Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // Collect the sequence of machine instructions for a basic block.
  10. //
  11. //===----------------------------------------------------------------------===//
  12.  
  13. #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
  14. #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
  15.  
  16. #include "llvm/ADT/GraphTraits.h"
  17. #include "llvm/ADT/SparseBitVector.h"
  18. #include "llvm/ADT/ilist.h"
  19. #include "llvm/ADT/iterator_range.h"
  20. #include "llvm/CodeGen/MachineInstr.h"
  21. #include "llvm/CodeGen/MachineInstrBundleIterator.h"
  22. #include "llvm/IR/DebugLoc.h"
  23. #include "llvm/MC/LaneBitmask.h"
  24. #include "llvm/Support/BranchProbability.h"
  25. #include <cassert>
  26. #include <cstdint>
  27. #include <iterator>
  28. #include <string>
  29. #include <vector>
  30.  
  31. namespace llvm {
  32.  
  33. class BasicBlock;
  34. class MachineFunction;
  35. class MCSymbol;
  36. class ModuleSlotTracker;
  37. class Pass;
  38. class Printable;
  39. class SlotIndexes;
  40. class StringRef;
  41. class raw_ostream;
  42. class LiveIntervals;
  43. class TargetRegisterClass;
  44. class TargetRegisterInfo;
  45.  
  46. // This structure uniquely identifies a basic block section.
  47. // Possible values are
  48. //  {Type: Default, Number: (unsigned)} (These are regular section IDs)
  49. //  {Type: Exception, Number: 0}  (ExceptionSectionID)
  50. //  {Type: Cold, Number: 0}  (ColdSectionID)
  51. struct MBBSectionID {
  52.   enum SectionType {
  53.     Default = 0, // Regular section (these sections are distinguished by the
  54.                  // Number field).
  55.     Exception,   // Special section type for exception handling blocks
  56.     Cold,        // Special section type for cold blocks
  57.   } Type;
  58.   unsigned Number;
  59.  
  60.   MBBSectionID(unsigned N) : Type(Default), Number(N) {}
  61.  
  62.   // Special unique sections for cold and exception blocks.
  63.   const static MBBSectionID ColdSectionID;
  64.   const static MBBSectionID ExceptionSectionID;
  65.  
  66.   bool operator==(const MBBSectionID &Other) const {
  67.     return Type == Other.Type && Number == Other.Number;
  68.   }
  69.  
  70.   bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
  71.  
  72. private:
  73.   // This is only used to construct the special cold and exception sections.
  74.   MBBSectionID(SectionType T) : Type(T), Number(0) {}
  75. };
  76.  
  77. template <> struct ilist_traits<MachineInstr> {
  78. private:
  79.   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
  80.  
  81.   MachineBasicBlock *Parent;
  82.  
  83.   using instr_iterator =
  84.       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
  85.  
  86. public:
  87.   void addNodeToList(MachineInstr *N);
  88.   void removeNodeFromList(MachineInstr *N);
  89.   void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
  90.                              instr_iterator Last);
  91.   void deleteNode(MachineInstr *MI);
  92. };
  93.  
  94. class MachineBasicBlock
  95.     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
  96. public:
  97.   /// Pair of physical register and lane mask.
  98.   /// This is not simply a std::pair typedef because the members should be named
  99.   /// clearly as they both have an integer type.
  100.   struct RegisterMaskPair {
  101.   public:
  102.     MCPhysReg PhysReg;
  103.     LaneBitmask LaneMask;
  104.  
  105.     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
  106.         : PhysReg(PhysReg), LaneMask(LaneMask) {}
  107.   };
  108.  
  109. private:
  110.   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
  111.  
  112.   const BasicBlock *BB;
  113.   int Number;
  114.   MachineFunction *xParent;
  115.   Instructions Insts;
  116.  
  117.   /// Keep track of the predecessor / successor basic blocks.
  118.   std::vector<MachineBasicBlock *> Predecessors;
  119.   std::vector<MachineBasicBlock *> Successors;
  120.  
  121.   /// Keep track of the probabilities to the successors. This vector has the
  122.   /// same order as Successors, or it is empty if we don't use it (disable
  123.   /// optimization).
  124.   std::vector<BranchProbability> Probs;
  125.   using probability_iterator = std::vector<BranchProbability>::iterator;
  126.   using const_probability_iterator =
  127.       std::vector<BranchProbability>::const_iterator;
  128.  
  129.   std::optional<uint64_t> IrrLoopHeaderWeight;
  130.  
  131.   /// Keep track of the physical registers that are livein of the basicblock.
  132.   using LiveInVector = std::vector<RegisterMaskPair>;
  133.   LiveInVector LiveIns;
  134.  
  135.   /// Alignment of the basic block. One if the basic block does not need to be
  136.   /// aligned.
  137.   Align Alignment;
  138.   /// Maximum amount of bytes that can be added to align the basic block. If the
  139.   /// alignment cannot be reached in this many bytes, no bytes are emitted.
  140.   /// Zero to represent no maximum.
  141.   unsigned MaxBytesForAlignment = 0;
  142.  
  143.   /// Indicate that this basic block is entered via an exception handler.
  144.   bool IsEHPad = false;
  145.  
  146.   /// Indicate that this MachineBasicBlock is referenced somewhere other than
  147.   /// as predecessor/successor, a terminator MachineInstr, or a jump table.
  148.   bool MachineBlockAddressTaken = false;
  149.  
  150.   /// If this MachineBasicBlock corresponds to an IR-level "blockaddress"
  151.   /// constant, this contains a pointer to that block.
  152.   BasicBlock *AddressTakenIRBlock = nullptr;
  153.  
  154.   /// Indicate that this basic block needs its symbol be emitted regardless of
  155.   /// whether the flow just falls-through to it.
  156.   bool LabelMustBeEmitted = false;
  157.  
  158.   /// Indicate that this basic block is the entry block of an EH scope, i.e.,
  159.   /// the block that used to have a catchpad or cleanuppad instruction in the
  160.   /// LLVM IR.
  161.   bool IsEHScopeEntry = false;
  162.  
  163.   /// Indicates if this is a target block of a catchret.
  164.   bool IsEHCatchretTarget = false;
  165.  
  166.   /// Indicate that this basic block is the entry block of an EH funclet.
  167.   bool IsEHFuncletEntry = false;
  168.  
  169.   /// Indicate that this basic block is the entry block of a cleanup funclet.
  170.   bool IsCleanupFuncletEntry = false;
  171.  
  172.   /// Fixed unique ID assigned to this basic block upon creation. Used with
  173.   /// basic block sections and basic block labels.
  174.   std::optional<unsigned> BBID;
  175.  
  176.   /// With basic block sections, this stores the Section ID of the basic block.
  177.   MBBSectionID SectionID{0};
  178.  
  179.   // Indicate that this basic block begins a section.
  180.   bool IsBeginSection = false;
  181.  
  182.   // Indicate that this basic block ends a section.
  183.   bool IsEndSection = false;
  184.  
  185.   /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
  186.   bool IsInlineAsmBrIndirectTarget = false;
  187.  
  188.   /// since getSymbol is a relatively heavy-weight operation, the symbol
  189.   /// is only computed once and is cached.
