    }
 
    return hasProperty(MCID::MayLoad, Type);
 
  }
 
 
 
  /// Return true if this instruction could possibly modify memory.
 
  /// Instructions with this flag set are not necessarily simple store
 
  /// instructions, they may store a modified value based on their operands, or
 
  /// may not actually modify anything, for example.
 
  bool mayStore(QueryType Type = AnyInBundle) const {
 
    if (isInlineAsm()) {
 
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 
      if (ExtraInfo & InlineAsm::Extra_MayStore)
 
        return true;
 
    }
 
    return hasProperty(MCID::MayStore, Type);
 
  }
 
 
 
  /// Return true if this instruction could possibly read or modify memory.
 
  bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
 
    return mayLoad(Type) || mayStore(Type);
 
  }
 
 
 
  /// Return true if this instruction could possibly raise a floating-point
 
  /// exception.  This is the case if the instruction is a floating-point
 
  /// instruction that can in principle raise an exception, as indicated
 
  /// by the MCID::MayRaiseFPException property, *and* at the same time,
 
  /// the instruction is used in a context where we expect floating-point
 
  /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
 
  bool mayRaiseFPException() const {
 
    return hasProperty(MCID::MayRaiseFPException) &&
 
           !getFlag(MachineInstr::MIFlag::NoFPExcept);
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Flags that indicate whether an instruction can be modified by a method.
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// Return true if this may be a 2- or 3-address
 
  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
 
  /// result if Y and Z are exchanged.  If this flag is set, then the
 
  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
 
  /// instruction.
 
  ///
 
  /// Note that this flag may be set on instructions that are only commutable
 
  /// sometimes.  In these cases, the call to commuteInstruction will fail.
 
  /// Also note that some instructions require non-trivial modification to
 
  /// commute them.
 
  bool isCommutable(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::Commutable, Type);
 
  }
 
 
 
  /// Return true if this is a 2-address instruction
 
  /// which can be changed into a 3-address instruction if needed.  Doing this
 
  /// transformation can be profitable in the register allocator, because it
 
  /// means that the instruction can use a 2-address form if possible, but
 
  /// degrade into a less efficient form if the source and dest register cannot
 
  /// be assigned to the same register.  For example, this allows the x86
 
  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
 
  /// is the same speed as the shift but has bigger code size.
 
  ///
 
  /// If this returns true, then the target must implement the
 
  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
 
  /// is allowed to fail if the transformation isn't valid for this specific
 
  /// instruction (e.g. shl reg, 4 on x86).
 
  ///
 
  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::ConvertibleTo3Addr, Type);
 
  }
 
 
 
  /// Return true if this instruction requires
 
  /// custom insertion support when the DAG scheduler is inserting it into a
 
  /// machine basic block.  If this is true for the instruction, it basically
 
  /// means that it is a pseudo instruction used at SelectionDAG time that is
 
  /// expanded out into magic code by the target when MachineInstrs are formed.
 
  ///
 
  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
 
  /// is used to insert this into the MachineBasicBlock.
 
  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::UsesCustomInserter, Type);
 
  }
 
 
 
  /// Return true if this instruction requires *adjustment*
 
  /// after instruction selection by calling a target hook. For example, this
 
  /// can be used to fill in ARM 's' optional operand depending on whether
 
  /// the conditional flag register is used.
 
  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
 
    return hasProperty(MCID::HasPostISelHook, Type);
 
  }
 
 
 
  /// Returns true if this instruction is a candidate for remat.
 
  /// This flag is deprecated, please don't use it anymore.  If this
 
  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
 
  /// verify the instruction is really rematable.
 
  bool isRematerializable(QueryType Type = AllInBundle) const {
 
    // It's only possible to re-mat a bundle if all bundled instructions are
 
    // re-materializable.
 
    return hasProperty(MCID::Rematerializable, Type);
 
  }
 
 
 
  /// Returns true if this instruction has the same cost (or less) than a move
 
  /// instruction. This is useful during certain types of optimizations
 
  /// (e.g., remat during two-address conversion or machine licm)
 
  /// where we would like to remat or hoist the instruction, but not if it costs
 
  /// more than moving the instruction into the appropriate register. Note, we
 
  /// are not marking copies from and to the same register class with this flag.
 
  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
 
    // Only returns true for a bundle if all bundled instructions are cheap.
 
    return hasProperty(MCID::CheapAsAMove, Type);
 
  }
 
 
 
  /// Returns true if this instruction source operands
 
  /// have special register allocation requirements that are not captured by the
 
  /// operand register classes. e.g. ARM::STRD's two source registers must be an
 
  /// even / odd pair, ARM::STM registers have to be in ascending order.
 
