//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file implements the LiveRange and LiveInterval classes.  Given some
 
// numbering of each the machine instructions an interval [i, j) is said to be a
 
// live range for register v if there is no instruction with number j' >= j
 
// such that v is live at j' and there is no instruction with number i' < i such
 
// that v is live at i'. In this implementation ranges can have holes,
 
// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
 
// individual segment is represented as an instance of LiveRange::Segment,
 
// and the whole range is represented as an instance of LiveRange.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
 
#define LLVM_CODEGEN_LIVEINTERVAL_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/IntEqClasses.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/CodeGen/Register.h"
 
#include "llvm/CodeGen/SlotIndexes.h"
 
#include "llvm/MC/LaneBitmask.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/MathExtras.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <functional>
 
#include <memory>
 
#include <set>
 
#include <tuple>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
  class CoalescerPair;
 
  class LiveIntervals;
 
  class MachineRegisterInfo;
 
  class raw_ostream;
 
 
 
  /// VNInfo - Value Number Information.
 
  /// This class holds information about a machine level values, including
 
  /// definition and use points.
 
  ///
 
  class VNInfo {
 
  public:
 
    using Allocator = BumpPtrAllocator;
 
 
 
    /// The ID number of this value.
 
    unsigned id;
 
 
 
    /// The index of the defining instruction.
 
    SlotIndex def;
 
 
 
    /// VNInfo constructor.
 
    VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
 
 
 
    /// VNInfo constructor, copies values from orig, except for the value number.
 
    VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
 
 
 
    /// Copy from the parameter into this VNInfo.
 
    void copyFrom(VNInfo &src) {
 
      def = src.def;
 
    }
 
 
 
    /// Returns true if this value is defined by a PHI instruction (or was,
 
    /// PHI instructions may have been eliminated).
 
    /// PHI-defs begin at a block boundary, all other defs begin at register or
 
    /// EC slots.
 
    bool isPHIDef() const { return def.isBlock(); }
 
 
 
    /// Returns true if this value is unused.
 
    bool isUnused() const { return !def.isValid(); }
 
 
 
    /// Mark this value as unused.
 
    void markUnused() { def = SlotIndex(); }
 
  };
 
 
 
  /// Result of a LiveRange query. This class hides the implementation details
 
  /// of live ranges, and it should be used as the primary interface for
 
  /// examining live ranges around instructions.
 
  class LiveQueryResult {
 
    VNInfo *const EarlyVal;
 
    VNInfo *const LateVal;
 
    const SlotIndex EndPoint;
 
    const bool Kill;
 
 
 
  public:
 
    LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
 
                    bool Kill)
 
      : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
 
    {}
 
 
 
    /// Return the value that is live-in to the instruction. This is the value
 
    /// that will be read by the instruction's use operands. Return NULL if no
 
    /// value is live-in.
 
    VNInfo *valueIn() const {
 
      return EarlyVal;
 
    }
 
 
 
    /// Return true if the live-in value is killed by this instruction. This
 
    /// means that either the live range ends at the instruction, or it changes
 
    /// value.
 
    bool isKill() const {
 
      return Kill;
 
    }
 
 
 
    /// Return true if this instruction has a dead def.
 
    bool isDeadDef() const {
 
      return EndPoint.isDead();
 
    }
 
 
 
    /// Return the value leaving the instruction, if any. This can be a
 
    /// live-through value, or a live def. A dead def returns NULL.
 
    VNInfo *valueOut() const {
 
      return isDeadDef() ? nullptr : LateVal;
 
    }
 
 
 
    /// Returns the value alive at the end of the instruction, if any. This can
 
    /// be a live-through value, a live def or a dead def.
 
    VNInfo *valueOutOrDead() const {
 
      return LateVal;
 
    }
 
 
 
    /// Return the value defined by this instruction, if any. This includes
 
    /// dead defs, it is the value created by the instruction's def operands.
 
    VNInfo *valueDefined() const {
 
      return EarlyVal == LateVal ? nullptr : LateVal;
 
    }
 
 
 
    /// Return the end point of the last live range segment to interact with
 
    /// the instruction, if any.
 
    ///
 
    /// The end point is an invalid SlotIndex only if the live range doesn't
 
    /// intersect the instruction at all.
 
    ///
 
    /// The end point may be at or past the end of the instruction's basic
 
    /// block. That means the value was live out of the block.
 
    SlotIndex endPoint() const {
 
      return EndPoint;
 
    }
 
  };
 
 
 
  /// This class represents the liveness of a register, stack slot, etc.
 
  /// It manages an ordered list of Segment objects.
 