  190.   mutable MCSymbol *CachedMCSymbol = nullptr;
  191.  
  192.   /// Cached MCSymbol for this block (used if IsEHCatchRetTarget).
  193.   mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr;
  194.  
  195.   /// Marks the end of the basic block. Used during basic block sections to
  196.   /// calculate the size of the basic block, or the BB section ending with it.
  197.   mutable MCSymbol *CachedEndMCSymbol = nullptr;
  198.  
  199.   // Intrusive list support
  200.   MachineBasicBlock() = default;
  201.  
  202.   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
  203.  
  204.   ~MachineBasicBlock();
  205.  
  206.   // MachineBasicBlocks are allocated and owned by MachineFunction.
  207.   friend class MachineFunction;
  208.  
  209. public:
  210.   /// Return the LLVM basic block that this instance corresponded to originally.
  211.   /// Note that this may be NULL if this instance does not correspond directly
  212.   /// to an LLVM basic block.
  213.   const BasicBlock *getBasicBlock() const { return BB; }
  214.  
  215.   /// Remove the reference to the underlying IR BasicBlock. This is for
  216.   /// reduction tools and should generally not be used.
  217.   void clearBasicBlock() {
  218.     BB = nullptr;
  219.   }
  220.  
  221.   /// Return the name of the corresponding LLVM basic block, or an empty string.
  222.   StringRef getName() const;
  223.  
  224.   /// Return a formatted string to identify this block and its parent function.
  225.   std::string getFullName() const;
  226.  
  227.   /// Test whether this block is used as as something other than the target
  228.   /// of a terminator, exception-handling target, or jump table. This is
  229.   /// either the result of an IR-level "blockaddress", or some form
  230.   /// of target-specific branch lowering.
  231.   bool hasAddressTaken() const {
  232.     return MachineBlockAddressTaken || AddressTakenIRBlock;
  233.   }
  234.  
  235.   /// Test whether this block is used as something other than the target of a
  236.   /// terminator, exception-handling target, jump table, or IR blockaddress.
  237.   /// For example, its address might be loaded into a register, or
  238.   /// stored in some branch table that isn't part of MachineJumpTableInfo.
  239.   bool isMachineBlockAddressTaken() const { return MachineBlockAddressTaken; }
  240.  
  241.   /// Test whether this block is the target of an IR BlockAddress.  (There can
  242.   /// more than one MBB associated with an IR BB where the address is taken.)
  243.   bool isIRBlockAddressTaken() const { return AddressTakenIRBlock; }
  244.  
  245.   /// Retrieves the BasicBlock which corresponds to this MachineBasicBlock.
  246.   BasicBlock *getAddressTakenIRBlock() const { return AddressTakenIRBlock; }
  247.  
  248.   /// Set this block to indicate that its address is used as something other
  249.   /// than the target of a terminator, exception-handling target, jump table,
  250.   /// or IR-level "blockaddress".
  251.   void setMachineBlockAddressTaken() { MachineBlockAddressTaken = true; }
  252.  
  253.   /// Set this block to reflect that it corresponds to an IR-level basic block
  254.   /// with a BlockAddress.
  255.   void setAddressTakenIRBlock(BasicBlock *BB) { AddressTakenIRBlock = BB; }
  256.  
  257.   /// Test whether this block must have its label emitted.
  258.   bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
  259.  
  260.   /// Set this block to reflect that, regardless how we flow to it, we need
  261.   /// its label be emitted.
  262.   void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
  263.  
  264.   /// Return the MachineFunction containing this basic block.
  265.   const MachineFunction *getParent() const { return xParent; }
  266.   MachineFunction *getParent() { return xParent; }
  267.  
  268.   using instr_iterator = Instructions::iterator;
  269.   using const_instr_iterator = Instructions::const_iterator;
  270.   using reverse_instr_iterator = Instructions::reverse_iterator;
  271.   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
  272.  
  273.   using iterator = MachineInstrBundleIterator<MachineInstr>;
  274.   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
  275.   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
  276.   using const_reverse_iterator =
  277.       MachineInstrBundleIterator<const MachineInstr, true>;
  278.  
  279.   unsigned size() const { return (unsigned)Insts.size(); }
  280.   bool sizeWithoutDebugLargerThan(unsigned Limit) const;
  281.   bool empty() const { return Insts.empty(); }
  282.  
  283.   MachineInstr       &instr_front()       { return Insts.front(); }
  284.   MachineInstr       &instr_back()        { return Insts.back();  }
  285.   const MachineInstr &instr_front() const { return Insts.front(); }
  286.   const MachineInstr &instr_back()  const { return Insts.back();  }
  287.  
  288.   MachineInstr       &front()             { return Insts.front(); }
  289.   MachineInstr       &back()              { return *--end();      }
  290.   const MachineInstr &front()       const { return Insts.front(); }
  291.   const MachineInstr &back()        const { return *--end();      }
  292.  
  293.   instr_iterator                instr_begin()       { return Insts.begin();  }
  294.   const_instr_iterator          instr_begin() const { return Insts.begin();  }
  295.   instr_iterator                  instr_end()       { return Insts.end();    }
  296.   const_instr_iterator            instr_end() const { return Insts.end();    }
  297.   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
  298.   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
  299.   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
  300.   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
  301.  
  302.   using instr_range = iterator_range<instr_iterator>;
  303.   using const_instr_range = iterator_range<const_instr_iterator>;
  304.   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
  305.   const_instr_range instrs() const {
  306.     return const_instr_range(instr_begin(), instr_end());
  307.   }
  308.  
  309.   iterator                begin()       { return instr_begin();  }
  310.   const_iterator          begin() const { return instr_begin();  }
  311.   iterator                end  ()       { return instr_end();    }
  312.   const_iterator          end  () const { return instr_end();    }
  313.   reverse_iterator rbegin() {
  314.     return reverse_iterator::getAtBundleBegin(instr_rbegin());
  315.   }
  316.   const_reverse_iterator rbegin() const {
  317.     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
  318.   }
  319.   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
  320.   const_reverse_iterator rend() const {
  321.     return const_reverse_iterator(instr_rend());
  322.   }
  323.  
  324.   /// Support for MachineInstr::getNextNode().
  325.   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
  326.     return &MachineBasicBlock::Insts;
  327.   }
  328.  
  329.   inline iterator_range<iterator> terminators() {
  330.     return make_range(getFirstTerminator(), end());
  331.   }
  332.   inline iterator_range<const_iterator> terminators() const {
  333.     return make_range(getFirstTerminator(), end());
  334.   }
  335.  
  336.   /// Returns a range that iterates over the phis in the basic block.
  337.   inline iterator_range<iterator> phis() {
  338.     return make_range(begin(), getFirstNonPHI());
  339.   }
  340.   inline iterator_range<const_iterator> phis() const {
  341.     return const_cast<MachineBasicBlock *>(this)->phis();
  342.   }
  343.  
