Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
  10. // but for target-specific code rather than target-independent IR.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
  15. #define LLVM_CODEGEN_MACHINEDOMINATORS_H
  16.  
  17. #include "llvm/ADT/SmallSet.h"
  18. #include "llvm/ADT/SmallVector.h"
  19. #include "llvm/CodeGen/MachineBasicBlock.h"
  20. #include "llvm/CodeGen/MachineFunctionPass.h"
  21. #include "llvm/CodeGen/MachineInstr.h"
  22. #include "llvm/CodeGen/MachineInstrBundleIterator.h"
  23. #include "llvm/Support/GenericDomTree.h"
  24. #include "llvm/Support/GenericDomTreeConstruction.h"
  25. #include <cassert>
  26. #include <memory>
  27.  
  28. namespace llvm {
  29. class AnalysisUsage;
  30. class MachineFunction;
  31. class Module;
  32. class raw_ostream;
  33.  
  34. template <>
  35. inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
  36.     MachineBasicBlock *MBB) {
  37.   this->Roots.push_back(MBB);
  38. }
  39.  
  40. extern template class DomTreeNodeBase<MachineBasicBlock>;
  41. extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
  42. extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
  43.  
  44. using MachineDomTree = DomTreeBase<MachineBasicBlock>;
  45. using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
  46.  
  47. //===-------------------------------------
  48. /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
  49. /// compute a normal dominator tree.
  50. ///
  51. class MachineDominatorTree : public MachineFunctionPass {
  52.   /// Helper structure used to hold all the basic blocks
  53.   /// involved in the split of a critical edge.
  54.   struct CriticalEdge {
  55.     MachineBasicBlock *FromBB;
  56.     MachineBasicBlock *ToBB;
  57.     MachineBasicBlock *NewBB;
  58.   };
  59.  
  60.   /// Pile up all the critical edges to be split.
  61.   /// The splitting of a critical edge is local and thus, it is possible
  62.   /// to apply several of those changes at the same time.
  63.   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
  64.  
  65.   /// Remember all the basic blocks that are inserted during
  66.   /// edge splitting.
  67.   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
  68.   /// field of all the elements of CriticalEdgesToSplit.
  69.   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
  70.   /// such as BB == elt.NewBB.
  71.   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
  72.  
  73.   /// The DominatorTreeBase that is used to compute a normal dominator tree.
  74.   std::unique_ptr<MachineDomTree> DT;
  75.  
  76.   /// Apply all the recorded critical edges to the DT.
  77.   /// This updates the underlying DT information in a way that uses
  78.   /// the fast query path of DT as much as possible.
  79.   ///
  80.   /// \post CriticalEdgesToSplit.empty().
  81.   void applySplitCriticalEdges() const;
  82.  
  83. public:
  84.   static char ID; // Pass ID, replacement for typeid
  85.  
  86.   MachineDominatorTree();
  87.   explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) {
  88.     calculate(MF);
  89.   }
  90.  
  91.   MachineDomTree &getBase() {
  92.     if (!DT)
  93.       DT.reset(new MachineDomTree());
  94.     applySplitCriticalEdges();
  95.     return *DT;
  96.   }
  97.  
  98.   void getAnalysisUsage(AnalysisUsage &AU) const override;
  99.  
  100.   MachineBasicBlock *getRoot() const {
  101.     applySplitCriticalEdges();
  102.     return DT->getRoot();
  103.   }
  104.  
  105.   MachineDomTreeNode *getRootNode() const {
  106.     applySplitCriticalEdges();
  107.     return DT->getRootNode();
  108.   }
  109.  
  110.   bool runOnMachineFunction(MachineFunction &F) override;
  111.  
  112.   void calculate(MachineFunction &F);
  113.  
  114.   bool dominates(const MachineDomTreeNode *A,
  115.                  const MachineDomTreeNode *B) const {
  116.     applySplitCriticalEdges();
  117.     return DT->dominates(A, B);
  118.   }
  119.  
  120.   void getDescendants(MachineBasicBlock *A,
  121.                       SmallVectorImpl<MachineBasicBlock *> &Result) {
  122.     applySplitCriticalEdges();
  123.     DT->getDescendants(A, Result);
  124.   }
  125.  
  126.   bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
  127.     applySplitCriticalEdges();
  128.     return DT->dominates(A, B);
  129.   }
  130.  
  131.   // dominates - Return true if A dominates B. This performs the
  132.   // special checks necessary if A and B are in the same basic block.
  133.   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
  134.     applySplitCriticalEdges();
  135.     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
  136.     if (BBA != BBB) return DT->dominates(BBA, BBB);
  137.  
  138.     // Loop through the basic block until we find A or B.
  139.     MachineBasicBlock::const_iterator I = BBA->begin();
  140.     for (; &*I != A && &*I != B; ++I)
  141.       /*empty*/ ;
  142.  
  143.     return &*I == A;
  144.   }
  145.  
  146.   bool properlyDominates(const MachineDomTreeNode *A,
  147.                          const MachineDomTreeNode *B) const {
  148.     applySplitCriticalEdges();
  149.     return DT->properlyDominates(A, B);
  150.   }
  151.  
  152.   bool properlyDominates(const MachineBasicBlock *A,
  153.                          const MachineBasicBlock *B) const {
  154.     applySplitCriticalEdges();
  155.     return DT->properlyDominates(A, B);
  156.   }
  157.  