  /// Post-register allocation passes should not attempt to change allocations
 
  /// for sources of instructions with this flag.
 
  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
 
  }
 
 
 
  /// Returns true if this instruction def operands
 
  /// have special register allocation requirements that are not captured by the
 
  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
 
  /// even / odd pair, ARM::LDM registers have to be in ascending order.
 
  /// Post-register allocation passes should not attempt to change allocations
 
  /// for definitions of instructions with this flag.
 
  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
 
    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
 
  }
 
 
 
  enum MICheckType {
 
    CheckDefs,      // Check all operands for equality
 
    CheckKillDead,  // Check all operands including kill / dead markers
 
    IgnoreDefs,     // Ignore all definitions
 
    IgnoreVRegDefs  // Ignore virtual register definitions
 
  };
 
 
 
  /// Return true if this instruction is identical to \p Other.
 
  /// Two instructions are identical if they have the same opcode and all their
 
  /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
 
  /// Note that this means liveness related flags (dead, undef, kill) do not
 
  /// affect the notion of identical.
 
  bool isIdenticalTo(const MachineInstr &Other,
 
                     MICheckType Check = CheckDefs) const;
 
 
 
  /// Returns true if this instruction is a debug instruction that represents an
 
  /// identical debug value to \p Other.
 
  /// This function considers these debug instructions equivalent if they have
 
  /// identical variables, debug locations, and debug operands, and if the
 
  /// DIExpressions combined with the directness flags are equivalent.
 
  bool isEquivalentDbgInstr(const MachineInstr &Other) const;
 
 
 
  /// Unlink 'this' from the containing basic block, and return it without
 
  /// deleting it.
 
  ///
 
  /// This function can not be used on bundled instructions, use
 
  /// removeFromBundle() to remove individual instructions from a bundle.
 
  MachineInstr *removeFromParent();
 
 
 
  /// Unlink this instruction from its basic block and return it without
 
  /// deleting it.
 
  ///
 
  /// If the instruction is part of a bundle, the other instructions in the
 
  /// bundle remain bundled.
 
  MachineInstr *removeFromBundle();
 
 
 
  /// Unlink 'this' from the containing basic block and delete it.
 
  ///
 
  /// If this instruction is the header of a bundle, the whole bundle is erased.
 
  /// This function can not be used for instructions inside a bundle, use
 
  /// eraseFromBundle() to erase individual bundled instructions.
 
  void eraseFromParent();
 
 
 
  /// Unlink 'this' form its basic block and delete it.
 
  ///
 
  /// If the instruction is part of a bundle, the other instructions in the
 
  /// bundle remain bundled.
 
  void eraseFromBundle();
 
 
 
  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
 
  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
 
  bool isAnnotationLabel() const {
 
    return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
 
  }
 
 
 
  /// Returns true if the MachineInstr represents a label.
 
  bool isLabel() const {
 
    return isEHLabel() || isGCLabel() || isAnnotationLabel();
 
  }
 
 
 
  bool isCFIInstruction() const {
 
    return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
 
  }
 
 
 
  bool isPseudoProbe() const {
 
    return getOpcode() == TargetOpcode::PSEUDO_PROBE;
 
  }
 
 
 
  // True if the instruction represents a position in the function.
 
  bool isPosition() const { return isLabel() || isCFIInstruction(); }
 
 
 
  bool isNonListDebugValue() const {
 
    return getOpcode() == TargetOpcode::DBG_VALUE;
 
  }
 
  bool isDebugValueList() const {
 
    return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
 
  }
 
  bool isDebugValue() const {
 
    return isNonListDebugValue() || isDebugValueList();
 
  }
 
  bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
 
  bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
 
  bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); }
 
  bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
 
  bool isDebugInstr() const {
 
    return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
 
  }
 
  bool isDebugOrPseudoInstr() const {
 
    return isDebugInstr() || isPseudoProbe();
 
  }
 
 
 
  bool isDebugOffsetImm() const {
 
    return isNonListDebugValue() && getDebugOffset().isImm();
 
  }
 
 
 
  /// A DBG_VALUE is indirect iff the location operand is a register and
 
  /// the offset operand is an immediate.
 
  bool isIndirectDebugValue() const {
 
    return isDebugOffsetImm() && getDebugOperand(0).isReg();
 
  }
 
 
 
  /// A DBG_VALUE is an entry value iff its debug expression contains the
 
  /// DW_OP_LLVM_entry_value operation.
 