  344.   // Machine-CFG iterators
  345.   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
  346.   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
  347.   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
  348.   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
  349.   using pred_reverse_iterator =
  350.       std::vector<MachineBasicBlock *>::reverse_iterator;
  351.   using const_pred_reverse_iterator =
  352.       std::vector<MachineBasicBlock *>::const_reverse_iterator;
  353.   using succ_reverse_iterator =
  354.       std::vector<MachineBasicBlock *>::reverse_iterator;
  355.   using const_succ_reverse_iterator =
  356.       std::vector<MachineBasicBlock *>::const_reverse_iterator;
  357.   pred_iterator        pred_begin()       { return Predecessors.begin(); }
  358.   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
  359.   pred_iterator        pred_end()         { return Predecessors.end();   }
  360.   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
  361.   pred_reverse_iterator        pred_rbegin()
  362.                                           { return Predecessors.rbegin();}
  363.   const_pred_reverse_iterator  pred_rbegin() const
  364.                                           { return Predecessors.rbegin();}
  365.   pred_reverse_iterator        pred_rend()
  366.                                           { return Predecessors.rend();  }
  367.   const_pred_reverse_iterator  pred_rend()   const
  368.                                           { return Predecessors.rend();  }
  369.   unsigned             pred_size()  const {
  370.     return (unsigned)Predecessors.size();
  371.   }
  372.   bool                 pred_empty() const { return Predecessors.empty(); }
  373.   succ_iterator        succ_begin()       { return Successors.begin();   }
  374.   const_succ_iterator  succ_begin() const { return Successors.begin();   }
  375.   succ_iterator        succ_end()         { return Successors.end();     }
  376.   const_succ_iterator  succ_end()   const { return Successors.end();     }
  377.   succ_reverse_iterator        succ_rbegin()
  378.                                           { return Successors.rbegin();  }
  379.   const_succ_reverse_iterator  succ_rbegin() const
  380.                                           { return Successors.rbegin();  }
  381.   succ_reverse_iterator        succ_rend()
  382.                                           { return Successors.rend();    }
  383.   const_succ_reverse_iterator  succ_rend()   const
  384.                                           { return Successors.rend();    }
  385.   unsigned             succ_size()  const {
  386.     return (unsigned)Successors.size();
  387.   }
  388.   bool                 succ_empty() const { return Successors.empty();   }
  389.  
  390.   inline iterator_range<pred_iterator> predecessors() {
  391.     return make_range(pred_begin(), pred_end());
  392.   }
  393.   inline iterator_range<const_pred_iterator> predecessors() const {
  394.     return make_range(pred_begin(), pred_end());
  395.   }
  396.   inline iterator_range<succ_iterator> successors() {
  397.     return make_range(succ_begin(), succ_end());
  398.   }
  399.   inline iterator_range<const_succ_iterator> successors() const {
  400.     return make_range(succ_begin(), succ_end());
  401.   }
  402.  
  403.   // LiveIn management methods.
  404.  
  405.   /// Adds the specified register as a live in. Note that it is an error to add
  406.   /// the same register to the same set more than once unless the intention is
  407.   /// to call sortUniqueLiveIns after all registers are added.
  408.   void addLiveIn(MCRegister PhysReg,
  409.                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
  410.     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
  411.   }
  412.   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
  413.     LiveIns.push_back(RegMaskPair);
  414.   }
  415.  
  416.   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
  417.   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
  418.   /// LiveIn insertion.
  419.   void sortUniqueLiveIns();
  420.  
  421.   /// Clear live in list.
  422.   void clearLiveIns();
  423.  
  424.   /// Add PhysReg as live in to this block, and ensure that there is a copy of
  425.   /// PhysReg to a virtual register of class RC. Return the virtual register
  426.   /// that is a copy of the live in PhysReg.
  427.   Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
  428.  
  429.   /// Remove the specified register from the live in set.
  430.   void removeLiveIn(MCPhysReg Reg,
  431.                     LaneBitmask LaneMask = LaneBitmask::getAll());
  432.  
  433.   /// Return true if the specified register is in the live in set.
  434.   bool isLiveIn(MCPhysReg Reg,
  435.                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
  436.  
  437.   // Iteration support for live in sets.  These sets are kept in sorted
  438.   // order by their register number.
  439.   using livein_iterator = LiveInVector::const_iterator;
  440.  
  441.   /// Unlike livein_begin, this method does not check that the liveness
  442.   /// information is accurate. Still for debug purposes it may be useful
  443.   /// to have iterators that won't assert if the liveness information
  444.   /// is not current.
  445.   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
  446.   iterator_range<livein_iterator> liveins_dbg() const {
  447.     return make_range(livein_begin_dbg(), livein_end());
  448.   }
  449.  
  450.   livein_iterator livein_begin() const;
  451.   livein_iterator livein_end()   const { return LiveIns.end(); }
  452.   bool            livein_empty() const { return LiveIns.empty(); }
  453.   iterator_range<livein_iterator> liveins() const {
  454.     return make_range(livein_begin(), livein_end());
  455.   }
  456.  
  457.   /// Remove entry from the livein set and return iterator to the next.
  458.   livein_iterator removeLiveIn(livein_iterator I);
  459.  
  460.   class liveout_iterator {
  461.   public:
  462.     using iterator_category = std::input_iterator_tag;
  463.     using difference_type = std::ptrdiff_t;
  464.     using value_type = RegisterMaskPair;
  465.     using pointer = const RegisterMaskPair *;
  466.     using reference = const RegisterMaskPair &;
  467.  
  468.     liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer,
  469.                      MCPhysReg ExceptionSelector, bool End)
  470.         : ExceptionPointer(ExceptionPointer),
  471.           ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()),
  472.           BlockEnd(MBB.succ_end()) {
  473.       if (End)
  474.         BlockI = BlockEnd;
  475.       else if (BlockI != BlockEnd) {
  476.         LiveRegI = (*BlockI)->livein_begin();
  477.         if (!advanceToValidPosition())
  478.           return;
  479.         if (LiveRegI->PhysReg == ExceptionPointer ||
  480.             LiveRegI->PhysReg == ExceptionSelector)
  481.           ++(*this);
  482.       }
  483.     }
  484.  
  485.     liveout_iterator &operator++() {
  486.       do {
  487.         ++LiveRegI;
  488.         if (!advanceToValidPosition())
  489.           return *this;
  490.       } while ((*BlockI)->isEHPad() &&
  491.                (LiveRegI->PhysReg == ExceptionPointer ||
  492.                 LiveRegI->PhysReg == ExceptionSelector));
  493.       return *this;
  494.     }
  495.  
  496.     liveout_iterator operator++(int) {
  497.       liveout_iterator Tmp = *this;
  498.       ++(*this);
  499.       return Tmp;
  500.     }
  501.  
  502.     reference operator*() const {
  503.       return *LiveRegI;
  504.     }
  505.  
  506.     pointer operator->() const {
  507.       return &*LiveRegI;
  508.     }
  509.  
  510.     bool operator==(const liveout_iterator &RHS) const {
  511.       if (BlockI != BlockEnd)
  512.         return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI;
  513.       return RHS.BlockI == BlockEnd;
  514.     }
  515.  
  516.     bool operator!=(const liveout_iterator &RHS) const {
  517.       return !(*this == RHS);
  518.     }
  519.   private:
  520.     bool advanceToValidPosition() {
  521.       if (LiveRegI != (*BlockI)->livein_end())
  522.         return true;
  523.  
