Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements the LiveVariables analysis pass.  For each machine
  10. // instruction in the function, this pass calculates the set of registers that
  11. // are immediately dead after the instruction (i.e., the instruction calculates
  12. // the value, but it is never used) and the set of registers that are used by
  13. // the instruction, but are never used after the instruction (i.e., they are
  14. // killed).
  15. //
  16. // This class computes live variables using a sparse implementation based on
  17. // the machine code SSA form.  This class computes live variable information for
  18. // each virtual and _register allocatable_ physical register in a function.  It
  19. // uses the dominance properties of SSA form to efficiently compute live
  20. // variables for virtual registers, and assumes that physical registers are only
  21. // live within a single basic block (allowing it to do a single local analysis
  22. // to resolve physical register lifetimes in each basic block).  If a physical
  23. // register is not register allocatable, it is not tracked.  This is useful for
  24. // things like the stack pointer and condition codes.
  25. //
  26. //===----------------------------------------------------------------------===//
  27.  
  28. #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
  29. #define LLVM_CODEGEN_LIVEVARIABLES_H
  30.  
  31. #include "llvm/ADT/DenseMap.h"
  32. #include "llvm/ADT/IndexedMap.h"
  33. #include "llvm/ADT/SmallSet.h"
  34. #include "llvm/ADT/SmallVector.h"
  35. #include "llvm/ADT/SparseBitVector.h"
  36. #include "llvm/CodeGen/MachineFunctionPass.h"
  37. #include "llvm/CodeGen/MachineInstr.h"
  38. #include "llvm/CodeGen/TargetRegisterInfo.h"
  39. #include "llvm/InitializePasses.h"
  40. #include "llvm/PassRegistry.h"
  41.  
  42. namespace llvm {
  43.  
  44. class MachineBasicBlock;
  45. class MachineRegisterInfo;
  46.  
  47. class LiveVariables : public MachineFunctionPass {
  48. public:
  49.   static char ID; // Pass identification, replacement for typeid
  50.   LiveVariables() : MachineFunctionPass(ID) {
  51.     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
  52.   }
  53.  
  54.   /// VarInfo - This represents the regions where a virtual register is live in
  55.   /// the program.  We represent this with three different pieces of
  56.   /// information: the set of blocks in which the instruction is live
  57.   /// throughout, the set of blocks in which the instruction is actually used,
  58.   /// and the set of non-phi instructions that are the last users of the value.
  59.   ///
  60.   /// In the common case where a value is defined and killed in the same block,
  61.   /// There is one killing instruction, and AliveBlocks is empty.
  62.   ///
  63.   /// Otherwise, the value is live out of the block.  If the value is live
  64.   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
  65.   /// where the liveness range ends are not included in AliveBlocks, instead
  66.   /// being captured by the Kills set.  In these blocks, the value is live into
  67.   /// the block (unless the value is defined and killed in the same block) and
  68.   /// lives until the specified instruction.  Note that there cannot ever be a
  69.   /// value whose Kills set contains two instructions from the same basic block.
  70.   ///
  71.   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
  72.   /// value in one of its predecessor blocks, it is not listed in the kills set,
  73.   /// but does include the predecessor block in the AliveBlocks set (unless that
  74.   /// block also defines the value).  This leads to the (perfectly sensical)
  75.   /// situation where a value is defined in a block, and the last use is a phi
  76.   /// node in the successor.  In this case, AliveBlocks is empty (the value is
  77.   /// not live across any  blocks) and Kills is empty (phi nodes are not
  78.   /// included). This is sensical because the value must be live to the end of
  79.   /// the block, but is not live in any successor blocks.
  80.   struct VarInfo {
  81.     /// AliveBlocks - Set of blocks in which this value is alive completely
  82.     /// through.  This is a bit set which uses the basic block number as an
  83.     /// index.
  84.     ///
  85.     SparseBitVector<> AliveBlocks;
  86.  
  87.     /// Kills - List of MachineInstruction's which are the last use of this
  88.     /// virtual register (kill it) in their basic block.
  89.     ///
  90.     std::vector<MachineInstr*> Kills;
  91.  
  92.     /// removeKill - Delete a kill corresponding to the specified
  93.     /// machine instruction. Returns true if there was a kill
  94.     /// corresponding to this instruction, false otherwise.
  95.     bool removeKill(MachineInstr &MI) {
  96.       std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
  97.       if (I == Kills.end())
  98.         return false;
  99.       Kills.erase(I);
  100.       return true;
  101.     }
  102.  