  bool isDebugEntryValue() const;
 
 
 
  /// Return true if the instruction is a debug value which describes a part of
 
  /// a variable as unavailable.
 
  bool isUndefDebugValue() const {
 
    if (!isDebugValue())
 
      return false;
 
    // If any $noreg locations are given, this DV is undef.
 
    for (const MachineOperand &Op : debug_operands())
 
      if (Op.isReg() && !Op.getReg().isValid())
 
        return true;
 
    return false;
 
  }
 
 
 
  bool isPHI() const {
 
    return getOpcode() == TargetOpcode::PHI ||
 
           getOpcode() == TargetOpcode::G_PHI;
 
  }
 
  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
 
  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
 
  bool isInlineAsm() const {
 
    return getOpcode() == TargetOpcode::INLINEASM ||
 
           getOpcode() == TargetOpcode::INLINEASM_BR;
 
  }
 
 
 
  /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
 
  /// specific, be attached to a generic MachineInstr.
 
  bool isMSInlineAsm() const {
 
    return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
 
  }
 
 
 
  bool isStackAligningInlineAsm() const;
 
  InlineAsm::AsmDialect getInlineAsmDialect() const;
 
 
 
  bool isInsertSubreg() const {
 
    return getOpcode() == TargetOpcode::INSERT_SUBREG;
 
  }
 
 
 
  bool isSubregToReg() const {
 
    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
 
  }
 
 
 
  bool isRegSequence() const {
 
    return getOpcode() == TargetOpcode::REG_SEQUENCE;
 
  }
 
 
 
  bool isBundle() const {
 
    return getOpcode() == TargetOpcode::BUNDLE;
 
  }
 
 
 
  bool isCopy() const {
 
    return getOpcode() == TargetOpcode::COPY;
 
  }
 
 
 
  bool isFullCopy() const {
 
    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
 
  }
 
 
 
  bool isExtractSubreg() const {
 
    return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
 
  }
 
 
 
  /// Return true if the instruction behaves like a copy.
 
  /// This does not include native copy instructions.
 
  bool isCopyLike() const {
 
    return isCopy() || isSubregToReg();
 
  }
 
 
 
  /// Return true is the instruction is an identity copy.
 
  bool isIdentityCopy() const {
 
    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
 
      getOperand(0).getSubReg() == getOperand(1).getSubReg();
 
  }
 
 
 
  /// Return true if this is a transient instruction that is either very likely
 
  /// to be eliminated during register allocation (such as copy-like
 
  /// instructions), or if this instruction doesn't have an execution-time cost.
 
  bool isTransient() const {
 
    switch (getOpcode()) {
 
    default:
 
      return isMetaInstruction();
 
    // Copy-like instructions are usually eliminated during register allocation.
 
    case TargetOpcode::PHI:
 
    case TargetOpcode::G_PHI:
 
    case TargetOpcode::COPY:
 
    case TargetOpcode::INSERT_SUBREG:
 
    case TargetOpcode::SUBREG_TO_REG:
 
    case TargetOpcode::REG_SEQUENCE:
 
      return true;
 
    }
 
  }
 
 
 
  /// Return the number of instructions inside the MI bundle, excluding the
 
  /// bundle header.
 
  ///
 
  /// This is the number of instructions that MachineBasicBlock::iterator
 
  /// skips, 0 for unbundled instructions.
 
  unsigned getBundleSize() const;
 
 
 
  /// Return true if the MachineInstr reads the specified register.
 
  /// If TargetRegisterInfo is passed, then it also checks if there
 
  /// is a read of a super-register.
 
  /// This does not count partial redefines of virtual registers as reads:
 
  ///   %reg1024:6 = OP.
 
  bool readsRegister(Register Reg,
 
                     const TargetRegisterInfo *TRI = nullptr) const {
 
    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
 
  }
 
 
 
  /// Return true if the MachineInstr reads the specified virtual register.
 
  /// Take into account that a partial define is a
 
  /// read-modify-write operation.
 
  bool readsVirtualRegister(Register Reg) const {
 
    return readsWritesVirtualRegister(Reg).first;
 
  }
 
 
 
  /// Return a pair of bools (reads, writes) indicating if this instruction
 
  /// reads or writes Reg. This also considers partial defines.
 
  /// If Ops is not null, all operand indices for Reg are added.
 
  std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
 
                                SmallVectorImpl<unsigned> *Ops = nullptr) const;
 
 
 
  /// Return true if the MachineInstr kills the specified register.
 
