//===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
/// \file This file implements the LiveInterval analysis pass.  Given some
 
/// numbering of each the machine instructions (in this implemention depth-first
 
/// order) an interval [i, j) is said to be a live interval for register v if
 
/// there is no instruction with number j' > j such that v is live at j' and
 
/// there is no instruction with number i' < i such that v is live at i'. In
 
/// this implementation intervals can have holes, i.e. an interval might look
 
/// like [1,20), [50,65), [1000,1001).
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_LIVEINTERVALS_H
 
#define LLVM_CODEGEN_LIVEINTERVALS_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/IndexedMap.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/CodeGen/LiveInterval.h"
 
#include "llvm/CodeGen/MachineBasicBlock.h"
 
#include "llvm/CodeGen/MachineFunctionPass.h"
 
#include "llvm/CodeGen/SlotIndexes.h"
 
#include "llvm/CodeGen/TargetRegisterInfo.h"
 
#include "llvm/MC/LaneBitmask.h"
 
#include "llvm/Support/CommandLine.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
extern cl::opt<bool> UseSegmentSetForPhysRegs;
 
 
 
class BitVector;
 
class LiveIntervalCalc;
 
class MachineBlockFrequencyInfo;
 
class MachineDominatorTree;
 
class MachineFunction;
 
class MachineInstr;
 
class MachineRegisterInfo;
 
class raw_ostream;
 
class TargetInstrInfo;
 
class VirtRegMap;
 
 
 
  class LiveIntervals : public MachineFunctionPass {
 
    MachineFunction* MF;
 
    MachineRegisterInfo* MRI;
 
    const TargetRegisterInfo* TRI;
 
    const TargetInstrInfo *TII;
 
    SlotIndexes* Indexes;
 
    MachineDominatorTree *DomTree = nullptr;
 
    LiveIntervalCalc *LICalc = nullptr;
 
 
 
    /// Special pool allocator for VNInfo's (LiveInterval val#).
 
    VNInfo::Allocator VNInfoAllocator;
 
 
 
    /// Live interval pointers for all the virtual registers.
 
    IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
 
 
 
    /// Sorted list of instructions with register mask operands. Always use the
 
    /// 'r' slot, RegMasks are normal clobbers, not early clobbers.
 
    SmallVector<SlotIndex, 8> RegMaskSlots;
 
 
 
    /// This vector is parallel to RegMaskSlots, it holds a pointer to the
 
    /// corresponding register mask.  This pointer can be recomputed as:
 
    ///
 
    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
 
    ///   unsigned OpNum = findRegMaskOperand(MI);
 
    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
 
    ///
 
    /// This is kept in a separate vector partly because some standard
 
    /// libraries don't support lower_bound() with mixed objects, partly to
 
    /// improve locality when searching in RegMaskSlots.
 
    /// Also see the comment in LiveInterval::find().
 
    SmallVector<const uint32_t*, 8> RegMaskBits;
 
 
 
    /// For each basic block number, keep (begin, size) pairs indexing into the
 
    /// RegMaskSlots and RegMaskBits arrays.
 
    /// Note that basic block numbers may not be layout contiguous, that's why
 
    /// we can't just keep track of the first register mask in each basic
 
    /// block.
 
    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
 
 
 
    /// Keeps a live range set for each register unit to track fixed physreg
 
    /// interference.
 