  158.   /// findNearestCommonDominator - Find nearest common dominator basic block
  159.   /// for basic block A and B. If there is no such block then return NULL.
  160.   MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
  161.                                                 MachineBasicBlock *B) {
  162.     applySplitCriticalEdges();
  163.     return DT->findNearestCommonDominator(A, B);
  164.   }
  165.  
  166.   MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
  167.     applySplitCriticalEdges();
  168.     return DT->getNode(BB);
  169.   }
  170.  
  171.   /// getNode - return the (Post)DominatorTree node for the specified basic
  172.   /// block.  This is the same as using operator[] on this class.
  173.   ///
  174.   MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
  175.     applySplitCriticalEdges();
  176.     return DT->getNode(BB);
  177.   }
  178.  
  179.   /// addNewBlock - Add a new node to the dominator tree information.  This
  180.   /// creates a new node as a child of DomBB dominator node,linking it into
  181.   /// the children list of the immediate dominator.
  182.   MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
  183.                                   MachineBasicBlock *DomBB) {
  184.     applySplitCriticalEdges();
  185.     return DT->addNewBlock(BB, DomBB);
  186.   }
  187.  
  188.   /// changeImmediateDominator - This method is used to update the dominator
  189.   /// tree information when a node's immediate dominator changes.
  190.   ///
  191.   void changeImmediateDominator(MachineBasicBlock *N,
  192.                                 MachineBasicBlock *NewIDom) {
  193.     applySplitCriticalEdges();
  194.     DT->changeImmediateDominator(N, NewIDom);
  195.   }
  196.  
  197.   void changeImmediateDominator(MachineDomTreeNode *N,
  198.                                 MachineDomTreeNode *NewIDom) {
  199.     applySplitCriticalEdges();
  200.     DT->changeImmediateDominator(N, NewIDom);
  201.   }
  202.  
  203.   /// eraseNode - Removes a node from  the dominator tree. Block must not
  204.   /// dominate any other blocks. Removes node from its immediate dominator's
  205.   /// children list. Deletes dominator node associated with basic block BB.
  206.   void eraseNode(MachineBasicBlock *BB) {
  207.     applySplitCriticalEdges();
  208.     DT->eraseNode(BB);
  209.   }
  210.  
  211.   /// splitBlock - BB is split and now it has one successor. Update dominator
  212.   /// tree to reflect this change.
  213.   void splitBlock(MachineBasicBlock* NewBB) {
  214.     applySplitCriticalEdges();
  215.     DT->splitBlock(NewBB);
  216.   }
  217.  
  218.   /// isReachableFromEntry - Return true if A is dominated by the entry
  219.   /// block of the function containing it.
  220.   bool isReachableFromEntry(const MachineBasicBlock *A) {
  221.     applySplitCriticalEdges();
  222.     return DT->isReachableFromEntry(A);
  223.   }
  224.  
  225.   void releaseMemory() override;
  226.  
  227.   void verifyAnalysis() const override;
  228.  
  229.   void print(raw_ostream &OS, const Module*) const override;
  230.  
  231.   /// Record that the critical edge (FromBB, ToBB) has been
  232.   /// split with NewBB.
  233.   /// This is best to use this method instead of directly update the
  234.   /// underlying information, because this helps mitigating the
  235.   /// number of time the DT information is invalidated.
  236.   ///
  237.   /// \note Do not use this method with regular edges.
  238.   ///
  239.   /// \note To benefit from the compile time improvement incurred by this
  240.   /// method, the users of this method have to limit the queries to the DT
  241.   /// interface between two edges splitting. In other words, they have to
  242.   /// pack the splitting of critical edges as much as possible.
  243.   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
  244.                               MachineBasicBlock *ToBB,
  245.                               MachineBasicBlock *NewBB) {
  246.     bool Inserted = NewBBs.insert(NewBB).second;
  247.     (void)Inserted;
  248.     assert(Inserted &&
  249.            "A basic block inserted via edge splitting cannot appear twice");
  250.     CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
  251.   }
  252. };
  253.  
  254. //===-------------------------------------
  255. /// DominatorTree GraphTraits specialization so the DominatorTree can be
  256. /// iterable by generic graph iterators.
  257. ///
  258.  
  259. template <class Node, class ChildIterator>
  260. struct MachineDomTreeGraphTraitsBase {
  261.   using NodeRef = Node *;
  262.   using ChildIteratorType = ChildIterator;
  263.  
  264.   static NodeRef getEntryNode(NodeRef N) { return N; }
  265.   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
  266.   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
  267. };
  268.  
  269. template <class T> struct GraphTraits;
  270.  
  271. template <>
  272. struct GraphTraits<MachineDomTreeNode *>
  273.     : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
  274.                                            MachineDomTreeNode::const_iterator> {
  275. };
  276.  
  277. template <>
  278. struct GraphTraits<const MachineDomTreeNode *>
  279.     : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
  280.                                            MachineDomTreeNode::const_iterator> {
  281. };
  282.  
  283. template <> struct GraphTraits<MachineDominatorTree*>
  284.   : public GraphTraits<MachineDomTreeNode *> {
  285.   static NodeRef getEntryNode(MachineDominatorTree *DT) {
  286.     return DT->getRootNode();
  287.   }
  288. };
  289.  
  290. } // end namespace llvm
  291.  
  292. #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
  293.