//==------ llvm/CodeGen/GlobalISel/MIPatternMatch.h -------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
/// Contains matchers for matching SSA Machine Instructions.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_GLOBALISEL_MIPATTERNMATCH_H
 
#define LLVM_CODEGEN_GLOBALISEL_MIPATTERNMATCH_H
 
 
 
#include "llvm/ADT/APInt.h"
 
#include "llvm/CodeGen/GlobalISel/Utils.h"
 
#include "llvm/CodeGen/MachineRegisterInfo.h"
 
#include "llvm/IR/InstrTypes.h"
 
 
 
namespace llvm {
 
namespace MIPatternMatch {
 
 
 
template <typename Reg, typename Pattern>
 
[[nodiscard]] bool mi_match(Reg R, const MachineRegisterInfo &MRI,
 
                            Pattern &&P) {
 
  return P.match(MRI, R);
 
}
 
 
 
template <typename Pattern>
 
[[nodiscard]] bool mi_match(MachineInstr &MI, const MachineRegisterInfo &MRI,
 
                            Pattern &&P) {
 
  return P.match(MRI, &MI);
 
}
 
 
 
// TODO: Extend for N use.
 
template <typename SubPatternT> struct OneUse_match {
 
  SubPatternT SubPat;
 
  OneUse_match(const SubPatternT &SP) : SubPat(SP) {}
 
 
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    return MRI.hasOneUse(Reg) && SubPat.match(MRI, Reg);
 
  }
 
};
 
 
 
template <typename SubPat>
 
inline OneUse_match<SubPat> m_OneUse(const SubPat &SP) {
 
  return SP;
 
}
 
 
 
template <typename SubPatternT> struct OneNonDBGUse_match {
 
  SubPatternT SubPat;
 
  OneNonDBGUse_match(const SubPatternT &SP) : SubPat(SP) {}
 
 
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    return MRI.hasOneNonDBGUse(Reg) && SubPat.match(MRI, Reg);
 
  }
 
};
 
 
 
template <typename SubPat>
 
inline OneNonDBGUse_match<SubPat> m_OneNonDBGUse(const SubPat &SP) {
 
  return SP;
 
}
 
 
 
template <typename ConstT>
 
inline std::optional<ConstT> matchConstant(Register,
 
                                           const MachineRegisterInfo &);
 
 
 
template <>
 
inline std::optional<APInt> matchConstant(Register Reg,
 
                                          const MachineRegisterInfo &MRI) {
 
  return getIConstantVRegVal(Reg, MRI);
 
}
 
 
 
template <>
 
inline std::optional<int64_t> matchConstant(Register Reg,
 
                                            const MachineRegisterInfo &MRI) {
 
  return getIConstantVRegSExtVal(Reg, MRI);
 
}
 
 
 
template <typename ConstT> struct ConstantMatch {
 
  ConstT &CR;
 
  ConstantMatch(ConstT &C) : CR(C) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    if (auto MaybeCst = matchConstant<ConstT>(Reg, MRI)) {
 
      CR = *MaybeCst;
 
      return true;
 
    }
 
    return false;
 
  }
 
};
 
 
 
inline ConstantMatch<APInt> m_ICst(APInt &Cst) {
 
  return ConstantMatch<APInt>(Cst);
 
}
 
inline ConstantMatch<int64_t> m_ICst(int64_t &Cst) {
 
  return ConstantMatch<int64_t>(Cst);
 
}
 
 
 
template <typename ConstT>
 
inline std::optional<ConstT> matchConstantSplat(Register,
 
                                                const MachineRegisterInfo &);
 
 
 
template <>
 
inline std::optional<APInt> matchConstantSplat(Register Reg,
 
                                               const MachineRegisterInfo &MRI) {
 
  return getIConstantSplatVal(Reg, MRI);
 
}
 
 
 
template <>
 
inline std::optional<int64_t>
 
matchConstantSplat(Register Reg, const MachineRegisterInfo &MRI) {
 
  return getIConstantSplatSExtVal(Reg, MRI);
 