  /// The Segments are organized in a static single assignment form: At places
 
  /// where a new value is defined or different values reach a CFG join a new
 
  /// segment with a new value number is used.
 
  class LiveRange {
 
  public:
 
    /// This represents a simple continuous liveness interval for a value.
 
    /// The start point is inclusive, the end point exclusive. These intervals
 
    /// are rendered as [start,end).
 
    struct Segment {
 
      SlotIndex start;  // Start point of the interval (inclusive)
 
      SlotIndex end;    // End point of the interval (exclusive)
 
      VNInfo *valno = nullptr; // identifier for the value contained in this
 
                               // segment.
 
 
 
      Segment() = default;
 
 
 
      Segment(SlotIndex S, SlotIndex E, VNInfo *V)
 
        : start(S), end(E), valno(V) {
 
        assert(S < E && "Cannot create empty or backwards segment");
 
      }
 
 
 
      /// Return true if the index is covered by this segment.
 
      bool contains(SlotIndex I) const {
 
        return start <= I && I < end;
 
      }
 
 
 
      /// Return true if the given interval, [S, E), is covered by this segment.
 
      bool containsInterval(SlotIndex S, SlotIndex E) const {
 
        assert((S < E) && "Backwards interval?");
 
        return (start <= S && S < end) && (start < E && E <= end);
 
      }
 
 
 
      bool operator<(const Segment &Other) const {
 
        return std::tie(start, end) < std::tie(Other.start, Other.end);
 
      }
 
      bool operator==(const Segment &Other) const {
 
        return start == Other.start && end == Other.end;
 
      }
 
 
 
      bool operator!=(const Segment &Other) const {
 
        return !(*this == Other);
 
      }
 
 
 
      void dump() const;
 
    };
 
 
 
    using Segments = SmallVector<Segment, 2>;
 
    using VNInfoList = SmallVector<VNInfo *, 2>;
 
 
 
    Segments segments;   // the liveness segments
 
    VNInfoList valnos;   // value#'s
 
 
 
    // The segment set is used temporarily to accelerate initial computation
 
    // of live ranges of physical registers in computeRegUnitRange.
 
    // After that the set is flushed to the segment vector and deleted.
 
    using SegmentSet = std::set<Segment>;
 
    std::unique_ptr<SegmentSet> segmentSet;
 
 
 
    using iterator = Segments::iterator;
 
    using const_iterator = Segments::const_iterator;
 
 
 
    iterator begin() { return segments.begin(); }
 
    iterator end()   { return segments.end(); }
 
 
 
    const_iterator begin() const { return segments.begin(); }
 
    const_iterator end() const  { return segments.end(); }
 
 
 
    using vni_iterator = VNInfoList::iterator;
 
    using const_vni_iterator = VNInfoList::const_iterator;
 
 
 
    vni_iterator vni_begin() { return valnos.begin(); }
 
    vni_iterator vni_end()   { return valnos.end(); }
 
 
 
    const_vni_iterator vni_begin() const { return valnos.begin(); }
 
    const_vni_iterator vni_end() const   { return valnos.end(); }
 
 
 
    iterator_range<vni_iterator> vnis() {
 
      return make_range(vni_begin(), vni_end());
 
    }
 
 
 
    iterator_range<const_vni_iterator> vnis() const {
 
      return make_range(vni_begin(), vni_end());
 
    }
 
 
 
    /// Constructs a new LiveRange object.
 
    LiveRange(bool UseSegmentSet = false)
 
        : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
 
                                   : nullptr) {}
 
 
 
    /// Constructs a new LiveRange object by copying segments and valnos from
 
    /// another LiveRange.
 
    LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
 
      assert(Other.segmentSet == nullptr &&
 
             "Copying of LiveRanges with active SegmentSets is not supported");
 
      assign(Other, Allocator);
 
    }
 
 
 
    /// Copies values numbers and live segments from \p Other into this range.
 
    void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
 
      if (this == &Other)
 
        return;
 
 
 
      assert(Other.segmentSet == nullptr &&
 
             "Copying of LiveRanges with active SegmentSets is not supported");
 
      // Duplicate valnos.
 
      for (const VNInfo *VNI : Other.valnos)
 
        createValueCopy(VNI, Allocator);
 
      // Now we can copy segments and remap their valnos.
 
      for (const Segment &S : Other.segments)
 
        segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
 
    }
 
 
 
    /// advanceTo - Advance the specified iterator to point to the Segment
 
    /// containing the specified position, or end() if the position is past the
 
    /// end of the range.  If no Segment contains this position, but the
 
    /// position is in a hole, this method returns an iterator pointing to the
 
    /// Segment immediately after the hole.
 
    iterator advanceTo(iterator I, SlotIndex Pos) {
 
      assert(I != end());
 
      if (Pos >= endIndex())
 
        return end();
 
      while (I->end <= Pos) ++I;
 
      return I;
 
    }
 
 
 
    const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
 
      assert(I != end());
 
      if (Pos >= endIndex())
 
        return end();
 
      while (I->end <= Pos) ++I;
 
      return I;
 
    }
 
 
 
    /// find - Return an iterator pointing to the first segment that ends after
 
    /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
 
    /// when searching large ranges.
 