    SmallVector<LiveRange*, 0> RegUnitRanges;
 
 
 
  public:
 
    static char ID;
 
 
 
    LiveIntervals();
 
    ~LiveIntervals() override;
 
 
 
    /// Calculate the spill weight to assign to a single instruction.
 
    static float getSpillWeight(bool isDef, bool isUse,
 
                                const MachineBlockFrequencyInfo *MBFI,
 
                                const MachineInstr &MI);
 
 
 
    /// Calculate the spill weight to assign to a single instruction.
 
    static float getSpillWeight(bool isDef, bool isUse,
 
                                const MachineBlockFrequencyInfo *MBFI,
 
                                const MachineBasicBlock *MBB);
 
 
 
    LiveInterval &getInterval(Register Reg) {
 
      if (hasInterval(Reg))
 
        return *VirtRegIntervals[Reg.id()];
 
 
 
      return createAndComputeVirtRegInterval(Reg);
 
    }
 
 
 
    const LiveInterval &getInterval(Register Reg) const {
 
      return const_cast<LiveIntervals*>(this)->getInterval(Reg);
 
    }
 
 
 
    bool hasInterval(Register Reg) const {
 
      return VirtRegIntervals.inBounds(Reg.id()) &&
 
             VirtRegIntervals[Reg.id()];
 
    }
 
 
 
    /// Interval creation.
 
    LiveInterval &createEmptyInterval(Register Reg) {
 
      assert(!hasInterval(Reg) && "Interval already exists!");
 
      VirtRegIntervals.grow(Reg.id());
 
      VirtRegIntervals[Reg.id()] = createInterval(Reg);
 
      return *VirtRegIntervals[Reg.id()];
 
    }
 
 
 
    LiveInterval &createAndComputeVirtRegInterval(Register Reg) {
 
      LiveInterval &LI = createEmptyInterval(Reg);
 
      computeVirtRegInterval(LI);
 
      return LI;
 
    }
 
 
 
    /// Interval removal.
 
    void removeInterval(Register Reg) {
 
      delete VirtRegIntervals[Reg];
 
      VirtRegIntervals[Reg] = nullptr;
 
    }
 
 
 
    /// Given a register and an instruction, adds a live segment from that
 
    /// instruction to the end of its MBB.
 
    LiveInterval::Segment addSegmentToEndOfBlock(Register Reg,
 
                                                 MachineInstr &startInst);
 
 
 
    /// After removing some uses of a register, shrink its live range to just
 
    /// the remaining uses. This method does not compute reaching defs for new
 
    /// uses, and it doesn't remove dead defs.
 
    /// Dead PHIDef values are marked as unused. New dead machine instructions
 
    /// are added to the dead vector. Returns true if the interval may have been
 
    /// separated into multiple connected components.
 
    bool shrinkToUses(LiveInterval *li,
 
                      SmallVectorImpl<MachineInstr*> *dead = nullptr);
 
 
 
    /// Specialized version of
 
    /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
 
    /// that works on a subregister live range and only looks at uses matching
 
    /// the lane mask of the subregister range.
 
    /// This may leave the subrange empty which needs to be cleaned up with
 
    /// LiveInterval::removeEmptySubranges() afterwards.
 
    void shrinkToUses(LiveInterval::SubRange &SR, Register Reg);
 
 
 
    /// Extend the live range \p LR to reach all points in \p Indices. The
 
    /// points in the \p Indices array must be jointly dominated by the union
 
    /// of the existing defs in \p LR and points in \p Undefs.
 
    ///
 
    /// PHI-defs are added as needed to maintain SSA form.
 
    ///
 
    /// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
 
    /// will be extended to be live out of the basic block.
 
    /// If a SlotIndex in \p Indices is jointy dominated only by points in
 
    /// \p Undefs, the live range will not be extended to that point.
 
    ///
 
    /// See also LiveRangeCalc::extend().
 
    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
 
                         ArrayRef<SlotIndex> Undefs);
 
 
 
    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
 
      extendToIndices(LR, Indices, /*Undefs=*/{});
 
    }
 
 
 
    /// If \p LR has a live value at \p Kill, prune its live range by removing
 
    /// any liveness reachable from Kill. Add live range end points to
 
    /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
 
    /// value's live range.
 