}
 
 
 
template <typename ConstT> struct ICstOrSplatMatch {
 
  ConstT &CR;
 
  ICstOrSplatMatch(ConstT &C) : CR(C) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    if (auto MaybeCst = matchConstant<ConstT>(Reg, MRI)) {
 
      CR = *MaybeCst;
 
      return true;
 
    }
 
 
 
    if (auto MaybeCstSplat = matchConstantSplat<ConstT>(Reg, MRI)) {
 
      CR = *MaybeCstSplat;
 
      return true;
 
    }
 
 
 
    return false;
 
  };
 
};
 
 
 
inline ICstOrSplatMatch<APInt> m_ICstOrSplat(APInt &Cst) {
 
  return ICstOrSplatMatch<APInt>(Cst);
 
}
 
 
 
inline ICstOrSplatMatch<int64_t> m_ICstOrSplat(int64_t &Cst) {
 
  return ICstOrSplatMatch<int64_t>(Cst);
 
}
 
 
 
struct GCstAndRegMatch {
 
  std::optional<ValueAndVReg> &ValReg;
 
  GCstAndRegMatch(std::optional<ValueAndVReg> &ValReg) : ValReg(ValReg) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    ValReg = getIConstantVRegValWithLookThrough(Reg, MRI);
 
    return ValReg ? true : false;
 
  }
 
};
 
 
 
inline GCstAndRegMatch m_GCst(std::optional<ValueAndVReg> &ValReg) {
 
  return GCstAndRegMatch(ValReg);
 
}
 
 
 
struct GFCstAndRegMatch {
 
  std::optional<FPValueAndVReg> &FPValReg;
 
  GFCstAndRegMatch(std::optional<FPValueAndVReg> &FPValReg)
 
      : FPValReg(FPValReg) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    FPValReg = getFConstantVRegValWithLookThrough(Reg, MRI);
 
    return FPValReg ? true : false;
 
  }
 
};
 
 
 
inline GFCstAndRegMatch m_GFCst(std::optional<FPValueAndVReg> &FPValReg) {
 
  return GFCstAndRegMatch(FPValReg);
 
}
 
 
 
struct GFCstOrSplatGFCstMatch {
 
  std::optional<FPValueAndVReg> &FPValReg;
 
  GFCstOrSplatGFCstMatch(std::optional<FPValueAndVReg> &FPValReg)
 
      : FPValReg(FPValReg) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    return (FPValReg = getFConstantSplat(Reg, MRI)) ||
 
           (FPValReg = getFConstantVRegValWithLookThrough(Reg, MRI));
 
  };
 
};
 
 
 
inline GFCstOrSplatGFCstMatch
 
m_GFCstOrSplat(std::optional<FPValueAndVReg> &FPValReg) {
 
  return GFCstOrSplatGFCstMatch(FPValReg);
 
}
 
 
 
/// Matcher for a specific constant value.
 
struct SpecificConstantMatch {
 
  int64_t RequestedVal;
 
  SpecificConstantMatch(int64_t RequestedVal) : RequestedVal(RequestedVal) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    int64_t MatchedVal;
 
    return mi_match(Reg, MRI, m_ICst(MatchedVal)) && MatchedVal == RequestedVal;
 
  }
 
};
 
 
 
/// Matches a constant equal to \p RequestedValue.
 
inline SpecificConstantMatch m_SpecificICst(int64_t RequestedValue) {
 
  return SpecificConstantMatch(RequestedValue);
 
}
 
 
 
/// Matcher for a specific constant splat.
 
struct SpecificConstantSplatMatch {
 
  int64_t RequestedVal;
 
  SpecificConstantSplatMatch(int64_t RequestedVal)
 
      : RequestedVal(RequestedVal) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    return isBuildVectorConstantSplat(Reg, MRI, RequestedVal,
 
                                      /* AllowUndef */ false);
 
  }
 
};
 
 
 
/// Matches a constant splat of \p RequestedValue.
 
inline SpecificConstantSplatMatch m_SpecificICstSplat(int64_t RequestedValue) {
 
  return SpecificConstantSplatMatch(RequestedValue);
 