    ///
 
    /// If Pos is contained in a Segment, that segment is returned.
 
    /// If Pos is in a hole, the following Segment is returned.
 
    /// If Pos is beyond endIndex, end() is returned.
 
    iterator find(SlotIndex Pos);
 
 
 
    const_iterator find(SlotIndex Pos) const {
 
      return const_cast<LiveRange*>(this)->find(Pos);
 
    }
 
 
 
    void clear() {
 
      valnos.clear();
 
      segments.clear();
 
    }
 
 
 
    size_t size() const {
 
      return segments.size();
 
    }
 
 
 
    bool hasAtLeastOneValue() const { return !valnos.empty(); }
 
 
 
    bool containsOneValue() const { return valnos.size() == 1; }
 
 
 
    unsigned getNumValNums() const { return (unsigned)valnos.size(); }
 
 
 
    /// getValNumInfo - Returns pointer to the specified val#.
 
    ///
 
    inline VNInfo *getValNumInfo(unsigned ValNo) {
 
      return valnos[ValNo];
 
    }
 
    inline const VNInfo *getValNumInfo(unsigned ValNo) const {
 
      return valnos[ValNo];
 
    }
 
 
 
    /// containsValue - Returns true if VNI belongs to this range.
 
    bool containsValue(const VNInfo *VNI) const {
 
      return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
 
    }
 
 
 
    /// getNextValue - Create a new value number and return it.  MIIdx specifies
 
    /// the instruction that defines the value number.
 
    VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
 
      VNInfo *VNI =
 
        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
 
      valnos.push_back(VNI);
 
      return VNI;
 
    }
 
 
 
    /// createDeadDef - Make sure the range has a value defined at Def.
 
    /// If one already exists, return it. Otherwise allocate a new value and
 
    /// add liveness for a dead def.
 
    VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
 
 
 
    /// Create a def of value @p VNI. Return @p VNI. If there already exists
 
    /// a definition at VNI->def, the value defined there must be @p VNI.
 
    VNInfo *createDeadDef(VNInfo *VNI);
 
 
 
    /// Create a copy of the given value. The new value will be identical except
 
    /// for the Value number.
 
    VNInfo *createValueCopy(const VNInfo *orig,
 
                            VNInfo::Allocator &VNInfoAllocator) {
 
      VNInfo *VNI =
 
        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
 
      valnos.push_back(VNI);
 
      return VNI;
 
    }
 
 
 
    /// RenumberValues - Renumber all values in order of appearance and remove
 
    /// unused values.
 
    void RenumberValues();
 
 
 
    /// MergeValueNumberInto - This method is called when two value numbers
 
    /// are found to be equivalent.  This eliminates V1, replacing all
 
    /// segments with the V1 value number with the V2 value number.  This can
 
    /// cause merging of V1/V2 values numbers and compaction of the value space.
 
    VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
 
 
 
    /// Merge all of the live segments of a specific val# in RHS into this live
 
    /// range as the specified value number. The segments in RHS are allowed
 
    /// to overlap with segments in the current range, it will replace the
 
    /// value numbers of the overlaped live segments with the specified value
 
    /// number.
 
    void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
 
 
 
    /// MergeValueInAsValue - Merge all of the segments of a specific val#
 
    /// in RHS into this live range as the specified value number.
 
    /// The segments in RHS are allowed to overlap with segments in the
 
    /// current range, but only if the overlapping segments have the
 
    /// specified value number.
 
    void MergeValueInAsValue(const LiveRange &RHS,
 
                             const VNInfo *RHSValNo, VNInfo *LHSValNo);
 
 
 
    bool empty() const { return segments.empty(); }
 
 
 
    /// beginIndex - Return the lowest numbered slot covered.
 
    SlotIndex beginIndex() const {
 
      assert(!empty() && "Call to beginIndex() on empty range.");
 
      return segments.front().start;
 
    }
 
 
 
    /// endNumber - return the maximum point of the range of the whole,
 
    /// exclusive.
 