    ///
 
    /// Calling pruneValue() and extendToIndices() can be used to reconstruct
 
    /// SSA form after adding defs to a virtual register.
 
    void pruneValue(LiveRange &LR, SlotIndex Kill,
 
                    SmallVectorImpl<SlotIndex> *EndPoints);
 
 
 
    /// This function should not be used. Its intent is to tell you that you are
 
    /// doing something wrong if you call pruneValue directly on a
 
    /// LiveInterval. Indeed, you are supposed to call pruneValue on the main
 
    /// LiveRange and all the LiveRanges of the subranges if any.
 
    LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
 
                                          SmallVectorImpl<SlotIndex> *) {
 
      llvm_unreachable(
 
          "Use pruneValue on the main LiveRange and on each subrange");
 
    }
 
 
 
    SlotIndexes *getSlotIndexes() const {
 
      return Indexes;
 
    }
 
 
 
    /// Returns true if the specified machine instr has been removed or was
 
    /// never entered in the map.
 
    bool isNotInMIMap(const MachineInstr &Instr) const {
 
      return !Indexes->hasIndex(Instr);
 
    }
 
 
 
    /// Returns the base index of the given instruction.
 
    SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
 
      return Indexes->getInstructionIndex(Instr);
 
    }
 
 
 
    /// Returns the instruction associated with the given index.
 
    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
 
      return Indexes->getInstructionFromIndex(index);
 
    }
 
 
 
    /// Return the first index in the given basic block.
 
    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
 
      return Indexes->getMBBStartIdx(mbb);
 
    }
 
 
 
    /// Return the last index in the given basic block.
 
    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
 
      return Indexes->getMBBEndIdx(mbb);
 
    }
 
 
 
    bool isLiveInToMBB(const LiveRange &LR,
 
                       const MachineBasicBlock *mbb) const {
 
      return LR.liveAt(getMBBStartIdx(mbb));
 
    }
 
 
 
    bool isLiveOutOfMBB(const LiveRange &LR,
 
                        const MachineBasicBlock *mbb) const {
 
      return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
 
    }
 
 
 
    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
 
      return Indexes->getMBBFromIndex(index);
 
    }
 
 
 
    void insertMBBInMaps(MachineBasicBlock *MBB) {
 
      Indexes->insertMBBInMaps(MBB);
 
      assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
 
             "Blocks must be added in order.");
 
      RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
 
    }
 
 
 
    SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
 
      return Indexes->insertMachineInstrInMaps(MI);
 
    }
 
 
 
    void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
 
                                       MachineBasicBlock::iterator E) {
 
      for (MachineBasicBlock::iterator I = B; I != E; ++I)
 
        Indexes->insertMachineInstrInMaps(*I);
 
    }
 
 
 
    void RemoveMachineInstrFromMaps(MachineInstr &MI) {
 
      Indexes->removeMachineInstrFromMaps(MI);
 
    }
 
 
 
    SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
 
      return Indexes->replaceMachineInstrInMaps(MI, NewMI);
 
    }
 
 
 
    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
 
 
 
    void getAnalysisUsage(AnalysisUsage &AU) const override;
 
    void releaseMemory() override;
 
 
 
    /// Pass entry point; Calculates LiveIntervals.
 
    bool runOnMachineFunction(MachineFunction&) override;
 
 
 
    /// Implement the dump method.
 
    void print(raw_ostream &O, const Module* = nullptr) const override;
 
 
 
    /// If LI is confined to a single basic block, return a pointer to that
 
    /// block.  If LI is live in to or out of any block, return NULL.
 
    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
 
 
 
    /// Returns true if VNI is killed by any PHI-def values in LI.
 
    /// This may conservatively return true to avoid expensive computations.
 
    bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
 
 
 
    /// Add kill flags to any instruction that kills a virtual register.
 
    void addKillFlags(const VirtRegMap*);
 
 
 
    /// Call this method to notify LiveIntervals that instruction \p MI has been
 
    /// moved within a basic block. This will update the live intervals for all
 
    /// operands of \p MI. Moves between basic blocks are not supported.
 