  524.       do {
  525.         ++BlockI;
  526.       } while (BlockI != BlockEnd && (*BlockI)->livein_empty());
  527.       if (BlockI == BlockEnd)
  528.         return false;
  529.  
  530.       LiveRegI = (*BlockI)->livein_begin();
  531.       return true;
  532.     }
  533.  
  534.     MCPhysReg ExceptionPointer, ExceptionSelector;
  535.     const_succ_iterator BlockI;
  536.     const_succ_iterator BlockEnd;
  537.     livein_iterator LiveRegI;
  538.   };
  539.  
  540.   /// Iterator scanning successor basic blocks' liveins to determine the
  541.   /// registers potentially live at the end of this block. There may be
  542.   /// duplicates or overlapping registers in the list returned.
  543.   liveout_iterator liveout_begin() const;
  544.   liveout_iterator liveout_end() const {
  545.     return liveout_iterator(*this, 0, 0, true);
  546.   }
  547.   iterator_range<liveout_iterator> liveouts() const {
  548.     return make_range(liveout_begin(), liveout_end());
  549.   }
  550.  
  551.   /// Get the clobber mask for the start of this basic block. Funclets use this
  552.   /// to prevent register allocation across funclet transitions.
  553.   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
  554.  
  555.   /// Get the clobber mask for the end of the basic block.
  556.   /// \see getBeginClobberMask()
  557.   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
  558.  
  559.   /// Return alignment of the basic block.
  560.   Align getAlignment() const { return Alignment; }
  561.  
  562.   /// Set alignment of the basic block.
  563.   void setAlignment(Align A) { Alignment = A; }
  564.  
  565.   void setAlignment(Align A, unsigned MaxBytes) {
  566.     setAlignment(A);
  567.     setMaxBytesForAlignment(MaxBytes);
  568.   }
  569.  
  570.   /// Return the maximum amount of padding allowed for aligning the basic block.
  571.   unsigned getMaxBytesForAlignment() const { return MaxBytesForAlignment; }
  572.  
  573.   /// Set the maximum amount of padding allowed for aligning the basic block
  574.   void setMaxBytesForAlignment(unsigned MaxBytes) {
  575.     MaxBytesForAlignment = MaxBytes;
  576.   }
  577.  
  578.   /// Returns true if the block is a landing pad. That is this basic block is
  579.   /// entered via an exception handler.
  580.   bool isEHPad() const { return IsEHPad; }
  581.  
  582.   /// Indicates the block is a landing pad.  That is this basic block is entered
  583.   /// via an exception handler.
  584.   void setIsEHPad(bool V = true) { IsEHPad = V; }
  585.  
  586.   bool hasEHPadSuccessor() const;
  587.  
  588.   /// Returns true if this is the entry block of the function.
  589.   bool isEntryBlock() const;
  590.  
  591.   /// Returns true if this is the entry block of an EH scope, i.e., the block
  592.   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
  593.   bool isEHScopeEntry() const { return IsEHScopeEntry; }
  594.  
  595.   /// Indicates if this is the entry block of an EH scope, i.e., the block that
  596.   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
  597.   void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
  598.  
  599.   /// Returns true if this is a target block of a catchret.
  600.   bool isEHCatchretTarget() const { return IsEHCatchretTarget; }
  601.  
  602.   /// Indicates if this is a target block of a catchret.
  603.   void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; }
  604.  
  605.   /// Returns true if this is the entry block of an EH funclet.
  606.   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
  607.  
  608.   /// Indicates if this is the entry block of an EH funclet.
  609.   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
  610.  
  611.   /// Returns true if this is the entry block of a cleanup funclet.
  612.   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
  613.  
  614.   /// Indicates if this is the entry block of a cleanup funclet.
  615.   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
  616.  
  617.   /// Returns true if this block begins any section.
  618.   bool isBeginSection() const { return IsBeginSection; }
  619.  
  620.   /// Returns true if this block ends any section.
  621.   bool isEndSection() const { return IsEndSection; }
  622.  
  623.   void setIsBeginSection(bool V = true) { IsBeginSection = V; }
  624.  
  625.   void setIsEndSection(bool V = true) { IsEndSection = V; }
  626.  
  627.   std::optional<unsigned> getBBID() const { return BBID; }
  628.  
  629.   /// Returns the BBID of the block when BBAddrMapVersion >= 2, otherwise
  630.   /// returns `MachineBasicBlock::Number`.
  631.   /// TODO: Remove this function when version 1 is deprecated and replace its
  632.   /// uses with `getBBID()`.
  633.   unsigned getBBIDOrNumber() const;
  634.  
  635.   /// Returns the section ID of this basic block.
  636.   MBBSectionID getSectionID() const { return SectionID; }
  637.  
  638.   /// Returns the unique section ID number of this basic block.
  639.   unsigned getSectionIDNum() const {
  640.     return ((unsigned)MBBSectionID::SectionType::Cold) -
  641.            ((unsigned)SectionID.Type) + SectionID.Number;
  642.   }
  643.  
  644.   /// Sets the fixed BBID of this basic block.
  645.   void setBBID(unsigned V) {
  646.     assert(!BBID.has_value() && "Cannot change BBID.");
  647.     BBID = V;
  648.   }
  649.  
  650.   /// Sets the section ID for this basic block.
  651.   void setSectionID(MBBSectionID V) { SectionID = V; }
  652.  
  653.   /// Returns the MCSymbol marking the end of this basic block.
  654.   MCSymbol *getEndSymbol() const;
  655.  
  656.   /// Returns true if this block may have an INLINEASM_BR (overestimate, by
  657.   /// checking if any of the successors are indirect targets of any inlineasm_br
  658.   /// in the function).
  659.   bool mayHaveInlineAsmBr() const;
  660.  
  661.   /// Returns true if this is the indirect dest of an INLINEASM_BR.
  662.   bool isInlineAsmBrIndirectTarget() const {
  663.     return IsInlineAsmBrIndirectTarget;
  664.   }
  665.  
  666.   /// Indicates if this is the indirect dest of an INLINEASM_BR.
  667.   void setIsInlineAsmBrIndirectTarget(bool V = true) {
  668.     IsInlineAsmBrIndirectTarget = V;
  669.   }
  670.  
  671.   /// Returns true if it is legal to hoist instructions into this block.
  672.   bool isLegalToHoistInto() const;
  673.  
  674.   // Code Layout methods.
  675.  
  676.   /// Move 'this' block before or after the specified block.  This only moves
  677.   /// the block, it does not modify the CFG or adjust potential fall-throughs at
  678.   /// the end of the block.
  679.   void moveBefore(MachineBasicBlock *NewAfter);
  680.   void moveAfter(MachineBasicBlock *NewBefore);
  681.  
  682.   /// Returns true if this and MBB belong to the same section.
  683.   bool sameSection(const MachineBasicBlock *MBB) const {
  684.     return getSectionID() == MBB->getSectionID();
  685.   }
  686.  