  /// If TargetRegisterInfo is passed, then it also checks if there is
 
  /// a kill of a super-register.
 
  bool killsRegister(Register Reg,
 
                     const TargetRegisterInfo *TRI = nullptr) const {
 
    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
 
  }
 
 
 
  /// Return true if the MachineInstr fully defines the specified register.
 
  /// If TargetRegisterInfo is passed, then it also checks
 
  /// if there is a def of a super-register.
 
  /// NOTE: It's ignoring subreg indices on virtual registers.
 
  bool definesRegister(Register Reg,
 
                       const TargetRegisterInfo *TRI = nullptr) const {
 
    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
 
  }
 
 
 
  /// Return true if the MachineInstr modifies (fully define or partially
 
  /// define) the specified register.
 
  /// NOTE: It's ignoring subreg indices on virtual registers.
 
  bool modifiesRegister(Register Reg,
 
                        const TargetRegisterInfo *TRI = nullptr) const {
 
    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
 
  }
 
 
 
  /// Returns true if the register is dead in this machine instruction.
 
  /// If TargetRegisterInfo is passed, then it also checks
 
  /// if there is a dead def of a super-register.
 
  bool registerDefIsDead(Register Reg,
 
                         const TargetRegisterInfo *TRI = nullptr) const {
 
    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
 
  }
 
 
 
  /// Returns true if the MachineInstr has an implicit-use operand of exactly
 
  /// the given register (not considering sub/super-registers).
 
  bool hasRegisterImplicitUseOperand(Register Reg) const;
 
 
 
  /// Returns the operand index that is a use of the specific register or -1
 
  /// if it is not found. It further tightens the search criteria to a use
 
  /// that kills the register if isKill is true.
 
  int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
 
                                const TargetRegisterInfo *TRI = nullptr) const;
 
 
 
  /// Wrapper for findRegisterUseOperandIdx, it returns
 
  /// a pointer to the MachineOperand rather than an index.
 
  MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
 
                                      const TargetRegisterInfo *TRI = nullptr) {
 
    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
 
    return (Idx == -1) ? nullptr : &getOperand(Idx);
 
  }
 
 
 
  const MachineOperand *findRegisterUseOperand(
 
    Register Reg, bool isKill = false,
 
    const TargetRegisterInfo *TRI = nullptr) const {
 
    return const_cast<MachineInstr *>(this)->
 
      findRegisterUseOperand(Reg, isKill, TRI);
 
  }
 
 
 
  /// Returns the operand index that is a def of the specified register or
 
  /// -1 if it is not found. If isDead is true, defs that are not dead are
 
  /// skipped. If Overlap is true, then it also looks for defs that merely
 
  /// overlap the specified register. If TargetRegisterInfo is non-null,
 
  /// then it also checks if there is a def of a super-register.
 
  /// This may also return a register mask operand when Overlap is true.
 
  int findRegisterDefOperandIdx(Register Reg,
 
                                bool isDead = false, bool Overlap = false,
 
                                const TargetRegisterInfo *TRI = nullptr) const;
 
 
 
  /// Wrapper for findRegisterDefOperandIdx, it returns
 
  /// a pointer to the MachineOperand rather than an index.
 
  MachineOperand *
 
  findRegisterDefOperand(Register Reg, bool isDead = false,
 
                         bool Overlap = false,
 
                         const TargetRegisterInfo *TRI = nullptr) {
 
    int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
 
    return (Idx == -1) ? nullptr : &getOperand(Idx);
 
  }
 
 
 
  const MachineOperand *
 
  findRegisterDefOperand(Register Reg, bool isDead = false,
 
                         bool Overlap = false,
 
                         const TargetRegisterInfo *TRI = nullptr) const {
 
    return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
 
        Reg, isDead, Overlap, TRI);
 
  }
 
 
 
  /// Find the index of the first operand in the
 
  /// operand list that is used to represent the predicate. It returns -1 if
 
  /// none is found.
 
  int findFirstPredOperandIdx() const;
 
 
 
  /// Find the index of the flag word operand that
 
  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
 
  /// getOperand(OpIdx) does not belong to an inline asm operand group.
 
  ///
 
  /// If GroupNo is not NULL, it will receive the number of the operand group
 
  /// containing OpIdx.
 
  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
 
 
 
  /// Compute the static register class constraint for operand OpIdx.
 
  /// For normal instructions, this is derived from the MCInstrDesc.
 
  /// For inline assembly it is derived from the flag words.
 
