//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Interface for Targets to specify which operations they can successfully
/// select and how the others should be expanded most efficiently.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/LegacyLegalizerInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include <cassert>
#include <cstdint>
#include <tuple>
#include <utility>
namespace llvm {
extern cl::opt<bool> DisableGISelLegalityCheck;
class MachineFunction;
class raw_ostream;
class LegalizerHelper;
class MachineInstr;
class MachineRegisterInfo;
class MCInstrInfo;
namespace LegalizeActions {
enum LegalizeAction : std::uint8_t {
/// The operation is expected to be selectable directly by the target, and
/// no transformation is necessary.
Legal,
/// The operation should be synthesized from multiple instructions acting on
/// a narrower scalar base-type. For example a 64-bit add might be
/// implemented in terms of 32-bit add-with-carry.
NarrowScalar,
/// The operation should be implemented in terms of a wider scalar
/// base-type. For example a <2 x s8> add could be implemented as a <2
/// x s32> add (ignoring the high bits).
WidenScalar,
/// The (vector) operation should be implemented by splitting it into
/// sub-vectors where the operation is legal. For example a <8 x s64> add
/// might be implemented as 4 separate <2 x s64> adds. There can be a leftover
/// if there are not enough elements for last sub-vector e.g. <7 x s64> add
/// will be implemented as 3 separate <2 x s64> adds and one s64 add. Leftover
/// types can be avoided by doing MoreElements first.
FewerElements,
/// The (vector) operation should be implemented by widening the input
/// vector and ignoring the lanes added by doing so. For example <2 x i8> is
/// rarely legal, but you might perform an <8 x i8> and then only look at
/// the first two results.
MoreElements,
/// Perform the operation on a different, but equivalently sized type.
Bitcast,
/// The operation itself must be expressed in terms of simpler actions on
/// this target. E.g. a SREM replaced by an SDIV and subtraction.
Lower,
/// The operation should be implemented as a call to some kind of runtime
/// support library. For example this usually happens on machines that don't
/// support floating-point operations natively.
Libcall,
/// The target wants to do something special with this combination of
/// operand and type. A callback will be issued when it is needed.
Custom,
/// This operation is completely unsupported on the target. A programming
/// error has occurred.
Unsupported,
/// Sentinel value for when no action was found in the specified table.
NotFound,
/// Fall back onto the old rules.
/// TODO: Remove this once we've migrated
UseLegacyRules,
};
} // end namespace LegalizeActions
raw_ostream &operator<<(raw_ostream &OS, LegalizeActions::LegalizeAction Action);
using LegalizeActions::LegalizeAction;
/// The LegalityQuery object bundles together all the information that's needed
/// to decide whether a given operation is legal or not.
/// For efficiency, it doesn't make a copy of Types so care must be taken not
/// to free it before using the query.
struct LegalityQuery {
unsigned Opcode;
ArrayRef<LLT> Types;
struct MemDesc {
LLT MemoryTy;
uint64_t AlignInBits;
AtomicOrdering Ordering;
MemDesc() = default;
MemDesc(LLT MemoryTy, uint64_t AlignInBits, AtomicOrdering Ordering)
: MemoryTy(MemoryTy), AlignInBits(AlignInBits), Ordering(Ordering) {}
MemDesc(const MachineMemOperand &MMO)
: MemoryTy(MMO.getMemoryType()),
AlignInBits(MMO.getAlign().value() * 8),
Ordering(MMO.getSuccessOrdering()) {}
};
/// Operations which require memory can use this to place requirements on the
/// memory type for each MMO.
ArrayRef<MemDesc> MMODescrs;
constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types,
const ArrayRef<MemDesc> MMODescrs)
: Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {}
constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types)
: LegalityQuery(Opcode, Types, {}) {}
raw_ostream &print(raw_ostream &OS) const;
};
/// The result of a query. It either indicates a final answer of Legal or
/// Unsupported or describes an action that must be taken to make an operation
/// more legal.
struct LegalizeActionStep {
/// The action to take or the final answer.
LegalizeAction Action;
/// If describing an action, the type index to change. Otherwise zero.
unsigned TypeIdx;
/// If describing an action, the new type for TypeIdx. Otherwise LLT{}.