    SlotIndex endIndex() const {
 
      assert(!empty() && "Call to endIndex() on empty range.");
 
      return segments.back().end;
 
    }
 
 
 
    bool expiredAt(SlotIndex index) const {
 
      return index >= endIndex();
 
    }
 
 
 
    bool liveAt(SlotIndex index) const {
 
      const_iterator r = find(index);
 
      return r != end() && r->start <= index;
 
    }
 
 
 
    /// Return the segment that contains the specified index, or null if there
 
    /// is none.
 
    const Segment *getSegmentContaining(SlotIndex Idx) const {
 
      const_iterator I = FindSegmentContaining(Idx);
 
      return I == end() ? nullptr : &*I;
 
    }
 
 
 
    /// Return the live segment that contains the specified index, or null if
 
    /// there is none.
 
    Segment *getSegmentContaining(SlotIndex Idx) {
 
      iterator I = FindSegmentContaining(Idx);
 
      return I == end() ? nullptr : &*I;
 
    }
 
 
 
    /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
 
    VNInfo *getVNInfoAt(SlotIndex Idx) const {
 
      const_iterator I = FindSegmentContaining(Idx);
 
      return I == end() ? nullptr : I->valno;
 
    }
 
 
 
    /// getVNInfoBefore - Return the VNInfo that is live up to but not
 
    /// necessarilly including Idx, or NULL. Use this to find the reaching def
 
    /// used by an instruction at this SlotIndex position.
 
    VNInfo *getVNInfoBefore(SlotIndex Idx) const {
 
      const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
 
      return I == end() ? nullptr : I->valno;
 
    }
 
 
 
    /// Return an iterator to the segment that contains the specified index, or
 
    /// end() if there is none.
 
    iterator FindSegmentContaining(SlotIndex Idx) {
 
      iterator I = find(Idx);
 
      return I != end() && I->start <= Idx ? I : end();
 
    }
 
 
 
    const_iterator FindSegmentContaining(SlotIndex Idx) const {
 
      const_iterator I = find(Idx);
 
      return I != end() && I->start <= Idx ? I : end();
 
    }
 
 
 
    /// overlaps - Return true if the intersection of the two live ranges is
 
    /// not empty.
 
    bool overlaps(const LiveRange &other) const {
 
      if (other.empty())
 
        return false;
 
      return overlapsFrom(other, other.begin());
 
    }
 
 
 
    /// overlaps - Return true if the two ranges have overlapping segments
 
    /// that are not coalescable according to CP.
 
    ///
 
    /// Overlapping segments where one range is defined by a coalescable
 
    /// copy are allowed.
 
    bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
 
                  const SlotIndexes&) const;
 
 
 
    /// overlaps - Return true if the live range overlaps an interval specified
 
    /// by [Start, End).
 
    bool overlaps(SlotIndex Start, SlotIndex End) const;
 
 
 
    /// overlapsFrom - Return true if the intersection of the two live ranges
 
    /// is not empty.  The specified iterator is a hint that we can begin
 
    /// scanning the Other range starting at I.
 
    bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
 
 
 
    /// Returns true if all segments of the @p Other live range are completely
 
    /// covered by this live range.
 
    /// Adjacent live ranges do not affect the covering:the liverange
 
    /// [1,5](5,10] covers (3,7].
 
    bool covers(const LiveRange &Other) const;
 
 
 
    /// Add the specified Segment to this range, merging segments as
 
    /// appropriate.  This returns an iterator to the inserted segment (which
 
    /// may have grown since it was inserted).
 
    iterator addSegment(Segment S);
 
 
 
    /// Attempt to extend a value defined after @p StartIdx to include @p Use.
 
    /// Both @p StartIdx and @p Use should be in the same basic block. In case
 
    /// of subranges, an extension could be prevented by an explicit "undef"
 
    /// caused by a <def,read-undef> on a non-overlapping lane. The list of
 
    /// location of such "undefs" should be provided in @p Undefs.
 
    /// The return value is a pair: the first element is VNInfo of the value
 
    /// that was extended (possibly nullptr), the second is a boolean value
 
    /// indicating whether an "undef" was encountered.
 
    /// If this range is live before @p Use in the basic block that starts at
 
    /// @p StartIdx, and there is no intervening "undef", extend it to be live
 
    /// up to @p Use, and return the pair {value, false}. If there is no
 
    /// segment before @p Use and there is no "undef" between @p StartIdx and
 
    /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
 
    /// return {nullptr, true}.
 
    std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
 
        SlotIndex StartIdx, SlotIndex Kill);
 
 
 
    /// Simplified version of the above "extendInBlock", which assumes that
 
    /// no register lanes are undefined by <def,read-undef> operands.
 
    /// If this range is live before @p Use in the basic block that starts
 
    /// at @p StartIdx, extend it to be live up to @p Use, and return the
 
    /// value. If there is no segment before @p Use, return nullptr.
 
    VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
 
 
 
    /// join - Join two live ranges (this, and other) together.  This applies
 
    /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
 
    /// the ranges are not joinable, this aborts.
 
    void join(LiveRange &Other,
 
              const int *ValNoAssignments,
 
              const int *RHSValNoAssignments,
 
              SmallVectorImpl<VNInfo *> &NewVNInfo);
 
 
 
    /// True iff this segment is a single segment that lies between the
 
    /// specified boundaries, exclusively. Vregs live across a backedge are not
 
    /// considered local. The boundaries are expected to lie within an extended
 
    /// basic block, so vregs that are not live out should contain no holes.
 
    bool isLocal(SlotIndex Start, SlotIndex End) const {
 
      return beginIndex() > Start.getBaseIndex() &&
 
        endIndex() < End.getBoundaryIndex();
 
    }
 
 
 
    /// Remove the specified segment from this range.  Note that the segment
 
    /// must be a single Segment in its entirety.
 
    void removeSegment(SlotIndex Start, SlotIndex End,
 
                       bool RemoveDeadValNo = false);
 
 
 
    void removeSegment(Segment S, bool RemoveDeadValNo = false) {
 
      removeSegment(S.start, S.end, RemoveDeadValNo);
 
    }
 
 
 
    /// Remove segment pointed to by iterator @p I from this range.
 
    iterator removeSegment(iterator I, bool RemoveDeadValNo = false);
 
 
 
    /// Mark \p ValNo for deletion if no segments in this range use it.
 
    void removeValNoIfDead(VNInfo *ValNo);
 
 
 
    /// Query Liveness at Idx.
 
    /// The sub-instruction slot of Idx doesn't matter, only the instruction
 
    /// it refers to is considered.
 
    LiveQueryResult Query(SlotIndex Idx) const {
 
      // Find the segment that enters the instruction.
 
      const_iterator I = find(Idx.getBaseIndex());
 
      const_iterator E = end();
 
      if (I == E)
 
        return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
 
 
 
      // Is this an instruction live-in segment?
 
      // If Idx is the start index of a basic block, include live-in segments
 
      // that start at Idx.getBaseIndex().
 
      VNInfo *EarlyVal = nullptr;
 
      VNInfo *LateVal  = nullptr;
 
      SlotIndex EndPoint;
 
      bool Kill = false;
 
      if (I->start <= Idx.getBaseIndex()) {
 
        EarlyVal = I->valno;
 
        EndPoint = I->end;
 
        // Move to the potentially live-out segment.
 
        if (SlotIndex::isSameInstr(Idx, I->end)) {
 
          Kill = true;
 
          if (++I == E)
 
            return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
 
        }
 
        // Special case: A PHIDef value can have its def in the middle of a
 
        // segment if the value happens to be live out of the layout
 
        // predecessor.
 
        // Such a value is not live-in.
 
        if (EarlyVal->def == Idx.getBaseIndex())
 
          EarlyVal = nullptr;
 
      }
 
      // I now points to the segment that may be live-through, or defined by
 
      // this instr. Ignore segments starting after the current instr.
 
      if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
 
        LateVal = I->valno;
 
        EndPoint = I->end;
 
      }
 
      return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
 
    }
 
 
 
    /// removeValNo - Remove all the segments defined by the specified value#.
 
    /// Also remove the value# from value# list.
 
    void removeValNo(VNInfo *ValNo);
 
 
 
    /// Returns true if the live range is zero length, i.e. no live segments
 
    /// span instructions. It doesn't pay to spill such a range.
 
    bool isZeroLength(SlotIndexes *Indexes) const {
 
      for (const Segment &S : segments)
 
        if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
 
            S.end.getBaseIndex())
 
          return false;
 
      return true;
 
    }
 
 
 
    // Returns true if any segment in the live range contains any of the
 
    // provided slot indexes.  Slots which occur in holes between
 
    // segments will not cause the function to return true.
 
    bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
 
 
 
    bool operator<(const LiveRange& other) const {
 
      const SlotIndex &thisIndex = beginIndex();
 
      const SlotIndex &otherIndex = other.beginIndex();
 
      return thisIndex < otherIndex;
 
    }
 
 
 
    /// Returns true if there is an explicit "undef" between @p Begin
 
    /// @p End.
 
    bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
 
                   SlotIndex End) const {
 
      return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool {
 
        return Begin <= Idx && Idx < End;
 
      });
 
    }
 
 
 
    /// Flush segment set into the regular segment vector.
 
    /// The method is to be called after the live range
 
    /// has been created, if use of the segment set was
 
    /// activated in the constructor of the live range.
 
    void flushSegmentSet();
 
 
 
    /// Stores indexes from the input index sequence R at which this LiveRange
 
    /// is live to the output O iterator.
 