  687.   /// Update the terminator instructions in block to account for changes to
  688.   /// block layout which may have been made. PreviousLayoutSuccessor should be
  689.   /// set to the block which may have been used as fallthrough before the block
  690.   /// layout was modified.  If the block previously fell through to that block,
  691.   /// it may now need a branch. If it previously branched to another block, it
  692.   /// may now be able to fallthrough to the current layout successor.
  693.   void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
  694.  
  695.   // Machine-CFG mutators
  696.  
  697.   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
  698.   /// of Succ is automatically updated. PROB parameter is stored in
  699.   /// Probabilities list. The default probability is set as unknown. Mixing
  700.   /// known and unknown probabilities in successor list is not allowed. When all
  701.   /// successors have unknown probabilities, 1 / N is returned as the
  702.   /// probability for each successor, where N is the number of successors.
  703.   ///
  704.   /// Note that duplicate Machine CFG edges are not allowed.
  705.   void addSuccessor(MachineBasicBlock *Succ,
  706.                     BranchProbability Prob = BranchProbability::getUnknown());
  707.  
  708.   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
  709.   /// of Succ is automatically updated. The probability is not provided because
  710.   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
  711.   /// won't be used. Using this interface can save some space.
  712.   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
  713.  
  714.   /// Set successor probability of a given iterator.
  715.   void setSuccProbability(succ_iterator I, BranchProbability Prob);
  716.  
  717.   /// Normalize probabilities of all successors so that the sum of them becomes
  718.   /// one. This is usually done when the current update on this MBB is done, and
  719.   /// the sum of its successors' probabilities is not guaranteed to be one. The
  720.   /// user is responsible for the correct use of this function.
  721.   /// MBB::removeSuccessor() has an option to do this automatically.
  722.   void normalizeSuccProbs() {
  723.     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
  724.   }
  725.  
  726.   /// Validate successors' probabilities and check if the sum of them is
  727.   /// approximate one. This only works in DEBUG mode.
  728.   void validateSuccProbs() const;
  729.  
  730.   /// Remove successor from the successors list of this MachineBasicBlock. The
  731.   /// Predecessors list of Succ is automatically updated.
  732.   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
  733.   /// after the successor is removed.
  734.   void removeSuccessor(MachineBasicBlock *Succ,
  735.                        bool NormalizeSuccProbs = false);
  736.  
  737.   /// Remove specified successor from the successors list of this
  738.   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
  739.   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
  740.   /// after the successor is removed.
  741.   /// Return the iterator to the element after the one removed.
  742.   succ_iterator removeSuccessor(succ_iterator I,
  743.                                 bool NormalizeSuccProbs = false);
  744.  
  745.   /// Replace successor OLD with NEW and update probability info.
  746.   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
  747.  
  748.   /// Copy a successor (and any probability info) from original block to this
  749.   /// block's. Uses an iterator into the original blocks successors.
  750.   ///
  751.   /// This is useful when doing a partial clone of successors. Afterward, the
  752.   /// probabilities may need to be normalized.
  753.   void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
  754.  
  755.   /// Split the old successor into old plus new and updates the probability
  756.   /// info.
  757.   void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
  758.                       bool NormalizeSuccProbs = false);
  759.  
  760.   /// Transfers all the successors from MBB to this machine basic block (i.e.,
  761.   /// copies all the successors FromMBB and remove all the successors from
  762.   /// FromMBB).
  763.   void transferSuccessors(MachineBasicBlock *FromMBB);
  764.  
  765.   /// Transfers all the successors, as in transferSuccessors, and update PHI
  766.   /// operands in the successor blocks which refer to FromMBB to refer to this.
  767.   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
  768.  
  769.   /// Return true if any of the successors have probabilities attached to them.
  770.   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
  771.  
  772.   /// Return true if the specified MBB is a predecessor of this block.
  773.   bool isPredecessor(const MachineBasicBlock *MBB) const;
  774.  
  775.   /// Return true if the specified MBB is a successor of this block.
  776.   bool isSuccessor(const MachineBasicBlock *MBB) const;
  777.  
  778.   /// Return true if the specified MBB will be emitted immediately after this
  779.   /// block, such that if this block exits by falling through, control will
  780.   /// transfer to the specified MBB. Note that MBB need not be a successor at
  781.   /// all, for example if this block ends with an unconditional branch to some
  782.   /// other block.
  783.   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
  784.  
  785.   /// Return the successor of this block if it has a single successor.
  786.   /// Otherwise return a null pointer.
  787.   ///
  788.   const MachineBasicBlock *getSingleSuccessor() const;
  789.   MachineBasicBlock *getSingleSuccessor() {
  790.     return const_cast<MachineBasicBlock *>(
  791.         static_cast<const MachineBasicBlock *>(this)->getSingleSuccessor());
  792.   }
  793.  
  794.   /// Return the fallthrough block if the block can implicitly
  795.   /// transfer control to the block after it by falling off the end of
  796.   /// it. If an explicit branch to the fallthrough block is not allowed,
  797.   /// set JumpToFallThrough to be false. Non-null return is a conservative
  798.   /// answer.
  799.   MachineBasicBlock *getFallThrough(bool JumpToFallThrough = false);
  800.  
  801.   /// Return the fallthrough block if the block can implicitly
  802.   /// transfer control to it's successor, whether by a branch or
  803.   /// a fallthrough. Non-null return is a conservative answer.
  804.   MachineBasicBlock *getLogicalFallThrough() { return getFallThrough(true); }
  805.  
  806.   /// Return true if the block can implicitly transfer control to the
  807.   /// block after it by falling off the end of it.  This should return
  808.   /// false if it can reach the block after it, but it uses an
  809.   /// explicit branch to do so (e.g., a table jump).  True is a
  810.   /// conservative answer.
  811.   bool canFallThrough();
  812.  
  813.   /// Returns a pointer to the first instruction in this block that is not a
  814.   /// PHINode instruction. When adding instructions to the beginning of the
  815.   /// basic block, they should be added before the returned value, not before
  816.   /// the first instruction, which might be PHI.
  817.   /// Returns end() is there's no non-PHI instruction.
  818.   iterator getFirstNonPHI();
  819.  
  820.   /// Return the first instruction in MBB after I that is not a PHI or a label.
  821.   /// This is the correct point to insert lowered copies at the beginning of a
  822.   /// basic block that must be before any debugging information.
  823.   iterator SkipPHIsAndLabels(iterator I);
  824.  
  825.   /// Return the first instruction in MBB after I that is not a PHI, label or
  826.   /// debug.  This is the correct point to insert copies at the beginning of a
  827.   /// basic block.
  828.   iterator SkipPHIsLabelsAndDebug(iterator I, bool SkipPseudoOp = true);
  829.  
  830.   /// Returns an iterator to the first terminator instruction of this basic
  831.   /// block. If a terminator does not exist, it returns end().
  832.   iterator getFirstTerminator();
  833.   const_iterator getFirstTerminator() const {
  834.     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
  835.   }
  836.  
  837.   /// Same getFirstTerminator but it ignores bundles and return an
  838.   /// instr_iterator instead.
  839.   instr_iterator getFirstInstrTerminator();
  840.  
  841.   /// Finds the first terminator in a block by scanning forward. This can handle
  842.   /// cases in GlobalISel where there may be non-terminator instructions between
  843.   /// terminators, for which getFirstTerminator() will not work correctly.