    ///
 
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
 
    void handleMove(MachineInstr &MI, bool UpdateFlags = false);
 
 
 
    /// Update intervals of operands of all instructions in the newly
 
    /// created bundle specified by \p BundleStart.
 
    ///
 
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
 
    ///
 
    /// Assumes existing liveness is accurate.
 
    /// \pre BundleStart should be the first instruction in the Bundle.
 
    /// \pre BundleStart should not have a have SlotIndex as one will be assigned.
 
    void handleMoveIntoNewBundle(MachineInstr &BundleStart,
 
                                 bool UpdateFlags = false);
 
 
 
    /// Update live intervals for instructions in a range of iterators. It is
 
    /// intended for use after target hooks that may insert or remove
 
    /// instructions, and is only efficient for a small number of instructions.
 
    ///
 
    /// OrigRegs is a vector of registers that were originally used by the
 
    /// instructions in the range between the two iterators.
 
    ///
 
    /// Currently, the only only changes that are supported are simple removal
 
    /// and addition of uses.
 
    void repairIntervalsInRange(MachineBasicBlock *MBB,
 
                                MachineBasicBlock::iterator Begin,
 
                                MachineBasicBlock::iterator End,
 
                                ArrayRef<Register> OrigRegs);
 
 
 
    // Register mask functions.
 
    //
 
    // Machine instructions may use a register mask operand to indicate that a
 
    // large number of registers are clobbered by the instruction.  This is
 
    // typically used for calls.
 
    //
 
    // For compile time performance reasons, these clobbers are not recorded in
 
    // the live intervals for individual physical registers.  Instead,
 
    // LiveIntervalAnalysis maintains a sorted list of instructions with
 
    // register mask operands.
 
 
 
    /// Returns a sorted array of slot indices of all instructions with
 
    /// register mask operands.
 
    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
 
 
 
    /// Returns a sorted array of slot indices of all instructions with register
 
    /// mask operands in the basic block numbered \p MBBNum.
 
    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
 
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
 
      return getRegMaskSlots().slice(P.first, P.second);
 
    }
 
 
 
    /// Returns an array of register mask pointers corresponding to
 
    /// getRegMaskSlots().
 
    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
 
 
 
    /// Returns an array of mask pointers corresponding to
 
    /// getRegMaskSlotsInBlock(MBBNum).
 
    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
 
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
 
      return getRegMaskBits().slice(P.first, P.second);
 
    }
 
 
 
    /// Test if \p LI is live across any register mask instructions, and
 
    /// compute a bit mask of physical registers that are not clobbered by any
 
    /// of them.
 
    ///
 
    /// Returns false if \p LI doesn't cross any register mask instructions. In
 
    /// that case, the bit vector is not filled in.
 
    bool checkRegMaskInterference(const LiveInterval &LI,
 
                                  BitVector &UsableRegs);
 
 
 
    // Register unit functions.
 
    //
 
    // Fixed interference occurs when MachineInstrs use physregs directly
 
    // instead of virtual registers. This typically happens when passing
 
    // arguments to a function call, or when instructions require operands in
 
    // fixed registers.
 
    //
 
    // Each physreg has one or more register units, see MCRegisterInfo. We
 
    // track liveness per register unit to handle aliasing registers more
 
    // efficiently.
 
 
 
    /// Return the live range for register unit \p Unit. It will be computed if
 
    /// it doesn't exist.
 
    LiveRange &getRegUnit(unsigned Unit) {
 
      LiveRange *LR = RegUnitRanges[Unit];
 
      if (!LR) {
 
        // Compute missing ranges on demand.
 
        // Use segment set to speed-up initial computation of the live range.
 
        RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
 
        computeRegUnitRange(*LR, Unit);
 
      }
 
      return *LR;
 
    }
 
 
 
    /// Return the live range for register unit \p Unit if it has already been
 
    /// computed, or nullptr if it hasn't been computed yet.
 