LLT NewType;
LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx,
const LLT NewType)
: Action(Action), TypeIdx(TypeIdx), NewType(NewType) {}
LegalizeActionStep(LegacyLegalizeActionStep Step)
: TypeIdx(Step.TypeIdx), NewType(Step.NewType) {
switch (Step.Action) {
case LegacyLegalizeActions::Legal:
Action = LegalizeActions::Legal;
break;
case LegacyLegalizeActions::NarrowScalar:
Action = LegalizeActions::NarrowScalar;
break;
case LegacyLegalizeActions::WidenScalar:
Action = LegalizeActions::WidenScalar;
break;
case LegacyLegalizeActions::FewerElements:
Action = LegalizeActions::FewerElements;
break;
case LegacyLegalizeActions::MoreElements:
Action = LegalizeActions::MoreElements;
break;
case LegacyLegalizeActions::Bitcast:
Action = LegalizeActions::Bitcast;
break;
case LegacyLegalizeActions::Lower:
Action = LegalizeActions::Lower;
break;
case LegacyLegalizeActions::Libcall:
Action = LegalizeActions::Libcall;
break;
case LegacyLegalizeActions::Custom:
Action = LegalizeActions::Custom;
break;
case LegacyLegalizeActions::Unsupported:
Action = LegalizeActions::Unsupported;
break;
case LegacyLegalizeActions::NotFound:
Action = LegalizeActions::NotFound;
break;
}
}
bool operator==(const LegalizeActionStep &RHS) const {
return std::tie(Action, TypeIdx, NewType) ==
std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType);
}
};
using LegalityPredicate = std::function<bool (const LegalityQuery &)>;
using LegalizeMutation =
std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>;
namespace LegalityPredicates {
struct TypePairAndMemDesc {
LLT Type0;
LLT Type1;
LLT MemTy;
uint64_t Align;
bool operator==(const TypePairAndMemDesc &Other) const {
return Type0 == Other.Type0 && Type1 == Other.Type1 &&
Align == Other.Align && MemTy == Other.MemTy;
}
/// \returns true if this memory access is legal with for the access described
/// by \p Other (The alignment is sufficient for the size and result type).
bool isCompatible(const TypePairAndMemDesc &Other) const {
return Type0 == Other.Type0 && Type1 == Other.Type1 &&
Align >= Other.Align &&
// FIXME: This perhaps should be stricter, but the current legality
// rules are written only considering the size.
MemTy.getSizeInBits() == Other.MemTy.getSizeInBits();
}
};
/// True iff P0 and P1 are true.
template<typename Predicate>
Predicate all(Predicate P0, Predicate P1) {
return [=](const LegalityQuery &Query) {
return P0(Query) && P1(Query);
};
}
/// True iff all given predicates are true.
template<typename Predicate, typename... Args>
Predicate all(Predicate P0, Predicate P1, Args... args) {
return all(all(P0, P1), args...);
}
/// True iff P0 or P1 are true.
template<typename Predicate>
Predicate any(Predicate P0, Predicate P1) {
return [=](const LegalityQuery &Query) {
return P0(Query) || P1(Query);
};
}
/// True iff any given predicates are true.
template<typename Predicate, typename... Args>
Predicate any(Predicate P0, Predicate P1, Args... args) {
return any(any(P0, P1), args...);
}
/// True iff the given type index is the specified type.
LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit);
/// True iff the given type index is one of the specified types.
LegalityPredicate typeInSet(unsigned TypeIdx,
std::initializer_list<LLT> TypesInit);
/// True iff the given type index is not the specified type.
inline LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type) {
return [=](const LegalityQuery &Query) {
return Query.Types[TypeIdx] != Type;
};
}
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate
typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1,
std::initializer_list<std::pair<LLT, LLT>> TypesInit);
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate typePairAndMemDescInSet(
unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx,
std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit);
/// True iff the specified type index is a scalar.
LegalityPredicate isScalar(unsigned TypeIdx);
/// True iff the specified type index is a vector.
LegalityPredicate isVector(unsigned TypeIdx);
/// True iff the specified type index is a pointer (with any address space).
LegalityPredicate isPointer(unsigned TypeIdx);
/// True iff the specified type index is a pointer with the specified address
/// space.
LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace);
/// True if the type index is a vector with element type \p EltTy
LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy);
/// True iff the specified type index is a scalar that's narrower than the given
/// size.
LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar that's wider than the given
/// size.
LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar or vector with an element type
/// that's narrower than the given size.
LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar or a vector with an element
/// type that's wider than the given size.
LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar whose size is not a multiple
/// of Size.
LegalityPredicate sizeNotMultipleOf(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar whose size is not a power of
/// 2.
LegalityPredicate sizeNotPow2(unsigned TypeIdx);
/// True iff the specified type index is a scalar or vector whose element size
/// is not a power of 2.
LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx);
/// True if the total bitwidth of the specified type index is \p Size bits.
LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size);
/// True iff the specified type indices are both the same bit size.
LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1);
/// True iff the first type index has a larger total bit size than second type
/// index.
LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1);
/// True iff the first type index has a smaller total bit size than second type
/// index.
LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1);
/// True iff the specified MMO index has a size (rounded to bytes) that is not a
/// power of 2.
LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx);
/// True iff the specified MMO index has a size that is not an even byte size,
/// or that even byte size is not a power of 2.
LegalityPredicate memSizeNotByteSizePow2(unsigned MMOIdx);
/// True iff the specified type index is a vector whose element count is not a
/// power of 2.
LegalityPredicate numElementsNotPow2(unsigned TypeIdx);
/// True iff the specified MMO index has at an atomic ordering of at Ordering or
/// stronger.
LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx,
AtomicOrdering Ordering);
} // end namespace LegalityPredicates
namespace LegalizeMutations {
/// Select this specific type for the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty);
/// Keep the same type as the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx);
/// Keep the same scalar or element type as the given type index.
LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx);
/// Keep the same scalar or element type as the given type.
LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty);
/// Keep the same scalar or element type as \p TypeIdx, but take the number of
/// elements from \p FromTypeIdx.
LegalizeMutation changeElementCountTo(unsigned TypeIdx, unsigned FromTypeIdx);
/// Keep the same scalar or element type as \p TypeIdx, but take the number of
/// elements from \p Ty.
LegalizeMutation changeElementCountTo(unsigned TypeIdx, LLT Ty);
/// Change the scalar size or element size to have the same scalar size as type
/// index \p FromIndex. Unlike changeElementTo, this discards pointer types and
/// only changes the size.
LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx);
/// Widen the scalar type or vector element type for the given type index to the
/// next power of 2.
LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min = 0);
/// Widen the scalar type or vector element type for the given type index to
/// next multiple of \p Size.
LegalizeMutation widenScalarOrEltToNextMultipleOf(unsigned TypeIdx,
unsigned Size);
/// Add more elements to the type for the given type index to the next power of
/// 2.
LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0);
/// Break up the vector type for the given type index into the element type.
LegalizeMutation scalarize(unsigned TypeIdx);
} // end namespace LegalizeMutations
/// A single rule in a legalizer info ruleset.
/// The specified action is chosen when the predicate is true. Where appropriate
/// for the action (e.g. for WidenScalar) the new type is selected using the
/// given mutator.
class LegalizeRule {
LegalityPredicate Predicate;
LegalizeAction Action;
LegalizeMutation Mutation;
public:
LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action,
LegalizeMutation Mutation = nullptr)
: Predicate(Predicate), Action(Action), Mutation(Mutation) {}
/// Test whether the LegalityQuery matches.
bool match(const LegalityQuery &Query) const {
return Predicate(Query);
}
LegalizeAction getAction() const { return Action; }
/// Determine the change to make.
std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const {
if (Mutation)
return Mutation(Query);
return std::make_pair(0, LLT{});
}
};
class LegalizeRuleSet {
/// When non-zero, the opcode we are an alias of
unsigned AliasOf = 0;
/// If true, there is another opcode that aliases this one
bool IsAliasedByAnother = false;
SmallVector<LegalizeRule, 2> Rules;
#ifndef NDEBUG
/// If bit I is set, this rule set contains a rule that may handle (predicate
/// or perform an action upon (or both)) the type index I. The uncertainty
/// comes from free-form rules executing user-provided lambda functions. We
/// conservatively assume such rules do the right thing and cover all type
/// indices. The bitset is intentionally 1 bit wider than it absolutely needs
/// to be to distinguish such cases from the cases where all type indices are
/// individually handled.
SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC -
MCOI::OPERAND_FIRST_GENERIC + 2};
SmallBitVector ImmIdxsCovered{MCOI::OPERAND_LAST_GENERIC_IMM -
MCOI::OPERAND_FIRST_GENERIC_IMM + 2};
#endif
unsigned typeIdx(unsigned TypeIdx) {
assert(TypeIdx <=
(MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) &&
"Type Index is out of bounds");
#ifndef NDEBUG
TypeIdxsCovered.set(TypeIdx);
#endif
return TypeIdx;
}
void markAllIdxsAsCovered() {
#ifndef NDEBUG
TypeIdxsCovered.set();
ImmIdxsCovered.set();
#endif
}
void add(const LegalizeRule &Rule) {
assert(AliasOf == 0 &&
"RuleSet is aliased, change the representative opcode instead");
Rules.push_back(Rule);
}
static bool always(const LegalityQuery &) { return true; }
/// Use the given action when the predicate is true.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionIf(LegalizeAction Action,
LegalityPredicate Predicate) {
add({Predicate, Action});
return *this;
}
/// Use the given action when the predicate is true.
/// Action should be an action that requires mutation.
LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate,
LegalizeMutation Mutation) {
add({Predicate, Action, Mutation});
return *this;
}
/// Use the given action when type index 0 is any type in the given list.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<LLT> Types) {
using namespace LegalityPredicates;
return actionIf(Action, typeInSet(typeIdx(0), Types));
}
/// Use the given action when type index 0 is any type in the given list.