}
 
 
 
/// Matcher for a specific constant or constant splat.
 
struct SpecificConstantOrSplatMatch {
 
  int64_t RequestedVal;
 
  SpecificConstantOrSplatMatch(int64_t RequestedVal)
 
      : RequestedVal(RequestedVal) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    int64_t MatchedVal;
 
    if (mi_match(Reg, MRI, m_ICst(MatchedVal)) && MatchedVal == RequestedVal)
 
      return true;
 
    return isBuildVectorConstantSplat(Reg, MRI, RequestedVal,
 
                                      /* AllowUndef */ false);
 
  }
 
};
 
 
 
/// Matches a \p RequestedValue constant or a constant splat of \p
 
/// RequestedValue.
 
inline SpecificConstantOrSplatMatch
 
m_SpecificICstOrSplat(int64_t RequestedValue) {
 
  return SpecificConstantOrSplatMatch(RequestedValue);
 
}
 
 
 
///{
 
/// Convenience matchers for specific integer values.
 
inline SpecificConstantMatch m_ZeroInt() { return SpecificConstantMatch(0); }
 
inline SpecificConstantMatch m_AllOnesInt() {
 
  return SpecificConstantMatch(-1);
 
}
 
///}
 
 
 
/// Matcher for a specific register.
 
struct SpecificRegisterMatch {
 
  Register RequestedReg;
 
  SpecificRegisterMatch(Register RequestedReg) : RequestedReg(RequestedReg) {}
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    return Reg == RequestedReg;
 
  }
 
};
 
 
 
/// Matches a register only if it is equal to \p RequestedReg.
 
inline SpecificRegisterMatch m_SpecificReg(Register RequestedReg) {
 
  return SpecificRegisterMatch(RequestedReg);
 
}
 
 
 
// TODO: Rework this for different kinds of MachineOperand.
 
// Currently assumes the Src for a match is a register.
 
// We might want to support taking in some MachineOperands and call getReg on
 
// that.
 
 
 
struct operand_type_match {
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) { return true; }
 
  bool match(const MachineRegisterInfo &MRI, MachineOperand *MO) {
 
    return MO->isReg();
 
  }
 
};
 
 
 
inline operand_type_match m_Reg() { return operand_type_match(); }
 
 
 
/// Matching combinators.
 
template <typename... Preds> struct And {
 
  template <typename MatchSrc>
 
  bool match(const MachineRegisterInfo &MRI, MatchSrc &&src) {
 
    return true;
 
  }
 
};
 
 
 
template <typename Pred, typename... Preds>
 
struct And<Pred, Preds...> : And<Preds...> {
 
  Pred P;
 
  And(Pred &&p, Preds &&... preds)
 
      : And<Preds...>(std::forward<Preds>(preds)...), P(std::forward<Pred>(p)) {
 
  }
 
  template <typename MatchSrc>
 
  bool match(const MachineRegisterInfo &MRI, MatchSrc &&src) {
 
    return P.match(MRI, src) && And<Preds...>::match(MRI, src);
 
  }
 
};
 
 
 
template <typename... Preds> struct Or {
 
  template <typename MatchSrc>
 
  bool match(const MachineRegisterInfo &MRI, MatchSrc &&src) {
 
    return false;
 
  }
 
};
 
 
 
template <typename Pred, typename... Preds>
 
struct Or<Pred, Preds...> : Or<Preds...> {
 
  Pred P;
 
  Or(Pred &&p, Preds &&... preds)
 
      : Or<Preds...>(std::forward<Preds>(preds)...), P(std::forward<Pred>(p)) {}
 
  template <typename MatchSrc>
 
  bool match(const MachineRegisterInfo &MRI, MatchSrc &&src) {
 
    return P.match(MRI, src) || Or<Preds...>::match(MRI, src);
 
  }
 
};
 
 
 
template <typename... Preds> And<Preds...> m_all_of(Preds &&... preds) {
 
  return And<Preds...>(std::forward<Preds>(preds)...);
 