    /// R is a range of _ascending sorted_ _random_ access iterators
 
    /// to the input indexes. Indexes stored at O are ascending sorted so it
 
    /// can be used directly in the subsequent search (for example for
 
    /// subranges). Returns true if found at least one index.
 
    template <typename Range, typename OutputIt>
 
    bool findIndexesLiveAt(Range &&R, OutputIt O) const {
 
      assert(llvm::is_sorted(R));
 
      auto Idx = R.begin(), EndIdx = R.end();
 
      auto Seg = segments.begin(), EndSeg = segments.end();
 
      bool Found = false;
 
      while (Idx != EndIdx && Seg != EndSeg) {
 
        // if the Seg is lower find first segment that is above Idx using binary
 
        // search
 
        if (Seg->end <= *Idx) {
 
          Seg =
 
              std::upper_bound(++Seg, EndSeg, *Idx, [=](auto V, const auto &S) {
 
                return V < S.end;
 
              });
 
          if (Seg == EndSeg)
 
            break;
 
        }
 
        auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
 
        if (NotLessStart == EndIdx)
 
          break;
 
        auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
 
        if (NotLessEnd != NotLessStart) {
 
          Found = true;
 
          O = std::copy(NotLessStart, NotLessEnd, O);
 
        }
 
        Idx = NotLessEnd;
 
        ++Seg;
 
      }
 
      return Found;
 
    }
 
 
 
    void print(raw_ostream &OS) const;
 
    void dump() const;
 
 
 
    /// Walk the range and assert if any invariants fail to hold.
 
    ///
 
    /// Note that this is a no-op when asserts are disabled.
 
#ifdef NDEBUG
 
    void verify() const {}
 
#else
 
    void verify() const;
 
#endif
 
 
 
  protected:
 
    /// Append a segment to the list of segments.
 
    void append(const LiveRange::Segment S);
 
 
 
  private:
 
    friend class LiveRangeUpdater;
 
    void addSegmentToSet(Segment S);
 
    void markValNoForDeletion(VNInfo *V);
 
  };
 
 
 
  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
 
    LR.print(OS);
 
    return OS;
 
  }
 
 
 
  /// LiveInterval - This class represents the liveness of a register,
 
  /// or stack slot.
 
  class LiveInterval : public LiveRange {
 
  public:
 
    using super = LiveRange;
 
 
 
    /// A live range for subregisters. The LaneMask specifies which parts of the
 
    /// super register are covered by the interval.
 
    /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
 
    class SubRange : public LiveRange {
 
    public:
 
      SubRange *Next = nullptr;
 
      LaneBitmask LaneMask;
 
 
 
      /// Constructs a new SubRange object.
 
      SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
 
 
 
      /// Constructs a new SubRange object by copying liveness from @p Other.
 
      SubRange(LaneBitmask LaneMask, const LiveRange &Other,
 
               BumpPtrAllocator &Allocator)
 
        : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
 
 
 
      void print(raw_ostream &OS) const;
 
      void dump() const;
 
    };
 
 
 
  private:
 
    SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
 
                                   /// ranges.
 
    const Register Reg; // the register or stack slot of this interval.
 
    float Weight = 0.0; // weight of this interval
 
 
 
  public:
 
    Register reg() const { return Reg; }
 
    float weight() const { return Weight; }
 
    void incrementWeight(float Inc) { Weight += Inc; }
 
    void setWeight(float Value) { Weight = Value; }
 
 
 
    LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {}
 
 
 
    ~LiveInterval() {
 
      clearSubRanges();
 
    }
 
 
 
    template<typename T>
 
    class SingleLinkedListIterator {
 
      T *P;
 
 
 
    public:
 
      SingleLinkedListIterator(T *P) : P(P) {}
 
 
 
      SingleLinkedListIterator<T> &operator++() {
 
        P = P->Next;
 
        return *this;
 
      }
 
      SingleLinkedListIterator<T> operator++(int) {
 
        SingleLinkedListIterator res = *this;
 
        ++*this;
 
        return res;
 
      }
 
      bool operator!=(const SingleLinkedListIterator<T> &Other) const {
 
        return P != Other.operator->();
 
      }
 
      bool operator==(const SingleLinkedListIterator<T> &Other) const {
 
        return P == Other.operator->();
 
      }
 
      T &operator*() const {
 
        return *P;
 
      }
 
      T *operator->() const {
 
        return P;
 
      }
 
    };
 
 
 
    using subrange_iterator = SingleLinkedListIterator<SubRange>;
 
    using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
 
 
 
    subrange_iterator subrange_begin() {
 
      return subrange_iterator(SubRanges);
 
    }
 
    subrange_iterator subrange_end() {
 
      return subrange_iterator(nullptr);
 