/// Action should be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<LLT> Types,
LegalizeMutation Mutation) {
using namespace LegalityPredicates;
return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation);
}
/// Use the given action when type indexes 0 and 1 is any type pair in the
/// given list.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<std::pair<LLT, LLT>> Types) {
using namespace LegalityPredicates;
return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
}
/// Use the given action when type indexes 0 and 1 is any type pair in the
/// given list.
/// Action should be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<std::pair<LLT, LLT>> Types,
LegalizeMutation Mutation) {
using namespace LegalityPredicates;
return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types),
Mutation);
}
/// Use the given action when type index 0 is any type in the given list and
/// imm index 0 is anything. Action should not be an action that requires
/// mutation.
LegalizeRuleSet &actionForTypeWithAnyImm(LegalizeAction Action,
std::initializer_list<LLT> Types) {
using namespace LegalityPredicates;
immIdx(0); // Inform verifier imm idx 0 is handled.
return actionIf(Action, typeInSet(typeIdx(0), Types));
}
LegalizeRuleSet &actionForTypeWithAnyImm(
LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types) {
using namespace LegalityPredicates;
immIdx(0); // Inform verifier imm idx 0 is handled.
return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
}
/// Use the given action when type indexes 0 and 1 are both in the given list.
/// That is, the type pair is in the cartesian product of the list.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action,
std::initializer_list<LLT> Types) {
using namespace LegalityPredicates;
return actionIf(Action, all(typeInSet(typeIdx(0), Types),
typeInSet(typeIdx(1), Types)));
}
/// Use the given action when type indexes 0 and 1 are both in their
/// respective lists.
/// That is, the type pair is in the cartesian product of the lists
/// Action should not be an action that requires mutation.
LegalizeRuleSet &
actionForCartesianProduct(LegalizeAction Action,
std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
using namespace LegalityPredicates;
return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
typeInSet(typeIdx(1), Types1)));
}
/// Use the given action when type indexes 0, 1, and 2 are all in their
/// respective lists.
/// That is, the type triple is in the cartesian product of the lists
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionForCartesianProduct(
LegalizeAction Action, std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) {
using namespace LegalityPredicates;
return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
all(typeInSet(typeIdx(1), Types1),
typeInSet(typeIdx(2), Types2))));
}
public:
LegalizeRuleSet() = default;
bool isAliasedByAnother() { return IsAliasedByAnother; }
void setIsAliasedByAnother() { IsAliasedByAnother = true; }
void aliasTo(unsigned Opcode) {
assert((AliasOf == 0 || AliasOf == Opcode) &&
"Opcode is already aliased to another opcode");
assert(Rules.empty() && "Aliasing will discard rules");
AliasOf = Opcode;
}
unsigned getAlias() const { return AliasOf; }
unsigned immIdx(unsigned ImmIdx) {
assert(ImmIdx <= (MCOI::OPERAND_LAST_GENERIC_IMM -
MCOI::OPERAND_FIRST_GENERIC_IMM) &&
"Imm Index is out of bounds");
#ifndef NDEBUG
ImmIdxsCovered.set(ImmIdx);
#endif
return ImmIdx;
}
/// The instruction is legal if predicate is true.
LegalizeRuleSet &legalIf(LegalityPredicate Predicate) {
// We have no choice but conservatively assume that the free-form
// user-provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Legal, Predicate);
}
/// The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Legal, Types);
}
/// The instruction is legal when type indexes 0 and 1 is any type pair in the
/// given list.
LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
return actionFor(LegalizeAction::Legal, Types);
}
/// The instruction is legal when type index 0 is any type in the given list
/// and imm index 0 is anything.
LegalizeRuleSet &legalForTypeWithAnyImm(std::initializer_list<LLT> Types) {
markAllIdxsAsCovered();
return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
}
LegalizeRuleSet &legalForTypeWithAnyImm(
std::initializer_list<std::pair<LLT, LLT>> Types) {
markAllIdxsAsCovered();
return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
}
/// The instruction is legal when type indexes 0 and 1 along with the memory
/// size and minimum alignment is any type and size tuple in the given list.
LegalizeRuleSet &legalForTypesWithMemDesc(
std::initializer_list<LegalityPredicates::TypePairAndMemDesc>
TypesAndMemDesc) {
return actionIf(LegalizeAction::Legal,
LegalityPredicates::typePairAndMemDescInSet(
typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemDesc));
}
/// The instruction is legal when type indexes 0 and 1 are both in the given
/// list. That is, the type pair is in the cartesian product of the list.
LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) {
return actionForCartesianProduct(LegalizeAction::Legal, Types);
}
/// The instruction is legal when type indexes 0 and 1 are both their
/// respective lists.
LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1);
}
/// The instruction is legal when type indexes 0, 1, and 2 are both their
/// respective lists.
LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1,
std::initializer_list<LLT> Types2) {
return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1,
Types2);
}
LegalizeRuleSet &alwaysLegal() {
using namespace LegalizeMutations;
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Legal, always);
}
/// The specified type index is coerced if predicate is true.
LegalizeRuleSet &bitcastIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that lowering with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Bitcast, Predicate, Mutation);
}
/// The instruction is lowered.
LegalizeRuleSet &lower() {
using namespace LegalizeMutations;
// We have no choice but conservatively assume that predicate-less lowering
// properly handles all type indices by design:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Lower, always);
}
/// The instruction is lowered if predicate is true. Keep type index 0 as the
/// same type.
LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) {
using namespace LegalizeMutations;
// We have no choice but conservatively assume that lowering with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Lower, Predicate);
}
/// The instruction is lowered if predicate is true.
LegalizeRuleSet &lowerIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that lowering with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Lower, Predicate, Mutation);
}
/// The instruction is lowered when type index 0 is any type in the given
/// list. Keep type index 0 as the same type.
LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Lower, Types);
}
/// The instruction is lowered when type index 0 is any type in the given
/// list.
LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types,
LegalizeMutation Mutation) {
return actionFor(LegalizeAction::Lower, Types, Mutation);
}
/// The instruction is lowered when type indexes 0 and 1 is any type pair in
/// the given list. Keep type index 0 as the same type.
LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
return actionFor(LegalizeAction::Lower, Types);
}
/// The instruction is lowered when type indexes 0 and 1 is any type pair in
/// the given list.
LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types,
LegalizeMutation Mutation) {
return actionFor(LegalizeAction::Lower, Types, Mutation);
}
/// The instruction is lowered when type indexes 0 and 1 are both in their
/// respective lists.
LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
using namespace LegalityPredicates;
return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1);
}
/// The instruction is lowered when when type indexes 0, 1, and 2 are all in
/// their respective lists.
LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1,
std::initializer_list<LLT> Types2) {
using namespace LegalityPredicates;
return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1,
Types2);
}
/// The instruction is emitted as a library call.
LegalizeRuleSet &libcall() {
using namespace LegalizeMutations;
// We have no choice but conservatively assume that predicate-less lowering
// properly handles all type indices by design:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Libcall, always);
}
/// Like legalIf, but for the Libcall action.
LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) {
// We have no choice but conservatively assume that a libcall with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Libcall, Predicate);
}
LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Libcall, Types);
}
LegalizeRuleSet &
libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
return actionFor(LegalizeAction::Libcall, Types);
}
LegalizeRuleSet &
libcallForCartesianProduct(std::initializer_list<LLT> Types) {
return actionForCartesianProduct(LegalizeAction::Libcall, Types);
}
LegalizeRuleSet &
libcallForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1);
}
/// Widen the scalar to the one selected by the mutation if the predicate is
/// true.
LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation);
}
/// Narrow the scalar to the one selected by the mutation if the predicate is
/// true.
LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation);
}
/// Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any
/// type pair in the given list.
LegalizeRuleSet &
narrowScalarFor(std::initializer_list<std::pair<LLT, LLT>> Types,
LegalizeMutation Mutation) {
return actionFor(LegalizeAction::NarrowScalar, Types, Mutation);
}
/// Add more elements to reach the type selected by the mutation if the
/// predicate is true.
LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::MoreElements, Predicate, Mutation);
}
/// Remove elements to reach the type selected by the mutation if the
/// predicate is true.
LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::FewerElements, Predicate, Mutation);
}
/// The instruction is unsupported.
LegalizeRuleSet &unsupported() {
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Unsupported, always);
}
LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) {
return actionIf(LegalizeAction::Unsupported, Predicate);
}
LegalizeRuleSet &unsupportedFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Unsupported, Types);
}
LegalizeRuleSet &unsupportedIfMemSizeNotPow2() {
return actionIf(LegalizeAction::Unsupported,
LegalityPredicates::memSizeInBytesNotPow2(0));
}
/// Lower a memory operation if the memory size, rounded to bytes, is not a
/// power of 2. For example, this will not trigger for s1 or s7, but will for
/// s24.
LegalizeRuleSet &lowerIfMemSizeNotPow2() {
return actionIf(LegalizeAction::Lower,
LegalityPredicates::memSizeInBytesNotPow2(0));
}
/// Lower a memory operation if the memory access size is not a round power of
/// 2 byte size. This is stricter than lowerIfMemSizeNotPow2, and more likely
/// what you want (e.g. this will lower s1, s7 and s24).