  103.     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
  104.     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
  105.  
  106.     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
  107.     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
  108.     /// MBB, it is not considered live in.
  109.     bool isLiveIn(const MachineBasicBlock &MBB, Register Reg,
  110.                   MachineRegisterInfo &MRI);
  111.  
  112.     void dump() const;
  113.   };
  114.  
  115. private:
  116.   /// VirtRegInfo - This list is a mapping from virtual register number to
  117.   /// variable information.
  118.   ///
  119.   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
  120.  
  121.   /// PHIJoins - list of virtual registers that are PHI joins. These registers
  122.   /// may have multiple definitions, and they require special handling when
  123.   /// building live intervals.
  124.   SparseBitVector<> PHIJoins;
  125.  
  126. private:   // Intermediate data structures
  127.   MachineFunction *MF;
  128.  
  129.   MachineRegisterInfo* MRI;
  130.  
  131.   const TargetRegisterInfo *TRI;
  132.  
  133.   // PhysRegInfo - Keep track of which instruction was the last def of a
  134.   // physical register. This is a purely local property, because all physical
  135.   // register references are presumed dead across basic blocks.
  136.   std::vector<MachineInstr *> PhysRegDef;
  137.  
  138.   // PhysRegInfo - Keep track of which instruction was the last use of a
  139.   // physical register. This is a purely local property, because all physical
  140.   // register references are presumed dead across basic blocks.
  141.   std::vector<MachineInstr *> PhysRegUse;
  142.  
  143.   std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
  144.  
  145.   // DistanceMap - Keep track the distance of a MI from the start of the
  146.   // current basic block.
  147.   DenseMap<MachineInstr*, unsigned> DistanceMap;
  148.  
  149.   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
  150.   /// uses. Pay special attention to the sub-register uses which may come below
  151.   /// the last use of the whole register.
  152.   bool HandlePhysRegKill(Register Reg, MachineInstr *MI);
  153.  
  154.   /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
  155.   void HandleRegMask(const MachineOperand&);
  156.  
  157.   void HandlePhysRegUse(Register Reg, MachineInstr &MI);
  158.   void HandlePhysRegDef(Register Reg, MachineInstr *MI,
  159.                         SmallVectorImpl<unsigned> &Defs);
  160.   void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
  161.  
  162.   /// FindLastRefOrPartRef - Return the last reference or partial reference of
  163.   /// the specified register.
  164.   MachineInstr *FindLastRefOrPartRef(Register Reg);
  165.  
  166.   /// FindLastPartialDef - Return the last partial def of the specified
  167.   /// register. Also returns the sub-registers that're defined by the
  168.   /// instruction.
  169.   MachineInstr *FindLastPartialDef(Register Reg,
  170.                                    SmallSet<unsigned, 4> &PartDefRegs);
  171.  
  172.   /// analyzePHINodes - Gather information about the PHI nodes in here. In
  173.   /// particular, we want to map the variable information of a virtual
  174.   /// register which is used in a PHI node. We map that to the BB the vreg
  175.   /// is coming from.
  176.   void analyzePHINodes(const MachineFunction& Fn);
  177.  
  178.   void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
  179.  
  180.   void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
  181. public:
  182.  
  183.   bool runOnMachineFunction(MachineFunction &MF) override;
  184.  
  185.   /// RegisterDefIsDead - Return true if the specified instruction defines the
  186.   /// specified register, but that definition is dead.
  187.   bool RegisterDefIsDead(MachineInstr &MI, Register Reg) const;
  188.  
  189.   //===--------------------------------------------------------------------===//
  190.   //  API to update live variable information
  191.  
  192.   /// Recompute liveness from scratch for a virtual register \p Reg that is
  193.   /// known to have a single def that dominates all uses. This can be useful
  194.   /// after removing some uses of \p Reg. It is not necessary for the whole
  195.   /// machine function to be in SSA form.
  196.   void recomputeForSingleDefVirtReg(Register Reg);
  197.  
  198.   /// replaceKillInstruction - Update register kill info by replacing a kill
  199.   /// instruction with a new one.
  200.   void replaceKillInstruction(Register Reg, MachineInstr &OldMI,
  201.                               MachineInstr &NewMI);
  202.  
  203.   /// addVirtualRegisterKilled - Add information about the fact that the
  204.   /// specified register is killed after being used by the specified
  205.   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
  206.   /// not found.
  207.   void addVirtualRegisterKilled(Register IncomingReg, MachineInstr &MI,
  208.                                 bool AddIfNotFound = false) {
  209.     if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
  210.       getVarInfo(IncomingReg).Kills.push_back(&MI);
  211.   }
  212.  