}
 
 
 
template <typename... Preds> Or<Preds...> m_any_of(Preds &&... preds) {
 
  return Or<Preds...>(std::forward<Preds>(preds)...);
 
}
 
 
 
template <typename BindTy> struct bind_helper {
 
  static bool bind(const MachineRegisterInfo &MRI, BindTy &VR, BindTy &V) {
 
    VR = V;
 
    return true;
 
  }
 
};
 
 
 
template <> struct bind_helper<MachineInstr *> {
 
  static bool bind(const MachineRegisterInfo &MRI, MachineInstr *&MI,
 
                   Register Reg) {
 
    MI = MRI.getVRegDef(Reg);
 
    if (MI)
 
      return true;
 
    return false;
 
  }
 
  static bool bind(const MachineRegisterInfo &MRI, MachineInstr *&MI,
 
                   MachineInstr *Inst) {
 
    MI = Inst;
 
    return MI;
 
  }
 
};
 
 
 
template <> struct bind_helper<LLT> {
 
  static bool bind(const MachineRegisterInfo &MRI, LLT Ty, Register Reg) {
 
    Ty = MRI.getType(Reg);
 
    if (Ty.isValid())
 
      return true;
 
    return false;
 
  }
 
};
 
 
 
template <> struct bind_helper<const ConstantFP *> {
 
  static bool bind(const MachineRegisterInfo &MRI, const ConstantFP *&F,
 
                   Register Reg) {
 
    F = getConstantFPVRegVal(Reg, MRI);
 
    if (F)
 
      return true;
 
    return false;
 
  }
 
};
 
 
 
template <typename Class> struct bind_ty {
 
  Class &VR;
 
 
 
  bind_ty(Class &V) : VR(V) {}
 
 
 
  template <typename ITy> bool match(const MachineRegisterInfo &MRI, ITy &&V) {
 
    return bind_helper<Class>::bind(MRI, VR, V);
 
  }
 
};
 
 
 
inline bind_ty<Register> m_Reg(Register &R) { return R; }
 
inline bind_ty<MachineInstr *> m_MInstr(MachineInstr *&MI) { return MI; }
 
inline bind_ty<LLT> m_Type(LLT Ty) { return Ty; }
 
inline bind_ty<CmpInst::Predicate> m_Pred(CmpInst::Predicate &P) { return P; }
 
inline operand_type_match m_Pred() { return operand_type_match(); }
 
 
 
struct ImplicitDefMatch {
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    MachineInstr *TmpMI;
 
    if (mi_match(Reg, MRI, m_MInstr(TmpMI)))
 
      return TmpMI->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
 
    return false;
 
  }
 
};
 
 
 
inline ImplicitDefMatch m_GImplicitDef() { return ImplicitDefMatch(); }
 
 
 
// Helper for matching G_FCONSTANT
 
inline bind_ty<const ConstantFP *> m_GFCst(const ConstantFP *&C) { return C; }
 
 
 
// General helper for all the binary generic MI such as G_ADD/G_SUB etc
 
template <typename LHS_P, typename RHS_P, unsigned Opcode,
 
          bool Commutable = false>
 
struct BinaryOp_match {
 
  LHS_P L;
 
  RHS_P R;
 
 
 
  BinaryOp_match(const LHS_P &LHS, const RHS_P &RHS) : L(LHS), R(RHS) {}
 
  template <typename OpTy>
 
  bool match(const MachineRegisterInfo &MRI, OpTy &&Op) {
 
    MachineInstr *TmpMI;
 
    if (mi_match(Op, MRI, m_MInstr(TmpMI))) {
 
      if (TmpMI->getOpcode() == Opcode && TmpMI->getNumOperands() == 3) {
 
        return (L.match(MRI, TmpMI->getOperand(1).getReg()) &&
 
                R.match(MRI, TmpMI->getOperand(2).getReg())) ||
 
               (Commutable && (R.match(MRI, TmpMI->getOperand(1).getReg()) &&
 
                               L.match(MRI, TmpMI->getOperand(2).getReg())));
 
      }
 
    }
 
    return false;
 