  844.   iterator getFirstTerminatorForward();
  845.  
  846.   /// Returns an iterator to the first non-debug instruction in the basic block,
  847.   /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true.
  848.   /// Pseudo probes are like debug instructions which do not turn into real
  849.   /// machine code. We try to use the function to skip both debug instructions
  850.   /// and pseudo probe operations to avoid API proliferation. This should work
  851.   /// most of the time when considering optimizing the rest of code in the
  852.   /// block, except for certain cases where pseudo probes are designed to block
  853.   /// the optimizations. For example, code merge like optimizations are supposed
  854.   /// to be blocked by pseudo probes for better AutoFDO profile quality.
  855.   /// Therefore, they should be considered as a valid instruction when this
  856.   /// function is called in a context of such optimizations. On the other hand,
  857.   /// \c SkipPseudoOp should be true when it's used in optimizations that
  858.   /// unlikely hurt profile quality, e.g., without block merging. The default
  859.   /// value of \c SkipPseudoOp is set to true to maximize code quality in
  860.   /// general, with an explict false value passed in in a few places like branch
  861.   /// folding and if-conversion to favor profile quality.
  862.   iterator getFirstNonDebugInstr(bool SkipPseudoOp = true);
  863.   const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const {
  864.     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr(
  865.         SkipPseudoOp);
  866.   }
  867.  
  868.   /// Returns an iterator to the last non-debug instruction in the basic block,
  869.   /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true.
  870.   /// Pseudo probes are like debug instructions which do not turn into real
  871.   /// machine code. We try to use the function to skip both debug instructions
  872.   /// and pseudo probe operations to avoid API proliferation. This should work
  873.   /// most of the time when considering optimizing the rest of code in the
  874.   /// block, except for certain cases where pseudo probes are designed to block
  875.   /// the optimizations. For example, code merge like optimizations are supposed
  876.   /// to be blocked by pseudo probes for better AutoFDO profile quality.
  877.   /// Therefore, they should be considered as a valid instruction when this
  878.   /// function is called in a context of such optimizations. On the other hand,
  879.   /// \c SkipPseudoOp should be true when it's used in optimizations that
  880.   /// unlikely hurt profile quality, e.g., without block merging. The default
  881.   /// value of \c SkipPseudoOp is set to true to maximize code quality in
  882.   /// general, with an explict false value passed in in a few places like branch
  883.   /// folding and if-conversion to favor profile quality.
  884.   iterator getLastNonDebugInstr(bool SkipPseudoOp = true);
  885.   const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const {
  886.     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr(
  887.         SkipPseudoOp);
  888.   }
  889.  
  890.   /// Convenience function that returns true if the block ends in a return
  891.   /// instruction.
  892.   bool isReturnBlock() const {
  893.     return !empty() && back().isReturn();
  894.   }
  895.  
  896.   /// Convenience function that returns true if the bock ends in a EH scope
  897.   /// return instruction.
  898.   bool isEHScopeReturnBlock() const {
  899.     return !empty() && back().isEHScopeReturn();
  900.   }
  901.  
  902.   /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
  903.   /// inserted after this block, and all instructions after \p SplitInst moved
  904.   /// to it (\p SplitInst will be in the original block). If \p LIS is provided,
  905.   /// LiveIntervals will be appropriately updated. \return the newly inserted
  906.   /// block.
  907.   ///
  908.   /// If \p UpdateLiveIns is true, this will ensure the live ins list is
  909.   /// accurate, including for physreg uses/defs in the original block.
  910.   MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
  911.                              LiveIntervals *LIS = nullptr);
  912.  
  913.   /// Split the critical edge from this block to the given successor block, and
  914.   /// return the newly created block, or null if splitting is not possible.
  915.   ///
  916.   /// This function updates LiveVariables, MachineDominatorTree, and
  917.   /// MachineLoopInfo, as applicable.
  918.   MachineBasicBlock *
  919.   SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
  920.                     std::vector<SparseBitVector<>> *LiveInSets = nullptr);
  921.  
  922.   /// Check if the edge between this block and the given successor \p
  923.   /// Succ, can be split. If this returns true a subsequent call to
  924.   /// SplitCriticalEdge is guaranteed to return a valid basic block if
  925.   /// no changes occurred in the meantime.
  926.   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
  927.  
  928.   void pop_front() { Insts.pop_front(); }
  929.   void pop_back() { Insts.pop_back(); }
  930.   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
  931.  
  932.   /// Insert MI into the instruction list before I, possibly inside a bundle.
  933.   ///
  934.   /// If the insertion point is inside a bundle, MI will be added to the bundle,
  935.   /// otherwise MI will not be added to any bundle. That means this function
  936.   /// alone can't be used to prepend or append instructions to bundles. See
  937.   /// MIBundleBuilder::insert() for a more reliable way of doing that.
  938.   instr_iterator insert(instr_iterator I, MachineInstr *M);
  939.  
  940.   /// Insert a range of instructions into the instruction list before I.
  941.   template<typename IT>
  942.   void insert(iterator I, IT S, IT E) {
  943.     assert((I == end() || I->getParent() == this) &&
  944.            "iterator points outside of basic block");
  945.     Insts.insert(I.getInstrIterator(), S, E);
  946.   }
  947.  
  948.   /// Insert MI into the instruction list before I.
  949.   iterator insert(iterator I, MachineInstr *MI) {
  950.     assert((I == end() || I->getParent() == this) &&
  951.            "iterator points outside of basic block");
  952.     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
  953.            "Cannot insert instruction with bundle flags");
  954.     return Insts.insert(I.getInstrIterator(), MI);
  955.   }
  956.  
  957.   /// Insert MI into the instruction list after I.
  958.   iterator insertAfter(iterator I, MachineInstr *MI) {
  959.     assert((I == end() || I->getParent() == this) &&
  960.            "iterator points outside of basic block");
  961.     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
  962.            "Cannot insert instruction with bundle flags");
  963.     return Insts.insertAfter(I.getInstrIterator(), MI);
  964.   }
  965.  
  966.   /// If I is bundled then insert MI into the instruction list after the end of
  967.   /// the bundle, otherwise insert MI immediately after I.
  968.   instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
  969.     assert((I == instr_end() || I->getParent() == this) &&
  970.            "iterator points outside of basic block");
  971.     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
  972.            "Cannot insert instruction with bundle flags");
  973.     while (I->isBundledWithSucc())
  974.       ++I;
  975.     return Insts.insertAfter(I, MI);
  976.   }
  977.  
  978.   /// Remove an instruction from the instruction list and delete it.
  979.   ///
  980.   /// If the instruction is part of a bundle, the other instructions in the
  981.   /// bundle will still be bundled after removing the single instruction.
  982.   instr_iterator erase(instr_iterator I);
  983.  
  984.   /// Remove an instruction from the instruction list and delete it.
  985.   ///
  986.   /// If the instruction is part of a bundle, the other instructions in the
  987.   /// bundle will still be bundled after removing the single instruction.
  988.   instr_iterator erase_instr(MachineInstr *I) {
  989.     return erase(instr_iterator(I));
  990.   }
  991.  