  213.   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
  214.   /// register from the live variable information. Returns true if the
  215.   /// variable was marked as killed by the specified instruction,
  216.   /// false otherwise.
  217.   bool removeVirtualRegisterKilled(Register Reg, MachineInstr &MI) {
  218.     if (!getVarInfo(Reg).removeKill(MI))
  219.       return false;
  220.  
  221.     bool Removed = false;
  222.     for (MachineOperand &MO : MI.operands()) {
  223.       if (MO.isReg() && MO.isKill() && MO.getReg() == Reg) {
  224.         MO.setIsKill(false);
  225.         Removed = true;
  226.         break;
  227.       }
  228.     }
  229.  
  230.     assert(Removed && "Register is not used by this instruction!");
  231.     (void)Removed;
  232.     return true;
  233.   }
  234.  
  235.   /// removeVirtualRegistersKilled - Remove all killed info for the specified
  236.   /// instruction.
  237.   void removeVirtualRegistersKilled(MachineInstr &MI);
  238.  
  239.   /// addVirtualRegisterDead - Add information about the fact that the specified
  240.   /// register is dead after being used by the specified instruction. If
  241.   /// AddIfNotFound is true, add a implicit operand if it's not found.
  242.   void addVirtualRegisterDead(Register IncomingReg, MachineInstr &MI,
  243.                               bool AddIfNotFound = false) {
  244.     if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
  245.       getVarInfo(IncomingReg).Kills.push_back(&MI);
  246.   }
  247.  
  248.   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
  249.   /// register from the live variable information. Returns true if the
  250.   /// variable was marked dead at the specified instruction, false
  251.   /// otherwise.
  252.   bool removeVirtualRegisterDead(Register Reg, MachineInstr &MI) {
  253.     if (!getVarInfo(Reg).removeKill(MI))
  254.       return false;
  255.  
  256.     bool Removed = false;
  257.     for (MachineOperand &MO : MI.operands()) {
  258.       if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
  259.         MO.setIsDead(false);
  260.         Removed = true;
  261.         break;
  262.       }
  263.     }
  264.     assert(Removed && "Register is not defined by this instruction!");
  265.     (void)Removed;
  266.     return true;
  267.   }
  268.  
  269.   void getAnalysisUsage(AnalysisUsage &AU) const override;
  270.  
  271.   void releaseMemory() override {
  272.     VirtRegInfo.clear();
  273.   }
  274.  
  275.   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
  276.   /// register.
  277.   VarInfo &getVarInfo(Register Reg);
  278.  
  279.   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
  280.                                MachineBasicBlock *BB);
  281.   void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock,
  282.                                MachineBasicBlock *BB,
  283.                                SmallVectorImpl<MachineBasicBlock *> &WorkList);
  284.  
  285.   void HandleVirtRegDef(Register reg, MachineInstr &MI);
  286.   void HandleVirtRegUse(Register reg, MachineBasicBlock *MBB, MachineInstr &MI);
  287.  
  288.   bool isLiveIn(Register Reg, const MachineBasicBlock &MBB) {
  289.     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
  290.   }
  291.  
  292.   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
  293.   /// PHI nodes. This means that Reg is either killed by a successor block or
  294.   /// passed through one.
  295.   bool isLiveOut(Register Reg, const MachineBasicBlock &MBB);
  296.  
  297.   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
  298.   /// variables that are live out of DomBB and live into SuccBB will be marked
  299.   /// as passing live through BB. This method assumes that the machine code is
  300.   /// still in SSA form.
  301.   void addNewBlock(MachineBasicBlock *BB,
  302.                    MachineBasicBlock *DomBB,
  303.                    MachineBasicBlock *SuccBB);
  304.  
  305.   void addNewBlock(MachineBasicBlock *BB,
  306.                    MachineBasicBlock *DomBB,
  307.                    MachineBasicBlock *SuccBB,
  308.                    std::vector<SparseBitVector<>> &LiveInSets);
  309.  
  310.   /// isPHIJoin - Return true if Reg is a phi join register.
  311.   bool isPHIJoin(Register Reg) { return PHIJoins.test(Reg.id()); }
  312.  
  313.   /// setPHIJoin - Mark Reg as a phi join register.
  314.   void setPHIJoin(Register Reg) { PHIJoins.set(Reg.id()); }
  315. };
  316.  
  317. } // End llvm namespace
  318.  
  319. #endif
  320.