//== llvm/CodeGen/GlobalISel/LegalizerHelper.h ---------------- -*- C++ -*-==//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
/// \file A pass to convert the target-illegal operations created by IR -> MIR
 
/// translation into ones the target expects to be able to select. This may
 
/// occur in multiple phases, for example G_ADD <2 x i8> -> G_ADD <2 x i16> ->
 
/// G_ADD <4 x i16>.
 
///
 
/// The LegalizerHelper class is where most of the work happens, and is
 
/// designed to be callable from other passes that find themselves with an
 
/// illegal instruction.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERHELPER_H
 
#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERHELPER_H
 
 
 
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
 
#include "llvm/CodeGen/RuntimeLibcalls.h"
 
#include "llvm/CodeGen/TargetOpcodes.h"
 
 
 
namespace llvm {
 
// Forward declarations.
 
class APInt;
 
class GAnyLoad;
 
class GLoadStore;
 
class GStore;
 
class GenericMachineInstr;
 
class MachineFunction;
 
class MachineIRBuilder;
 
class MachineInstr;
 
class MachineInstrBuilder;
 
struct MachinePointerInfo;
 
template <typename T> class SmallVectorImpl;
 
class LegalizerInfo;
 
class MachineRegisterInfo;
 
class GISelChangeObserver;
 
class LostDebugLocObserver;
 
class TargetLowering;
 
 
 
class LegalizerHelper {
 
public:
 
  /// Expose MIRBuilder so clients can set their own RecordInsertInstruction
 
  /// functions
 
  MachineIRBuilder &MIRBuilder;
 
 
 
  /// To keep track of changes made by the LegalizerHelper.
 
  GISelChangeObserver &Observer;
 
 
 
private:
 
  MachineRegisterInfo &MRI;
 
  const LegalizerInfo &LI;
 
  const TargetLowering &TLI;
 
 
 
public:
 
  enum LegalizeResult {
 
    /// Instruction was already legal and no change was made to the
 
    /// MachineFunction.
 
    AlreadyLegal,
 
 
 
    /// Instruction has been legalized and the MachineFunction changed.
 
    Legalized,
 
 
 
    /// Some kind of error has occurred and we could not legalize this
 
    /// instruction.
 
    UnableToLegalize,
 
  };
 
 
 
  /// Expose LegalizerInfo so the clients can re-use.
 
  const LegalizerInfo &getLegalizerInfo() const { return LI; }
 
  const TargetLowering &getTargetLowering() const { return TLI; }
 
 
 
  LegalizerHelper(MachineFunction &MF, GISelChangeObserver &Observer,
 
                  MachineIRBuilder &B);
 
  LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
 
                  GISelChangeObserver &Observer, MachineIRBuilder &B);
 
 
 
  /// Replace \p MI by a sequence of legal instructions that can implement the
 
  /// same operation. Note that this means \p MI may be deleted, so any iterator
 
  /// steps should be performed before calling this function. \p Helper should
 
  /// be initialized to the MachineFunction containing \p MI.
 
  ///
 
  /// Considered as an opaque blob, the legal code will use and define the same
 
  /// registers as \p MI.
 
  LegalizeResult legalizeInstrStep(MachineInstr &MI,
 
                                   LostDebugLocObserver &LocObserver);
 
 
 
  /// Legalize an instruction by emiting a runtime library call instead.
 
  LegalizeResult libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver);
 
 
 
  /// Legalize an instruction by reducing the width of the underlying scalar
 
  /// type.
 
  LegalizeResult narrowScalar(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy);
 
 
 
  /// Legalize an instruction by performing the operation on a wider scalar type
 
  /// (for example a 16-bit addition can be safely performed at 32-bits
 
  /// precision, ignoring the unused bits).
 
  LegalizeResult widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy);
 
 
 
  /// Legalize an instruction by replacing the value type
 
  LegalizeResult bitcast(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
 
 
  /// Legalize an instruction by splitting it into simpler parts, hopefully
 
  /// understood by the target.
 
  LegalizeResult lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
 
 
  /// Legalize a vector instruction by splitting into multiple components, each
 
  /// acting on the same scalar type as the original but with fewer elements.
 