  992.   /// Remove a range of instructions from the instruction list and delete them.
  993.   iterator erase(iterator I, iterator E) {
  994.     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
  995.   }
  996.  
  997.   /// Remove an instruction or bundle from the instruction list and delete it.
  998.   ///
  999.   /// If I points to a bundle of instructions, they are all erased.
  1000.   iterator erase(iterator I) {
  1001.     return erase(I, std::next(I));
  1002.   }
  1003.  
  1004.   /// Remove an instruction from the instruction list and delete it.
  1005.   ///
  1006.   /// If I is the head of a bundle of instructions, the whole bundle will be
  1007.   /// erased.
  1008.   iterator erase(MachineInstr *I) {
  1009.     return erase(iterator(I));
  1010.   }
  1011.  
  1012.   /// Remove the unbundled instruction from the instruction list without
  1013.   /// deleting it.
  1014.   ///
  1015.   /// This function can not be used to remove bundled instructions, use
  1016.   /// remove_instr to remove individual instructions from a bundle.
  1017.   MachineInstr *remove(MachineInstr *I) {
  1018.     assert(!I->isBundled() && "Cannot remove bundled instructions");
  1019.     return Insts.remove(instr_iterator(I));
  1020.   }
  1021.  
  1022.   /// Remove the possibly bundled instruction from the instruction list
  1023.   /// without deleting it.
  1024.   ///
  1025.   /// If the instruction is part of a bundle, the other instructions in the
  1026.   /// bundle will still be bundled after removing the single instruction.
  1027.   MachineInstr *remove_instr(MachineInstr *I);
  1028.  
  1029.   void clear() {
  1030.     Insts.clear();
  1031.   }
  1032.  
  1033.   /// Take an instruction from MBB 'Other' at the position From, and insert it
  1034.   /// into this MBB right before 'Where'.
  1035.   ///
  1036.   /// If From points to a bundle of instructions, the whole bundle is moved.
  1037.   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
  1038.     // The range splice() doesn't allow noop moves, but this one does.
  1039.     if (Where != From)
  1040.       splice(Where, Other, From, std::next(From));
  1041.   }
  1042.  
  1043.   /// Take a block of instructions from MBB 'Other' in the range [From, To),
  1044.   /// and insert them into this MBB right before 'Where'.
  1045.   ///
  1046.   /// The instruction at 'Where' must not be included in the range of
  1047.   /// instructions to move.
  1048.   void splice(iterator Where, MachineBasicBlock *Other,
  1049.               iterator From, iterator To) {
  1050.     Insts.splice(Where.getInstrIterator(), Other->Insts,
  1051.                  From.getInstrIterator(), To.getInstrIterator());
  1052.   }
  1053.  
  1054.   /// This method unlinks 'this' from the containing function, and returns it,
  1055.   /// but does not delete it.
  1056.   MachineBasicBlock *removeFromParent();
  1057.  
  1058.   /// This method unlinks 'this' from the containing function and deletes it.
  1059.   void eraseFromParent();
  1060.  
  1061.   /// Given a machine basic block that branched to 'Old', change the code and
  1062.   /// CFG so that it branches to 'New' instead.
  1063.   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
  1064.  
  1065.   /// Update all phi nodes in this basic block to refer to basic block \p New
  1066.   /// instead of basic block \p Old.
  1067.   void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
  1068.  
  1069.   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
  1070.   /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
  1071.   DebugLoc findDebugLoc(instr_iterator MBBI);
  1072.   DebugLoc findDebugLoc(iterator MBBI) {
  1073.     return findDebugLoc(MBBI.getInstrIterator());
  1074.   }
  1075.  
  1076.   /// Has exact same behavior as @ref findDebugLoc (it also
  1077.   /// searches from the first to the last MI of this MBB) except
  1078.   /// that this takes reverse iterator.
  1079.   DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI);
  1080.   DebugLoc rfindDebugLoc(reverse_iterator MBBI) {
  1081.     return rfindDebugLoc(MBBI.getInstrIterator());
  1082.   }
  1083.  
  1084.   /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
  1085.   /// instructions.  Return UnknownLoc if there is none.
  1086.   DebugLoc findPrevDebugLoc(instr_iterator MBBI);
  1087.   DebugLoc findPrevDebugLoc(iterator MBBI) {
  1088.     return findPrevDebugLoc(MBBI.getInstrIterator());
  1089.   }
  1090.  
  1091.   /// Has exact same behavior as @ref findPrevDebugLoc (it also
  1092.   /// searches from the last to the first MI of this MBB) except
  1093.   /// that this takes reverse iterator.
  1094.   DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI);
  1095.   DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) {
  1096.     return rfindPrevDebugLoc(MBBI.getInstrIterator());
  1097.   }
  1098.  
  1099.   /// Find and return the merged DebugLoc of the branch instructions of the
  1100.   /// block. Return UnknownLoc if there is none.
  1101.   DebugLoc findBranchDebugLoc();
  1102.  
  1103.   /// Possible outcome of a register liveness query to computeRegisterLiveness()
  1104.   enum LivenessQueryResult {
  1105.     LQR_Live,   ///< Register is known to be (at least partially) live.
  1106.     LQR_Dead,   ///< Register is known to be fully dead.
  1107.     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
  1108.   };
  1109.  
  1110.   /// Return whether (physical) register \p Reg has been defined and not
  1111.   /// killed as of just before \p Before.
  1112.   ///
  1113.   /// Search is localised to a neighborhood of \p Neighborhood instructions
  1114.   /// before (searching for defs or kills) and \p Neighborhood instructions
  1115.   /// after (searching just for defs) \p Before.
  1116.   ///
  1117.   /// \p Reg must be a physical register.
  1118.   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
  1119.                                               MCRegister Reg,
  1120.                                               const_iterator Before,
  1121.                                               unsigned Neighborhood = 10) const;
  1122.  
  1123.   // Debugging methods.
  1124.   void dump() const;
  1125.   void print(raw_ostream &OS, const SlotIndexes * = nullptr,
  1126.              bool IsStandalone = true) const;
  1127.   void print(raw_ostream &OS, ModuleSlotTracker &MST,
  1128.              const SlotIndexes * = nullptr, bool IsStandalone = true) const;
  1129.  
  1130.   enum PrintNameFlag {
  1131.     PrintNameIr = (1 << 0), ///< Add IR name where available
  1132.     PrintNameAttributes = (1 << 1), ///< Print attributes
  1133.   };
  1134.  
  1135.   void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
  1136.                  ModuleSlotTracker *moduleSlotTracker = nullptr) const;
  1137.  
  1138.   // Printing method used by LoopInfo.
  1139.   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
  1140.  
  1141.   /// MachineBasicBlocks are uniquely numbered at the function level, unless
  1142.   /// they're not in a MachineFunction yet, in which case this will return -1.
  1143.   int getNumber() const { return Number; }
  1144.   void setNumber(int N) { Number = N; }
  1145.  
  1146.   /// Return the MCSymbol for this basic block.
  1147.   MCSymbol *getSymbol() const;
  1148.  
  1149.   /// Return the EHCatchret Symbol for this basic block.