  ///
 
  /// Returns NULL if the static register class constraint cannot be
 
  /// determined.
 
  const TargetRegisterClass*
 
  getRegClassConstraint(unsigned OpIdx,
 
                        const TargetInstrInfo *TII,
 
                        const TargetRegisterInfo *TRI) const;
 
 
 
  /// Applies the constraints (def/use) implied by this MI on \p Reg to
 
  /// the given \p CurRC.
 
  /// If \p ExploreBundle is set and MI is part of a bundle, all the
 
  /// instructions inside the bundle will be taken into account. In other words,
 
  /// this method accumulates all the constraints of the operand of this MI and
 
  /// the related bundle if MI is a bundle or inside a bundle.
 
  ///
 
  /// Returns the register class that satisfies both \p CurRC and the
 
  /// constraints set by MI. Returns NULL if such a register class does not
 
  /// exist.
 
  ///
 
  /// \pre CurRC must not be NULL.
 
  const TargetRegisterClass *getRegClassConstraintEffectForVReg(
 
      Register Reg, const TargetRegisterClass *CurRC,
 
      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
 
      bool ExploreBundle = false) const;
 
 
 
  /// Applies the constraints (def/use) implied by the \p OpIdx operand
 
  /// to the given \p CurRC.
 
  ///
 
  /// Returns the register class that satisfies both \p CurRC and the
 
  /// constraints set by \p OpIdx MI. Returns NULL if such a register class
 
  /// does not exist.
 
  ///
 
  /// \pre CurRC must not be NULL.
 
  /// \pre The operand at \p OpIdx must be a register.
 
  const TargetRegisterClass *
 
  getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
 
                              const TargetInstrInfo *TII,
 
                              const TargetRegisterInfo *TRI) const;
 
 
 
  /// Add a tie between the register operands at DefIdx and UseIdx.
 
  /// The tie will cause the register allocator to ensure that the two
 
  /// operands are assigned the same physical register.
 
  ///
 
  /// Tied operands are managed automatically for explicit operands in the
 
  /// MCInstrDesc. This method is for exceptional cases like inline asm.
 
  void tieOperands(unsigned DefIdx, unsigned UseIdx);
 
 
 
  /// Given the index of a tied register operand, find the
 
  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
 
  /// index of the tied operand which must exist.
 
  unsigned findTiedOperandIdx(unsigned OpIdx) const;
 
 
 
  /// Given the index of a register def operand,
 
  /// check if the register def is tied to a source operand, due to either
 
  /// two-address elimination or inline assembly constraints. Returns the
 
  /// first tied use operand index by reference if UseOpIdx is not null.
 
  bool isRegTiedToUseOperand(unsigned DefOpIdx,
 
                             unsigned *UseOpIdx = nullptr) const {
 
    const MachineOperand &MO = getOperand(DefOpIdx);
 
    if (!MO.isReg() || !MO.isDef() || !MO.isTied())
 
      return false;
 
    if (UseOpIdx)
 
      *UseOpIdx = findTiedOperandIdx(DefOpIdx);
 
    return true;
 
  }
 
 
 
  /// Return true if the use operand of the specified index is tied to a def
 
  /// operand. It also returns the def operand index by reference if DefOpIdx
 
  /// is not null.
 
  bool isRegTiedToDefOperand(unsigned UseOpIdx,
 
                             unsigned *DefOpIdx = nullptr) const {
 
    const MachineOperand &MO = getOperand(UseOpIdx);
 
    if (!MO.isReg() || !MO.isUse() || !MO.isTied())
 
      return false;
 
    if (DefOpIdx)
 
      *DefOpIdx = findTiedOperandIdx(UseOpIdx);
 
    return true;
 
  }
 
 
 
  /// Clears kill flags on all operands.
 
  void clearKillInfo();
 
 
 
  /// Replace all occurrences of FromReg with ToReg:SubIdx,
 
  /// properly composing subreg indices where necessary.
 
  void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
 
                          const TargetRegisterInfo &RegInfo);
 
 
 
  /// We have determined MI kills a register. Look for the
 
  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
 
  /// add a implicit operand if it's not found. Returns true if the operand
 
  /// exists / is added.
 
  bool addRegisterKilled(Register IncomingReg,
 
                         const TargetRegisterInfo *RegInfo,
 
                         bool AddIfNotFound = false);
 
 
 
  /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
 
  /// all aliasing registers.
 
  void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
 
 
 
  /// We have determined MI defined a register without a use.
 