    }
 
 
 
    const_subrange_iterator subrange_begin() const {
 
      return const_subrange_iterator(SubRanges);
 
    }
 
    const_subrange_iterator subrange_end() const {
 
      return const_subrange_iterator(nullptr);
 
    }
 
 
 
    iterator_range<subrange_iterator> subranges() {
 
      return make_range(subrange_begin(), subrange_end());
 
    }
 
 
 
    iterator_range<const_subrange_iterator> subranges() const {
 
      return make_range(subrange_begin(), subrange_end());
 
    }
 
 
 
    /// Creates a new empty subregister live range. The range is added at the
 
    /// beginning of the subrange list; subrange iterators stay valid.
 
    SubRange *createSubRange(BumpPtrAllocator &Allocator,
 
                             LaneBitmask LaneMask) {
 
      SubRange *Range = new (Allocator) SubRange(LaneMask);
 
      appendSubRange(Range);
 
      return Range;
 
    }
 
 
 
    /// Like createSubRange() but the new range is filled with a copy of the
 
    /// liveness information in @p CopyFrom.
 
    SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
 
                                 LaneBitmask LaneMask,
 
                                 const LiveRange &CopyFrom) {
 
      SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
 
      appendSubRange(Range);
 
      return Range;
 
    }
 
 
 
    /// Returns true if subregister liveness information is available.
 
    bool hasSubRanges() const {
 
      return SubRanges != nullptr;
 
    }
 
 
 
    /// Removes all subregister liveness information.
 
    void clearSubRanges();
 
 
 
    /// Removes all subranges without any segments (subranges without segments
 
    /// are not considered valid and should only exist temporarily).
 
    void removeEmptySubRanges();
 
 
 
    /// getSize - Returns the sum of sizes of all the LiveRange's.
 
    ///
 
    unsigned getSize() const;
 
 
 
    /// isSpillable - Can this interval be spilled?
 
    bool isSpillable() const { return Weight != huge_valf; }
 
 
 
    /// markNotSpillable - Mark interval as not spillable
 
    void markNotSpillable() { Weight = huge_valf; }
 
 
 
    /// For a given lane mask @p LaneMask, compute indexes at which the
 
    /// lane is marked undefined by subregister <def,read-undef> definitions.
 
    void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
 
                               LaneBitmask LaneMask,
 
                               const MachineRegisterInfo &MRI,
 
                               const SlotIndexes &Indexes) const;
 
 
 
    /// Refines the subranges to support \p LaneMask. This may only be called
 
    /// for LI.hasSubrange()==true. Subregister ranges are split or created
 
    /// until \p LaneMask can be matched exactly. \p Mod is executed on the
 
    /// matching subranges.
 
    ///
 
    /// Example:
 
    ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
 
    ///    L000F, refining for mask L0018. Will split the L00F0 lane into
 
    ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
 
    ///    function will be applied to the L0010 and L0008 subranges.
 
    ///
 
    /// \p Indexes and \p TRI are required to clean up the VNIs that
 
    /// don't define the related lane masks after they get shrunk. E.g.,
 
    /// when L000F gets split into L0007 and L0008 maybe only a subset
 
    /// of the VNIs that defined L000F defines L0007.
 
    ///
 
    /// The clean up of the VNIs need to look at the actual instructions
 
    /// to decide what is or is not live at a definition point. If the
 
    /// update of the subranges occurs while the IR does not reflect these
 
    /// changes, \p ComposeSubRegIdx can be used to specify how the
 
    /// definition are going to be rewritten.
 
    /// E.g., let say we want to merge:
 
    ///     V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
 
    /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
 
    /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
 
    /// Put differently we align V2's sub3 with V1's sub1:
 
    /// V2: sub0 sub1 sub2 sub3
 
    /// V1: <offset>  sub0 sub1
 
    ///
 
    /// This offset will look like a composed subregidx in the the class:
 
    ///     V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
 
    /// =>  V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
 
    ///
 
    /// Now if we didn't rewrite the uses and def of V1, all the checks for V1
 
    /// need to account for this offset.
 
    /// This happens during coalescing where we update the live-ranges while
 
    /// still having the old IR around because updating the IR on-the-fly
 
    /// would actually clobber some information on how the live-ranges that
 
    /// are being updated look like.
 
    void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
 
                         std::function<void(LiveInterval::SubRange &)> Apply,
 
                         const SlotIndexes &Indexes,
 
                         const TargetRegisterInfo &TRI,
 
                         unsigned ComposeSubRegIdx = 0);
 
 
 
    bool operator<(const LiveInterval& other) const {
 
      const SlotIndex &thisIndex = beginIndex();
 
      const SlotIndex &otherIndex = other.beginIndex();
 
      return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg);
 
    }
 
 
 
    void print(raw_ostream &OS) const;
 
    void dump() const;
 
 
 
    /// Walks the interval and assert if any invariants fail to hold.
 