  1150.   MCSymbol *getEHCatchretSymbol() const;
  1151.  
  1152.   std::optional<uint64_t> getIrrLoopHeaderWeight() const {
  1153.     return IrrLoopHeaderWeight;
  1154.   }
  1155.  
  1156.   void setIrrLoopHeaderWeight(uint64_t Weight) {
  1157.     IrrLoopHeaderWeight = Weight;
  1158.   }
  1159.  
  1160.   /// Return probability of the edge from this block to MBB. This method should
  1161.   /// NOT be called directly, but by using getEdgeProbability method from
  1162.   /// MachineBranchProbabilityInfo class.
  1163.   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
  1164.  
  1165. private:
  1166.   /// Return probability iterator corresponding to the I successor iterator.
  1167.   probability_iterator getProbabilityIterator(succ_iterator I);
  1168.   const_probability_iterator
  1169.   getProbabilityIterator(const_succ_iterator I) const;
  1170.  
  1171.   friend class MachineBranchProbabilityInfo;
  1172.   friend class MIPrinter;
  1173.  
  1174.   // Methods used to maintain doubly linked list of blocks...
  1175.   friend struct ilist_callback_traits<MachineBasicBlock>;
  1176.  
  1177.   // Machine-CFG mutators
  1178.  
  1179.   /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
  1180.   /// unless you know what you're doing, because it doesn't update Pred's
  1181.   /// successors list. Use Pred->addSuccessor instead.
  1182.   void addPredecessor(MachineBasicBlock *Pred);
  1183.  
  1184.   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
  1185.   /// unless you know what you're doing, because it doesn't update Pred's
  1186.   /// successors list. Use Pred->removeSuccessor instead.
  1187.   void removePredecessor(MachineBasicBlock *Pred);
  1188. };
  1189.  
  1190. raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
  1191.  
  1192. /// Prints a machine basic block reference.
  1193. ///
  1194. /// The format is:
  1195. ///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
  1196. ///
  1197. /// Usage: OS << printMBBReference(MBB) << '\n';
  1198. Printable printMBBReference(const MachineBasicBlock &MBB);
  1199.  
  1200. // This is useful when building IndexedMaps keyed on basic block pointers.
  1201. struct MBB2NumberFunctor {
  1202.   using argument_type = const MachineBasicBlock *;
  1203.   unsigned operator()(const MachineBasicBlock *MBB) const {
  1204.     return MBB->getNumber();
  1205.   }
  1206. };
  1207.  
  1208. //===--------------------------------------------------------------------===//
  1209. // GraphTraits specializations for machine basic block graphs (machine-CFGs)
  1210. //===--------------------------------------------------------------------===//
  1211.  
  1212. // Provide specializations of GraphTraits to be able to treat a
  1213. // MachineFunction as a graph of MachineBasicBlocks.
  1214. //
  1215.  
  1216. template <> struct GraphTraits<MachineBasicBlock *> {
  1217.   using NodeRef = MachineBasicBlock *;
  1218.   using ChildIteratorType = MachineBasicBlock::succ_iterator;
  1219.  
  1220.   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
  1221.   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  1222.   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
  1223. };
  1224.  
  1225. template <> struct GraphTraits<const MachineBasicBlock *> {
  1226.   using NodeRef = const MachineBasicBlock *;
  1227.   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
  1228.  
  1229.   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
  1230.   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  1231.   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
  1232. };
  1233.  
  1234. // Provide specializations of GraphTraits to be able to treat a
  1235. // MachineFunction as a graph of MachineBasicBlocks and to walk it
  1236. // in inverse order.  Inverse order for a function is considered
  1237. // to be when traversing the predecessor edges of a MBB
  1238. // instead of the successor edges.
  1239. //
  1240. template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
  1241.   using NodeRef = MachineBasicBlock *;
  1242.   using ChildIteratorType = MachineBasicBlock::pred_iterator;
  1243.  
  1244.   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
  1245.     return G.Graph;
  1246.   }
  1247.  
  1248.   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  1249.   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
  1250. };
  1251.  
  1252. template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
  1253.   using NodeRef = const MachineBasicBlock *;
  1254.   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
  1255.  
  1256.   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
  1257.     return G.Graph;
  1258.   }
  1259.  
  1260.   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  1261.   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
  1262. };
  1263.  
  1264. /// MachineInstrSpan provides an interface to get an iteration range
  1265. /// containing the instruction it was initialized with, along with all
  1266. /// those instructions inserted prior to or following that instruction
  1267. /// at some point after the MachineInstrSpan is constructed.
  1268. class MachineInstrSpan {
  1269.   MachineBasicBlock &MBB;
  1270.   MachineBasicBlock::iterator I, B, E;
  1271.  
  1272. public:
  1273.   MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
  1274.       : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
  1275.         E(std::next(I)) {
  1276.     assert(I == BB->end() || I->getParent() == BB);
  1277.   }
  1278.  
  1279.   MachineBasicBlock::iterator begin() {
  1280.     return B == MBB.end() ? MBB.begin() : std::next(B);
  1281.   }
  1282.   MachineBasicBlock::iterator end() { return E; }
  1283.   bool empty() { return begin() == end(); }
  1284.  
  1285.   MachineBasicBlock::iterator getInitial() { return I; }
  1286. };
  1287.  
  1288. /// Increment \p It until it points to a non-debug instruction or to \p End
  1289. /// and return the resulting iterator. This function should only be used
  1290. /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
  1291. /// const_instr_iterator} and the respective reverse iterators.
  1292. template <typename IterT>
  1293. inline IterT skipDebugInstructionsForward(IterT It, IterT End,
  1294.                                           bool SkipPseudoOp = true) {
  1295.   while (It != End &&
  1296.          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
  1297.     ++It;
  1298.   return It;
  1299. }
  1300.  
  1301. /// Decrement \p It until it points to a non-debug instruction or to \p Begin
  1302. /// and return the resulting iterator. This function should only be used
  1303. /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
  1304. /// const_instr_iterator} and the respective reverse iterators.
  1305. template <class IterT>
  1306. inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin,
  1307.                                            bool SkipPseudoOp = true) {
  1308.   while (It != Begin &&
  1309.          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
  1310.     --It;
  1311.   return It;
  1312. }
  1313.  
  1314. /// Increment \p It, then continue incrementing it while it points to a debug
  1315. /// instruction. A replacement for std::next.
  1316. template <typename IterT>
  1317. inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) {
  1318.   return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp);
  1319. }
  1320.  
  1321. /// Decrement \p It, then continue decrementing it while it points to a debug
  1322. /// instruction. A replacement for std::prev.
  1323. template <typename IterT>
  1324. inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) {
  1325.   return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp);
  1326. }
  1327.  
  1328. /// Construct a range iterator which begins at \p It and moves forwards until
  1329. /// \p End is reached, skipping any debug instructions.
  1330. template <typename IterT>
  1331. inline auto instructionsWithoutDebug(IterT It, IterT End,
  1332.                                      bool SkipPseudoOp = true) {
  1333.   return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) {
  1334.     return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe());
  1335.   });
  1336. }
  1337.  
  1338. } // end namespace llvm
  1339.  
  1340. #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
  1341.