  /// Look for the operand that defines it and mark it as IsDead. If
 
  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
 
  /// true if the operand exists / is added.
 
  bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
 
                       bool AddIfNotFound = false);
 
 
 
  /// Clear all dead flags on operands defining register @p Reg.
 
  void clearRegisterDeads(Register Reg);
 
 
 
  /// Mark all subregister defs of register @p Reg with the undef flag.
 
  /// This function is used when we determined to have a subregister def in an
 
  /// otherwise undefined super register.
 
  void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
 
 
 
  /// We have determined MI defines a register. Make sure there is an operand
 
  /// defining Reg.
 
  void addRegisterDefined(Register Reg,
 
                          const TargetRegisterInfo *RegInfo = nullptr);
 
 
 
  /// Mark every physreg used by this instruction as
 
  /// dead except those in the UsedRegs list.
 
  ///
 
  /// On instructions with register mask operands, also add implicit-def
 
  /// operands for all registers in UsedRegs.
 
  void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
 
                             const TargetRegisterInfo &TRI);
 
 
 
  /// Return true if it is safe to move this instruction. If
 
  /// SawStore is set to true, it means that there is a store (or call) between
 
  /// the instruction's location and its intended destination.
 
  bool isSafeToMove(AAResults *AA, bool &SawStore) const;
 
 
 
  /// Returns true if this instruction's memory access aliases the memory
 
  /// access of Other.
 
  //
 
  /// Assumes any physical registers used to compute addresses
 
  /// have the same value for both instructions.  Returns false if neither
 
  /// instruction writes to memory.
 
  ///
 
  /// @param AA Optional alias analysis, used to compare memory operands.
 
  /// @param Other MachineInstr to check aliasing against.
 
  /// @param UseTBAA Whether to pass TBAA information to alias analysis.
 
  bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
 
 
 
  /// Return true if this instruction may have an ordered
 
  /// or volatile memory reference, or if the information describing the memory
 
  /// reference is not available. Return false if it is known to have no
 
  /// ordered or volatile memory references.
 
  bool hasOrderedMemoryRef() const;
 
 
 
  /// Return true if this load instruction never traps and points to a memory
 
  /// location whose value doesn't change during the execution of this function.
 
  ///
 
  /// Examples include loading a value from the constant pool or from the
 
  /// argument area of a function (if it does not change).  If the instruction
 
  /// does multiple loads, this returns true only if all of the loads are
 
  /// dereferenceable and invariant.
 
  bool isDereferenceableInvariantLoad() const;
 
 
 
  /// If the specified instruction is a PHI that always merges together the
 
  /// same virtual register, return the register, otherwise return 0.
 
  unsigned isConstantValuePHI() const;
 
 
 
  /// Return true if this instruction has side effects that are not modeled
 
  /// by mayLoad / mayStore, etc.
 
  /// For all instructions, the property is encoded in MCInstrDesc::Flags
 
  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
 
  /// INLINEASM instruction, in which case the side effect property is encoded
 
  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
 
  ///
 
  bool hasUnmodeledSideEffects() const;
 
 
 
  /// Returns true if it is illegal to fold a load across this instruction.
 
  bool isLoadFoldBarrier() const;
 
 
 
  /// Return true if all the defs of this instruction are dead.
 
  bool allDefsAreDead() const;
 
 
 
  /// Return a valid size if the instruction is a spill instruction.
 
  std::optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
 
 
 
  /// Return a valid size if the instruction is a folded spill instruction.
 
  std::optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
 
 
 
  /// Return a valid size if the instruction is a restore instruction.
 
  std::optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
 
 
 
  /// Return a valid size if the instruction is a folded restore instruction.
 
  std::optional<unsigned>
 
  getFoldedRestoreSize(const TargetInstrInfo *TII) const;
 
 
 
  /// Copy implicit register operands from specified
 
  /// instruction to this instruction.
 
  void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
 
 
 
  /// Debugging support
 
  /// @{
 
  /// Determine the generic type to be printed (if needed) on uses and defs.
 
  LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
 
                     const MachineRegisterInfo &MRI) const;
 
 
 
  /// Return true when an instruction has tied register that can't be determined
 
  /// by the instruction's descriptor. This is useful for MIR printing, to
 
  /// determine whether we need to print the ties or not.
 
  bool hasComplexRegisterTies() const;
 
 
 
  /// Print this MI to \p OS.
 
  /// Don't print information that can be inferred from other instructions if
 
  /// \p IsStandalone is false. It is usually true when only a fragment of the
 
  /// function is printed.
 
  /// Only print the defs and the opcode if \p SkipOpers is true.
 
  /// Otherwise, also print operands if \p SkipDebugLoc is true.
 
  /// Otherwise, also print the debug loc, with a terminating newline.
 