LegalizeRuleSet &lowerIfMemSizeNotByteSizePow2() {
return actionIf(LegalizeAction::Lower,
LegalityPredicates::memSizeNotByteSizePow2(0));
}
LegalizeRuleSet &customIf(LegalityPredicate Predicate) {
// We have no choice but conservatively assume that a custom action with a
// free-form user provided Predicate properly handles all type indices:
markAllIdxsAsCovered();
return actionIf(LegalizeAction::Custom, Predicate);
}
LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Custom, Types);
}
/// The instruction is custom when type indexes 0 and 1 is any type pair in the
/// given list.
LegalizeRuleSet &customFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
return actionFor(LegalizeAction::Custom, Types);
}
LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) {
return actionForCartesianProduct(LegalizeAction::Custom, Types);
}
/// The instruction is custom when type indexes 0 and 1 are both in their
/// respective lists.
LegalizeRuleSet &
customForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
}
/// The instruction is custom when when type indexes 0, 1, and 2 are all in
/// their respective lists.
LegalizeRuleSet &
customForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1,
std::initializer_list<LLT> Types2) {
return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1,
Types2);
}
/// Unconditionally custom lower.
LegalizeRuleSet &custom() {
return customIf(always);
}
/// Widen the scalar to the next power of two that is at least MinSize.
/// No effect if the type is not a scalar or is a power of two.
LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx,
unsigned MinSize = 0) {
using namespace LegalityPredicates;
return actionIf(
LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)),
LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize));
}
/// Widen the scalar to the next multiple of Size. No effect if the
/// type is not a scalar or is a multiple of Size.
LegalizeRuleSet &widenScalarToNextMultipleOf(unsigned TypeIdx,
unsigned Size) {
using namespace LegalityPredicates;
return actionIf(
LegalizeAction::WidenScalar, sizeNotMultipleOf(typeIdx(TypeIdx), Size),
LegalizeMutations::widenScalarOrEltToNextMultipleOf(TypeIdx, Size));
}
/// Widen the scalar or vector element type to the next power of two that is
/// at least MinSize. No effect if the scalar size is a power of two.
LegalizeRuleSet &widenScalarOrEltToNextPow2(unsigned TypeIdx,
unsigned MinSize = 0) {
using namespace LegalityPredicates;
return actionIf(
LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)),
LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize));
}
LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) {
using namespace LegalityPredicates;
return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)),
Mutation);
}
LegalizeRuleSet &scalarize(unsigned TypeIdx) {
using namespace LegalityPredicates;
return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)),
LegalizeMutations::scalarize(TypeIdx));
}
LegalizeRuleSet &scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx) {
using namespace LegalityPredicates;
return actionIf(LegalizeAction::FewerElements,
all(Predicate, isVector(typeIdx(TypeIdx))),
LegalizeMutations::scalarize(TypeIdx));
}
/// Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::WidenScalar,
scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()),
changeElementTo(typeIdx(TypeIdx), Ty));
}
/// Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet &minScalarOrEltIf(LegalityPredicate Predicate,
unsigned TypeIdx, const LLT Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::WidenScalar,
all(Predicate, scalarOrEltNarrowerThan(
TypeIdx, Ty.getScalarSizeInBits())),
changeElementTo(typeIdx(TypeIdx), Ty));
}
/// Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::WidenScalar,
scalarNarrowerThan(TypeIdx, Ty.getSizeInBits()),
changeTo(typeIdx(TypeIdx), Ty));
}
/// Ensure the scalar is at least as wide as Ty if condition is met.
LegalizeRuleSet &minScalarIf(LegalityPredicate Predicate, unsigned TypeIdx,
const LLT Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(
LegalizeAction::WidenScalar,
[=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
return QueryTy.isScalar() &&
QueryTy.getSizeInBits() < Ty.getSizeInBits() &&
Predicate(Query);
},
changeTo(typeIdx(TypeIdx), Ty));
}
/// Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::NarrowScalar,
scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()),
changeElementTo(typeIdx(TypeIdx), Ty));
}
/// Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::NarrowScalar,
scalarWiderThan(TypeIdx, Ty.getSizeInBits()),
changeTo(typeIdx(TypeIdx), Ty));
}
/// Conditionally limit the maximum size of the scalar.
/// For example, when the maximum size of one type depends on the size of
/// another such as extracting N bits from an M bit container.
LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx,
const LLT Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(
LegalizeAction::NarrowScalar,
[=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
return QueryTy.isScalar() &&
QueryTy.getSizeInBits() > Ty.getSizeInBits() &&
Predicate(Query);
},
changeElementTo(typeIdx(TypeIdx), Ty));
}
/// Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT MinTy,
const LLT MaxTy) {
assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types");
return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy);
}
/// Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT MinTy,
const LLT MaxTy) {
return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy);
}
/// Widen the scalar to match the size of another.
LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) {
typeIdx(TypeIdx);
return widenScalarIf(
[=](const LegalityQuery &Query) {
return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
Query.Types[TypeIdx].getSizeInBits();
},
LegalizeMutations::changeElementSizeTo(TypeIdx, LargeTypeIdx));
}
/// Narrow the scalar to match the size of another.
LegalizeRuleSet &maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx) {
typeIdx(TypeIdx);
return narrowScalarIf(
[=](const LegalityQuery &Query) {
return Query.Types[NarrowTypeIdx].getScalarSizeInBits() <
Query.Types[TypeIdx].getSizeInBits();
},
LegalizeMutations::changeElementSizeTo(TypeIdx, NarrowTypeIdx));
}
/// Change the type \p TypeIdx to have the same scalar size as type \p
/// SameSizeIdx.
LegalizeRuleSet &scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx) {
return minScalarSameAs(TypeIdx, SameSizeIdx)
.maxScalarSameAs(TypeIdx, SameSizeIdx);
}
/// Conditionally widen the scalar or elt to match the size of another.
LegalizeRuleSet &minScalarEltSameAsIf(LegalityPredicate Predicate,
unsigned TypeIdx, unsigned LargeTypeIdx) {
typeIdx(TypeIdx);
return widenScalarIf(
[=](const LegalityQuery &Query) {
return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
Query.Types[TypeIdx].getScalarSizeInBits() &&
Predicate(Query);
},
[=](const LegalityQuery &Query) {
LLT T = Query.Types[LargeTypeIdx];
if (T.isVector() && T.getElementType().isPointer())
T = T.changeElementType(LLT::scalar(T.getScalarSizeInBits()));
return std::make_pair(TypeIdx, T);
});
}
/// Conditionally narrow the scalar or elt to match the size of another.
LegalizeRuleSet &maxScalarEltSameAsIf(LegalityPredicate Predicate,
unsigned TypeIdx,
unsigned SmallTypeIdx) {
typeIdx(TypeIdx);
return narrowScalarIf(
[=](const LegalityQuery &Query) {
return Query.Types[SmallTypeIdx].getScalarSizeInBits() <
Query.Types[TypeIdx].getScalarSizeInBits() &&
Predicate(Query);
},
[=](const LegalityQuery &Query) {
LLT T = Query.Types[SmallTypeIdx];
return std::make_pair(TypeIdx, T);
});
}
/// Add more elements to the vector to reach the next power of two.
/// No effect if the type is not a vector or the element count is a power of
/// two.
LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) {
using namespace LegalityPredicates;
return actionIf(LegalizeAction::MoreElements,
numElementsNotPow2(typeIdx(TypeIdx)),
LegalizeMutations::moreElementsToNextPow2(TypeIdx));
}
/// Limit the number of elements in EltTy vectors to at least MinElements.
LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT EltTy,
unsigned MinElements) {
// Mark the type index as covered:
typeIdx(TypeIdx);
return actionIf(
LegalizeAction::MoreElements,
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return VecTy.isVector() && VecTy.getElementType() == EltTy &&
VecTy.getNumElements() < MinElements;
},
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return std::make_pair(
TypeIdx, LLT::fixed_vector(MinElements, VecTy.getElementType()));
});
}
/// Set number of elements to nearest larger multiple of NumElts.
LegalizeRuleSet &alignNumElementsTo(unsigned TypeIdx, const LLT EltTy,
unsigned NumElts) {
typeIdx(TypeIdx);
return actionIf(
LegalizeAction::MoreElements,
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return VecTy.isVector() && VecTy.getElementType() == EltTy &&
(VecTy.getNumElements() % NumElts != 0);
},
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
unsigned NewSize = alignTo(VecTy.getNumElements(), NumElts);
return std::make_pair(
TypeIdx, LLT::fixed_vector(NewSize, VecTy.getElementType()));
});
}
/// Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT EltTy,
unsigned MaxElements) {
// Mark the type index as covered:
typeIdx(TypeIdx);
return actionIf(
LegalizeAction::FewerElements,
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return VecTy.isVector() && VecTy.getElementType() == EltTy &&
VecTy.getNumElements() > MaxElements;
},
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
LLT NewTy = LLT::scalarOrVector(ElementCount::getFixed(MaxElements),
VecTy.getElementType());
return std::make_pair(TypeIdx, NewTy);
});
}
/// Limit the number of elements for the given vectors to at least MinTy's
/// number of elements and at most MaxTy's number of elements.
///
/// No effect if the type is not a vector or does not have the same element
/// type as the constraints.
/// The element type of MinTy and MaxTy must match.
LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT MinTy,
const LLT MaxTy) {
assert(MinTy.getElementType() == MaxTy.getElementType() &&
"Expected element types to agree");
const LLT EltTy = MinTy.getElementType();
return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements())
.clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements());
}
/// Express \p EltTy vectors strictly using vectors with \p NumElts elements
/// (or scalars when \p NumElts equals 1).
/// First pad with undef elements to nearest larger multiple of \p NumElts.
/// Then perform split with all sub-instructions having the same type.
/// Using clampMaxNumElements (non-strict) can result in leftover instruction
/// with different type (fewer elements then \p NumElts or scalar).
/// No effect if the type is not a vector.
LegalizeRuleSet &clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy,
unsigned NumElts) {
return alignNumElementsTo(TypeIdx, EltTy, NumElts)
.clampMaxNumElements(TypeIdx, EltTy, NumElts);
}
/// Fallback on the previous implementation. This should only be used while
/// porting a rule.
LegalizeRuleSet &fallback() {
add({always, LegalizeAction::UseLegacyRules});
return *this;
}
/// Check if there is no type index which is obviously not handled by the
/// LegalizeRuleSet in any way at all.
/// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const;
/// Check if there is no imm index which is obviously not handled by the
/// LegalizeRuleSet in any way at all.
/// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const;
/// Apply the ruleset to the given LegalityQuery.
LegalizeActionStep apply(const LegalityQuery &Query) const;
};
class LegalizerInfo {
public:
virtual ~LegalizerInfo() = default;
const LegacyLegalizerInfo &getLegacyLegalizerInfo() const {
return LegacyInfo;
}
LegacyLegalizerInfo &getLegacyLegalizerInfo() { return LegacyInfo; }
unsigned getOpcodeIdxForOpcode(unsigned Opcode) const;
unsigned getActionDefinitionsIdx(unsigned Opcode) const;
/// Perform simple self-diagnostic and assert if there is anything obviously
/// wrong with the actions set up.
void verify(const MCInstrInfo &MII) const;
/// Get the action definitions for the given opcode. Use this to run a
/// LegalityQuery through the definitions.
const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const;
/// Get the action definition builder for the given opcode. Use this to define
/// the action definitions.
///
/// It is an error to request an opcode that has already been requested by the
/// multiple-opcode variant.
LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode);
/// Get the action definition builder for the given set of opcodes. Use this
/// to define the action definitions for multiple opcodes at once. The first
/// opcode given will be considered the representative opcode and will hold
/// the definitions whereas the other opcodes will be configured to refer to
/// the representative opcode. This lowers memory requirements and very
/// slightly improves performance.
///
/// It would be very easy to introduce unexpected side-effects as a result of
/// this aliasing if it were permitted to request different but intersecting
/// sets of opcodes but that is difficult to keep track of. It is therefore an
/// error to request the same opcode twice using this API, to request an
/// opcode that already has definitions, or to use the single-opcode API on an
/// opcode that has already been requested by this API.
LegalizeRuleSet &
getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes);
void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom);
/// Determine what action should be taken to legalize the described
/// instruction. Requires computeTables to have been called.
///
/// \returns a description of the next legalization step to perform.
LegalizeActionStep getAction(const LegalityQuery &Query) const;
/// Determine what action should be taken to legalize the given generic
/// instruction.
///
/// \returns a description of the next legalization step to perform.
LegalizeActionStep getAction(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const;
bool isLegal(const LegalityQuery &Query) const {
return getAction(Query).Action == LegalizeAction::Legal;
}
bool isLegalOrCustom(const LegalityQuery &Query) const {
auto Action = getAction(Query).Action;
return Action == LegalizeAction::Legal || Action == LegalizeAction::Custom;
}
bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const;
bool isLegalOrCustom(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const;
/// Called for instructions with the Custom LegalizationAction.
virtual bool legalizeCustom(LegalizerHelper &Helper,
MachineInstr &MI) const {
llvm_unreachable("must implement this if custom action is used");
}
/// \returns true if MI is either legal or has been legalized and false if not
/// legal.
/// Return true if MI is either legal or has been legalized and false
/// if not legal.
virtual bool legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
return true;
}
/// Return the opcode (SEXT/ZEXT/ANYEXT) that should be performed while
/// widening a constant of type SmallTy which targets can override.
/// For eg, the DAG does (SmallTy.isByteSized() ? G_SEXT : G_ZEXT) which
/// will be the default.
virtual unsigned getExtOpcodeForWideningConstant(LLT SmallTy) const;
private:
static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START;
static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END;
LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1];
LegacyLegalizerInfo LegacyInfo;
};
#ifndef NDEBUG
/// Checks that MIR is fully legal, returns an illegal instruction if it's not,
/// nullptr otherwise
const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF);
#endif
} // end namespace llvm.
#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H