  }
 
};
 
 
 
// Helper for (commutative) binary generic MI that checks Opcode.
 
template <typename LHS_P, typename RHS_P, bool Commutable = false>
 
struct BinaryOpc_match {
 
  unsigned Opc;
 
  LHS_P L;
 
  RHS_P R;
 
 
 
  BinaryOpc_match(unsigned Opcode, const LHS_P &LHS, const RHS_P &RHS)
 
      : Opc(Opcode), L(LHS), R(RHS) {}
 
  template <typename OpTy>
 
  bool match(const MachineRegisterInfo &MRI, OpTy &&Op) {
 
    MachineInstr *TmpMI;
 
    if (mi_match(Op, MRI, m_MInstr(TmpMI))) {
 
      if (TmpMI->getOpcode() == Opc && TmpMI->getNumDefs() == 1 &&
 
          TmpMI->getNumOperands() == 3) {
 
        return (L.match(MRI, TmpMI->getOperand(1).getReg()) &&
 
                R.match(MRI, TmpMI->getOperand(2).getReg())) ||
 
               (Commutable && (R.match(MRI, TmpMI->getOperand(1).getReg()) &&
 
                               L.match(MRI, TmpMI->getOperand(2).getReg())));
 
      }
 
    }
 
    return false;
 
  }
 
};
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOpc_match<LHS, RHS, false> m_BinOp(unsigned Opcode, const LHS &L,
 
                                                const RHS &R) {
 
  return BinaryOpc_match<LHS, RHS, false>(Opcode, L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOpc_match<LHS, RHS, true>
 
m_CommutativeBinOp(unsigned Opcode, const LHS &L, const RHS &R) {
 
  return BinaryOpc_match<LHS, RHS, true>(Opcode, L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_ADD, true>
 
m_GAdd(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_ADD, true>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_BUILD_VECTOR, false>
 
m_GBuildVector(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_BUILD_VECTOR, false>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_BUILD_VECTOR_TRUNC, false>
 
m_GBuildVectorTrunc(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_BUILD_VECTOR_TRUNC, false>(L,
 
                                                                             R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_PTR_ADD, false>
 
m_GPtrAdd(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_PTR_ADD, false>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_SUB> m_GSub(const LHS &L,
 
                                                            const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_SUB>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_MUL, true>
 
m_GMul(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_MUL, true>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_FADD, true>
 
m_GFAdd(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_FADD, true>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_FMUL, true>
 
m_GFMul(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_FMUL, true>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_FSUB, false>
 
m_GFSub(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_FSUB, false>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_AND, true>
 
m_GAnd(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_AND, true>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_XOR, true>
 
m_GXor(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_XOR, true>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_OR, true> m_GOr(const LHS &L,
 
                                                                const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_OR, true>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_SHL, false>
 
m_GShl(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_SHL, false>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_LSHR, false>
 
m_GLShr(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_LSHR, false>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_ASHR, false>
 
m_GAShr(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_ASHR, false>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_SMAX, false>
 
m_GSMax(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_SMAX, false>(L, R);
 
}
 
 
 
template <typename LHS, typename RHS>
 
inline BinaryOp_match<LHS, RHS, TargetOpcode::G_SMIN, false>
 
m_GSMin(const LHS &L, const RHS &R) {
 
  return BinaryOp_match<LHS, RHS, TargetOpcode::G_SMIN, false>(L, R);
 
}
 
 
 
// Helper for unary instructions (G_[ZSA]EXT/G_TRUNC) etc
 
template <typename SrcTy, unsigned Opcode> struct UnaryOp_match {
 
  SrcTy L;
 
 
 
  UnaryOp_match(const SrcTy &LHS) : L(LHS) {}
 
  template <typename OpTy>
 
  bool match(const MachineRegisterInfo &MRI, OpTy &&Op) {
 
    MachineInstr *TmpMI;
 
    if (mi_match(Op, MRI, m_MInstr(TmpMI))) {
 
      if (TmpMI->getOpcode() == Opcode && TmpMI->getNumOperands() == 2) {
 
        return L.match(MRI, TmpMI->getOperand(1).getReg());
 