  /// \p TII is used to print the opcode name.  If it's not present, but the
 
  /// MI is in a function, the opcode will be printed using the function's TII.
 
  void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
 
             bool SkipDebugLoc = false, bool AddNewLine = true,
 
             const TargetInstrInfo *TII = nullptr) const;
 
  void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
 
             bool SkipOpers = false, bool SkipDebugLoc = false,
 
             bool AddNewLine = true,
 
             const TargetInstrInfo *TII = nullptr) const;
 
  void dump() const;
 
  /// Print on dbgs() the current instruction and the instructions defining its
 
  /// operands and so on until we reach \p MaxDepth.
 
  void dumpr(const MachineRegisterInfo &MRI,
 
             unsigned MaxDepth = UINT_MAX) const;
 
  /// @}
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Accessors used to build up machine instructions.
 
 
 
  /// Add the specified operand to the instruction.  If it is an implicit
 
  /// operand, it is added to the end of the operand list.  If it is an
 
  /// explicit operand it is added at the end of the explicit operand list
 
  /// (before the first implicit operand).
 
  ///
 
  /// MF must be the machine function that was used to allocate this
 
  /// instruction.
 
  ///
 
  /// MachineInstrBuilder provides a more convenient interface for creating
 
  /// instructions and adding operands.
 
  void addOperand(MachineFunction &MF, const MachineOperand &Op);
 
 
 
  /// Add an operand without providing an MF reference. This only works for
 
  /// instructions that are inserted in a basic block.
 
  ///
 
  /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
 
  /// preferred.
 
  void addOperand(const MachineOperand &Op);
 
 
 
  /// Replace the instruction descriptor (thus opcode) of
 
  /// the current instruction with a new one.
 
  void setDesc(const MCInstrDesc &TID) { MCID = &TID; }
 
 
 
  /// Replace current source information with new such.
 
  /// Avoid using this, the constructor argument is preferable.
 
  void setDebugLoc(DebugLoc DL) {
 
    DbgLoc = std::move(DL);
 
    assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
 
  }
 
 
 
  /// Erase an operand from an instruction, leaving it with one
 
  /// fewer operand than it started with.
 
  void removeOperand(unsigned OpNo);
 
 
 
  /// Clear this MachineInstr's memory reference descriptor list.  This resets
 
  /// the memrefs to their most conservative state.  This should be used only
 
  /// as a last resort since it greatly pessimizes our knowledge of the memory
 
  /// access performed by the instruction.
 
  void dropMemRefs(MachineFunction &MF);
 
 
 
  /// Assign this MachineInstr's memory reference descriptor list.
 
  ///
 
  /// Unlike other methods, this *will* allocate them into a new array
 
  /// associated with the provided `MachineFunction`.
 
  void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
 
 
 
  /// Add a MachineMemOperand to the machine instruction.
 
  /// This function should be used only occasionally. The setMemRefs function
 
  /// is the primary method for setting up a MachineInstr's MemRefs list.
 
  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
 
 
 
  /// Clone another MachineInstr's memory reference descriptor list and replace
 
  /// ours with it.
 
  ///
 
  /// Note that `*this` may be the incoming MI!
 
  ///
 
  /// Prefer this API whenever possible as it can avoid allocations in common
 
  /// cases.
 
  void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
 
 
 
  /// Clone the merge of multiple MachineInstrs' memory reference descriptors
 
  /// list and replace ours with it.
 
  ///
 
  /// Note that `*this` may be one of the incoming MIs!
 
  ///
 
  /// Prefer this API whenever possible as it can avoid allocations in common
 
  /// cases.
 
  void cloneMergedMemRefs(MachineFunction &MF,
 
                          ArrayRef<const MachineInstr *> MIs);
 
 
 
  /// Set a symbol that will be emitted just prior to the instruction itself.
 
  ///
 
  /// Setting this to a null pointer will remove any such symbol.
 
  ///
 
  /// FIXME: This is not fully implemented yet.
 
  void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
 
 
 
  /// Set a symbol that will be emitted just after the instruction itself.
 
  ///
 
  /// Setting this to a null pointer will remove any such symbol.
 