    ///
 
    /// Note that this is a no-op when asserts are disabled.
 
#ifdef NDEBUG
 
    void verify(const MachineRegisterInfo *MRI = nullptr) const {}
 
#else
 
    void verify(const MachineRegisterInfo *MRI = nullptr) const;
 
#endif
 
 
 
  private:
 
    /// Appends @p Range to SubRanges list.
 
    void appendSubRange(SubRange *Range) {
 
      Range->Next = SubRanges;
 
      SubRanges = Range;
 
    }
 
 
 
    /// Free memory held by SubRange.
 
    void freeSubRange(SubRange *S);
 
  };
 
 
 
  inline raw_ostream &operator<<(raw_ostream &OS,
 
                                 const LiveInterval::SubRange &SR) {
 
    SR.print(OS);
 
    return OS;
 
  }
 
 
 
  inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
 
    LI.print(OS);
 
    return OS;
 
  }
 
 
 
  raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
 
 
 
  inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
 
    return V < S.start;
 
  }
 
 
 
  inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
 
    return S.start < V;
 
  }
 
 
 
  /// Helper class for performant LiveRange bulk updates.
 
  ///
 
  /// Calling LiveRange::addSegment() repeatedly can be expensive on large
 
  /// live ranges because segments after the insertion point may need to be
 
  /// shifted. The LiveRangeUpdater class can defer the shifting when adding
 
  /// many segments in order.
 
  ///
 
  /// The LiveRange will be in an invalid state until flush() is called.
 
  class LiveRangeUpdater {
 
    LiveRange *LR;
 
    SlotIndex LastStart;
 
    LiveRange::iterator WriteI;
 
    LiveRange::iterator ReadI;
 
    SmallVector<LiveRange::Segment, 16> Spills;
 
    void mergeSpills();
 
 
 
  public:
 
    /// Create a LiveRangeUpdater for adding segments to LR.
 
    /// LR will temporarily be in an invalid state until flush() is called.
 
    LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
 
 
 
    ~LiveRangeUpdater() { flush(); }
 
 
 
    /// Add a segment to LR and coalesce when possible, just like
 
    /// LR.addSegment(). Segments should be added in increasing start order for
 
    /// best performance.
 
    void add(LiveRange::Segment);
 
 
 
    void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
 
      add(LiveRange::Segment(Start, End, VNI));
 
    }
 
 
 
    /// Return true if the LR is currently in an invalid state, and flush()
 
    /// needs to be called.
 
    bool isDirty() const { return LastStart.isValid(); }
 
 
 
    /// Flush the updater state to LR so it is valid and contains all added
 
    /// segments.
 
    void flush();
 
 
 
    /// Select a different destination live range.
 
    void setDest(LiveRange *lr) {
 
      if (LR != lr && isDirty())
 
        flush();
 
      LR = lr;
 
    }
 
 
 
    /// Get the current destination live range.
 
    LiveRange *getDest() const { return LR; }
 
 
 
    void dump() const;
 
    void print(raw_ostream&) const;
 
  };
 
 
 
  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
 
    X.print(OS);
 
    return OS;
 
  }
 
 
 
  /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
 
  /// LiveInterval into equivalence clases of connected components. A
 
  /// LiveInterval that has multiple connected components can be broken into
 
  /// multiple LiveIntervals.
 
  ///
 
  /// Given a LiveInterval that may have multiple connected components, run:
 
  ///
 
  ///   unsigned numComps = ConEQ.Classify(LI);
 
  ///   if (numComps > 1) {
 
  ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
 
  ///     ConEQ.Distribute(LIS);
 
  /// }
 
 
 
  class ConnectedVNInfoEqClasses {
 
    LiveIntervals &LIS;
 
    IntEqClasses EqClass;
 
 
 
  public:
 
    explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
 
 
 
    /// Classify the values in \p LR into connected components.
 
    /// Returns the number of connected components.
 
    unsigned Classify(const LiveRange &LR);
 
 
 
    /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
 
    /// the equivalence class assigned the VNI.
 
    unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
 
 
 
    /// Distribute values in \p LI into a separate LiveIntervals
 
    /// for each connected component. LIV must have an empty LiveInterval for
 
    /// each additional connected component. The first connected component is
 
    /// left in \p LI.
 
    void Distribute(LiveInterval &LI, LiveInterval *LIV[],
 
                    MachineRegisterInfo &MRI);
 
  };
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_LIVEINTERVAL_H