    LiveRange *getCachedRegUnit(unsigned Unit) {
 
      return RegUnitRanges[Unit];
 
    }
 
 
 
    const LiveRange *getCachedRegUnit(unsigned Unit) const {
 
      return RegUnitRanges[Unit];
 
    }
 
 
 
    /// Remove computed live range for register unit \p Unit. Subsequent uses
 
    /// should rely on on-demand recomputation.
 
    void removeRegUnit(unsigned Unit) {
 
      delete RegUnitRanges[Unit];
 
      RegUnitRanges[Unit] = nullptr;
 
    }
 
 
 
    /// Remove associated live ranges for the register units associated with \p
 
    /// Reg. Subsequent uses should rely on on-demand recomputation.  \note This
 
    /// method can result in inconsistent liveness tracking if multiple phyical
 
    /// registers share a regunit, and should be used cautiously.
 
    void removeAllRegUnitsForPhysReg(MCRegister Reg) {
 
      for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
 
        removeRegUnit(*Units);
 
    }
 
 
 
    /// Remove value numbers and related live segments starting at position
 
    /// \p Pos that are part of any liverange of physical register \p Reg or one
 
    /// of its subregisters.
 
    void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos);
 
 
 
    /// Remove value number and related live segments of \p LI and its subranges
 
    /// that start at position \p Pos.
 
    void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
 
 
 
    /// Split separate components in LiveInterval \p LI into separate intervals.
 
    void splitSeparateComponents(LiveInterval &LI,
 
                                 SmallVectorImpl<LiveInterval*> &SplitLIs);
 
 
 
    /// For live interval \p LI with correct SubRanges construct matching
 
    /// information for the main live range. Expects the main live range to not
 
    /// have any segments or value numbers.
 
    void constructMainRangeFromSubranges(LiveInterval &LI);
 
 
 
  private:
 
    /// Compute live intervals for all virtual registers.
 
    void computeVirtRegs();
 
 
 
    /// Compute RegMaskSlots and RegMaskBits.
 
    void computeRegMasks();
 
 
 
    /// Walk the values in \p LI and check for dead values:
 
    /// - Dead PHIDef values are marked as unused.
 
    /// - Dead operands are marked as such.
 
    /// - Completely dead machine instructions are added to the \p dead vector
 
    ///   if it is not nullptr.
 
    /// Returns true if any PHI value numbers have been removed which may
 
    /// have separated the interval into multiple connected components.
 
    bool computeDeadValues(LiveInterval &LI,
 
                           SmallVectorImpl<MachineInstr*> *dead);
 
 
 
    static LiveInterval *createInterval(Register Reg);
 
 
 
    void printInstrs(raw_ostream &O) const;
 
    void dumpInstrs() const;
 
 
 
    void computeLiveInRegUnits();
 
    void computeRegUnitRange(LiveRange&, unsigned Unit);
 
    bool computeVirtRegInterval(LiveInterval&);
 
 
 
    using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
 
    void extendSegmentsToUses(LiveRange &Segments,
 
                              ShrinkToUsesWorkList &WorkList, Register Reg,
 
                              LaneBitmask LaneMask);
 
 
 
    /// Helper function for repairIntervalsInRange(), walks backwards and
 
    /// creates/modifies live segments in \p LR to match the operands found.
 
    /// Only full operands or operands with subregisters matching \p LaneMask
 
    /// are considered.
 
    void repairOldRegInRange(MachineBasicBlock::iterator Begin,
 
                             MachineBasicBlock::iterator End,
 
                             const SlotIndex endIdx, LiveRange &LR,
 
                             Register Reg,
 
                             LaneBitmask LaneMask = LaneBitmask::getAll());
 
 
 
    class HMEditor;
 
  };
 
 
 
} // end namespace llvm
 
 
 
#endif