  ///
 
  /// FIXME: This is not fully implemented yet.
 
  void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
 
 
 
  /// Clone another MachineInstr's pre- and post- instruction symbols and
 
  /// replace ours with it.
 
  void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
 
 
 
  /// Set a marker on instructions that denotes where we should create and emit
 
  /// heap alloc site labels. This waits until after instruction selection and
 
  /// optimizations to create the label, so it should still work if the
 
  /// instruction is removed or duplicated.
 
  void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
 
 
 
  // Set metadata on instructions that say which sections to emit instruction
 
  // addresses into.
 
  void setPCSections(MachineFunction &MF, MDNode *MD);
 
 
 
  /// Set the CFI type for the instruction.
 
  void setCFIType(MachineFunction &MF, uint32_t Type);
 
 
 
  /// Return the MIFlags which represent both MachineInstrs. This
 
  /// should be used when merging two MachineInstrs into one. This routine does
 
  /// not modify the MIFlags of this MachineInstr.
 
  uint16_t mergeFlagsWith(const MachineInstr& Other) const;
 
 
 
  static uint16_t copyFlagsFromInstruction(const Instruction &I);
 
 
 
  /// Copy all flags to MachineInst MIFlags
 
  void copyIRFlags(const Instruction &I);
 
 
 
  /// Break any tie involving OpIdx.
 
  void untieRegOperand(unsigned OpIdx) {
 
    MachineOperand &MO = getOperand(OpIdx);
 
    if (MO.isReg() && MO.isTied()) {
 
      getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
 
      MO.TiedTo = 0;
 
    }
 
  }
 
 
 
  /// Add all implicit def and use operands to this instruction.
 
  void addImplicitDefUseOperands(MachineFunction &MF);
 
 
 
  /// Scan instructions immediately following MI and collect any matching
 
  /// DBG_VALUEs.
 
  void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
 
 
 
  /// Find all DBG_VALUEs that point to the register def in this instruction
 
  /// and point them to \p Reg instead.
 
  void changeDebugValuesDefReg(Register Reg);
 
 
 
  /// Returns the Intrinsic::ID for this instruction.
 
  /// \pre Must have an intrinsic ID operand.
 
  unsigned getIntrinsicID() const {
 
    return getOperand(getNumExplicitDefs()).getIntrinsicID();
 
  }
 
 
 
  /// Sets all register debug operands in this debug value instruction to be
 
  /// undef.
 
  void setDebugValueUndef() {
 
    assert(isDebugValue() && "Must be a debug value instruction.");
 
    for (MachineOperand &MO : debug_operands()) {
 
      if (MO.isReg()) {
 
        MO.setReg(0);
 
        MO.setSubReg(0);
 
      }
 
    }
 
  }
 
 
 
private:
 
  /// If this instruction is embedded into a MachineFunction, return the
 
  /// MachineRegisterInfo object for the current function, otherwise
 
  /// return null.
 
  MachineRegisterInfo *getRegInfo();
 
 
 
  /// Unlink all of the register operands in this instruction from their
 
  /// respective use lists.  This requires that the operands already be on their
 
  /// use lists.
 
  void removeRegOperandsFromUseLists(MachineRegisterInfo&);
 
 
 
  /// Add all of the register operands in this instruction from their
 
  /// respective use lists.  This requires that the operands not be on their
 
  /// use lists yet.
 
  void addRegOperandsToUseLists(MachineRegisterInfo&);
 
 
 
  /// Slow path for hasProperty when we're dealing with a bundle.
 
  bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
 
 
 
  /// Implements the logic of getRegClassConstraintEffectForVReg for the
 
  /// this MI and the given operand index \p OpIdx.
 
  /// If the related operand does not constrained Reg, this returns CurRC.
 
  const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
 
      unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
 
      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
 
 
 
  /// Stores extra instruction information inline or allocates as ExtraInfo
 
  /// based on the number of pointers.
 
  void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
 
                    MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
 
                    MDNode *HeapAllocMarker, MDNode *PCSections,
 
                    uint32_t CFIType);
 
};
 
 
 
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
 
/// instruction rather than by pointer value.
 
/// The hashing and equality testing functions ignore definitions so this is
 
/// useful for CSE, etc.
 
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
 
  static inline MachineInstr *getEmptyKey() {
 
    return nullptr;
 
  }
 
 
 
  static inline MachineInstr *getTombstoneKey() {
 
    return reinterpret_cast<MachineInstr*>(-1);
 
  }
 
 
 
  static unsigned getHashValue(const MachineInstr* const &MI);
 
 
 
  static bool isEqual(const MachineInstr* const &LHS,
 
                      const MachineInstr* const &RHS) {
 
    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
 
        LHS == getEmptyKey() || LHS == getTombstoneKey())
 
      return LHS == RHS;
 
    return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// Debugging Support
 
 
 
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
 
  MI.print(OS);
 
  return OS;
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_MACHINEINSTR_H