      }
 
    }
 
    return false;
 
  }
 
};
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_ANYEXT>
 
m_GAnyExt(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_ANYEXT>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_SEXT> m_GSExt(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_SEXT>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_ZEXT> m_GZExt(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_ZEXT>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_FPEXT> m_GFPExt(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_FPEXT>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_TRUNC> m_GTrunc(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_TRUNC>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_BITCAST>
 
m_GBitcast(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_BITCAST>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_PTRTOINT>
 
m_GPtrToInt(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_PTRTOINT>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_INTTOPTR>
 
m_GIntToPtr(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_INTTOPTR>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_FPTRUNC>
 
m_GFPTrunc(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_FPTRUNC>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_FABS> m_GFabs(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_FABS>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_FNEG> m_GFNeg(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_FNEG>(Src);
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::COPY> m_Copy(SrcTy &&Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::COPY>(std::forward<SrcTy>(Src));
 
}
 
 
 
template <typename SrcTy>
 
inline UnaryOp_match<SrcTy, TargetOpcode::G_FSQRT> m_GFSqrt(const SrcTy &Src) {
 
  return UnaryOp_match<SrcTy, TargetOpcode::G_FSQRT>(Src);
 
}
 
 
 
// General helper for generic MI compares, i.e. G_ICMP and G_FCMP
 
// TODO: Allow checking a specific predicate.
 
template <typename Pred_P, typename LHS_P, typename RHS_P, unsigned Opcode,
 
          bool Commutable = false>
 
struct CompareOp_match {
 
  Pred_P P;
 
  LHS_P L;
 
  RHS_P R;
 
 
 
  CompareOp_match(const Pred_P &Pred, const LHS_P &LHS, const RHS_P &RHS)
 
      : P(Pred), L(LHS), R(RHS) {}
 
 
 
  template <typename OpTy>
 
  bool match(const MachineRegisterInfo &MRI, OpTy &&Op) {
 
    MachineInstr *TmpMI;
 
    if (!mi_match(Op, MRI, m_MInstr(TmpMI)) || TmpMI->getOpcode() != Opcode)
 
      return false;
 
 
 
    auto TmpPred =
 
        static_cast<CmpInst::Predicate>(TmpMI->getOperand(1).getPredicate());
 
    if (!P.match(MRI, TmpPred))
 
      return false;
 
    Register LHS = TmpMI->getOperand(2).getReg();
 
    Register RHS = TmpMI->getOperand(3).getReg();
 
    if (L.match(MRI, LHS) && R.match(MRI, RHS))
 
      return true;
 
    if (Commutable && L.match(MRI, RHS) && R.match(MRI, LHS) &&
 
        P.match(MRI, CmpInst::getSwappedPredicate(TmpPred)))
 
      return true;
 
    return false;
 
  }
 
};
 
 
 
template <typename Pred, typename LHS, typename RHS>
 
inline CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_ICMP>
 
m_GICmp(const Pred &P, const LHS &L, const RHS &R) {
 
  return CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_ICMP>(P, L, R);
 
}
 
 
 
template <typename Pred, typename LHS, typename RHS>
 
inline CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_FCMP>
 
m_GFCmp(const Pred &P, const LHS &L, const RHS &R) {
 
  return CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_FCMP>(P, L, R);
 
}
 
 
 
/// G_ICMP matcher that also matches commuted compares.
 
/// E.g.
 
///
 
/// m_c_GICmp(m_Pred(...), m_GAdd(...), m_GSub(...))
 
///
 
/// Could match both of:
 
///
 
/// icmp ugt (add x, y) (sub a, b)
 
/// icmp ult (sub a, b) (add x, y)
 
template <typename Pred, typename LHS, typename RHS>
 
inline CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_ICMP, true>
 
m_c_GICmp(const Pred &P, const LHS &L, const RHS &R) {
 
  return CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_ICMP, true>(P, L, R);
 
}
 
 
 
/// G_FCMP matcher that also matches commuted compares.
 
/// E.g.
 
///
 
/// m_c_GFCmp(m_Pred(...), m_FAdd(...), m_GFMul(...))
 
///
 
/// Could match both of:
 
///
 
/// fcmp ogt (fadd x, y) (fmul a, b)
 
/// fcmp olt (fmul a, b) (fadd x, y)
 
template <typename Pred, typename LHS, typename RHS>
 
inline CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_FCMP, true>
 
m_c_GFCmp(const Pred &P, const LHS &L, const RHS &R) {
 
  return CompareOp_match<Pred, LHS, RHS, TargetOpcode::G_FCMP, true>(P, L, R);
 
}
 
 
 
// Helper for checking if a Reg is of specific type.
 
struct CheckType {
 
  LLT Ty;
 
  CheckType(const LLT Ty) : Ty(Ty) {}
 
 
 
  bool match(const MachineRegisterInfo &MRI, Register Reg) {
 
    return MRI.getType(Reg) == Ty;
 
  }
 
};
 
 
 
inline CheckType m_SpecificType(LLT Ty) { return Ty; }
 
 
 
template <typename Src0Ty, typename Src1Ty, typename Src2Ty, unsigned Opcode>
 
struct TernaryOp_match {
 
  Src0Ty Src0;
 
  Src1Ty Src1;
 
  Src2Ty Src2;
 
 
 
  TernaryOp_match(const Src0Ty &Src0, const Src1Ty &Src1, const Src2Ty &Src2)
 
      : Src0(Src0), Src1(Src1), Src2(Src2) {}
 
  template <typename OpTy>
 
  bool match(const MachineRegisterInfo &MRI, OpTy &&Op) {
 
    MachineInstr *TmpMI;
 
    if (mi_match(Op, MRI, m_MInstr(TmpMI))) {
 
      if (TmpMI->getOpcode() == Opcode && TmpMI->getNumOperands() == 4) {
 
        return (Src0.match(MRI, TmpMI->getOperand(1).getReg()) &&
 
                Src1.match(MRI, TmpMI->getOperand(2).getReg()) &&
 
                Src2.match(MRI, TmpMI->getOperand(3).getReg()));
 
      }
 
    }
 
    return false;
 
  }
 
};
 
template <typename Src0Ty, typename Src1Ty, typename Src2Ty>
 
inline TernaryOp_match<Src0Ty, Src1Ty, Src2Ty,
 
                       TargetOpcode::G_INSERT_VECTOR_ELT>
 
m_GInsertVecElt(const Src0Ty &Src0, const Src1Ty &Src1, const Src2Ty &Src2) {
 
  return TernaryOp_match<Src0Ty, Src1Ty, Src2Ty,
 
                         TargetOpcode::G_INSERT_VECTOR_ELT>(Src0, Src1, Src2);
 
}
 
 
 
template <typename Src0Ty, typename Src1Ty, typename Src2Ty>
 
inline TernaryOp_match<Src0Ty, Src1Ty, Src2Ty, TargetOpcode::G_SELECT>
 
m_GISelect(const Src0Ty &Src0, const Src1Ty &Src1, const Src2Ty &Src2) {
 
  return TernaryOp_match<Src0Ty, Src1Ty, Src2Ty, TargetOpcode::G_SELECT>(
 
      Src0, Src1, Src2);
 
}
 
 
 
/// Matches a register negated by a G_SUB.
 
/// G_SUB 0, %negated_reg
 
template <typename SrcTy>
 
inline BinaryOp_match<SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB>
 
m_Neg(const SrcTy &&Src) {
 
  return m_GSub(m_ZeroInt(), Src);
 
}
 
 
 
/// Matches a register not-ed by a G_XOR.
 
/// G_XOR %not_reg, -1
 
template <typename SrcTy>
 
inline BinaryOp_match<SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true>
 
m_Not(const SrcTy &&Src) {
 
  return m_GXor(Src, m_AllOnesInt());
 
}
 
 
 
} // namespace MIPatternMatch
 
} // namespace llvm
 
 
 
#endif