  LegalizeResult fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
 
                                     LLT NarrowTy);
 
 
 
  /// Legalize a vector instruction by increasing the number of vector elements
 
  /// involved and ignoring the added elements later.
 
  LegalizeResult moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
 
                                    LLT MoreTy);
 
 
 
  /// Cast the given value to an LLT::scalar with an equivalent size. Returns
 
  /// the register to use if an instruction was inserted. Returns the original
 
  /// register if no coercion was necessary.
 
  //
 
  // This may also fail and return Register() if there is no legal way to cast.
 
  Register coerceToScalar(Register Val);
 
 
 
  /// Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  /// Use by extending the operand's type to \p WideTy using the specified \p
 
  /// ExtOpcode for the extension instruction, and replacing the vreg of the
 
  /// operand in place.
 
  void widenScalarSrc(MachineInstr &MI, LLT WideTy, unsigned OpIdx,
 
                      unsigned ExtOpcode);
 
 
 
  /// Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  /// Use by truncating the operand's type to \p NarrowTy using G_TRUNC, and
 
  /// replacing the vreg of the operand in place.
 
  void narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, unsigned OpIdx);
 
 
 
  /// Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  /// Def by extending the operand's type to \p WideTy and truncating it back
 
  /// with the \p TruncOpcode, and replacing the vreg of the operand in place.
 
  void widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx = 0,
 
                      unsigned TruncOpcode = TargetOpcode::G_TRUNC);
 
 
 
  // Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  // Def by truncating the operand's type to \p NarrowTy, replacing in place and
 
  // extending back with \p ExtOpcode.
 
  void narrowScalarDst(MachineInstr &MI, LLT NarrowTy, unsigned OpIdx,
 
                       unsigned ExtOpcode);
 
  /// Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  /// Def by performing it with additional vector elements and extracting the
 
  /// result elements, and replacing the vreg of the operand in place.
 
  void moreElementsVectorDst(MachineInstr &MI, LLT MoreTy, unsigned OpIdx);
 
 
 
  /// Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  /// Use by producing a vector with undefined high elements, extracting the
 
  /// original vector type, and replacing the vreg of the operand in place.
 
  void moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, unsigned OpIdx);
 
 
 
  /// Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  /// use by inserting a G_BITCAST to \p CastTy
 
  void bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx);
 
 
 
  /// Legalize a single operand \p OpIdx of the machine instruction \p MI as a
 
  /// def by inserting a G_BITCAST from \p CastTy
 
  void bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx);
 
 
 
private:
 
  LegalizeResult
 
  widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, LLT WideTy);
 
  LegalizeResult
 
  widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, LLT WideTy);
 
  LegalizeResult
 
  widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, LLT WideTy);
 
  LegalizeResult
 
  widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, LLT WideTy);
 
  LegalizeResult widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
 
                                           LLT WideTy);
 
  LegalizeResult widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
 
                                         LLT WideTy);
 
  LegalizeResult widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
 
                                 LLT WideTy);
 
 
 
  /// Helper function to split a wide generic register into bitwise blocks with
 
  /// the given Type (which implies the number of blocks needed). The generic
 
  /// registers created are appended to Ops, starting at bit 0 of Reg.
 
  void extractParts(Register Reg, LLT Ty, int NumParts,
 
                    SmallVectorImpl<Register> &VRegs);
 
 
 
  /// Version which handles irregular splits.
 
  bool extractParts(Register Reg, LLT RegTy, LLT MainTy,
 
                    LLT &LeftoverTy,
 
                    SmallVectorImpl<Register> &VRegs,
 
                    SmallVectorImpl<Register> &LeftoverVRegs);
 
 
 
  /// Version which handles irregular sub-vector splits.
 
  void extractVectorParts(Register Reg, unsigned NumElst,
 
                          SmallVectorImpl<Register> &VRegs);
 
 
 
  /// Helper function to build a wide generic register \p DstReg of type \p
 
  /// RegTy from smaller parts. This will produce a G_MERGE_VALUES,
 
  /// G_BUILD_VECTOR, G_CONCAT_VECTORS, or sequence of G_INSERT as appropriate
 
  /// for the types.
 
  ///
 
  /// \p PartRegs must be registers of type \p PartTy.
 
  ///
 
  /// If \p ResultTy does not evenly break into \p PartTy sized pieces, the
 
  /// remainder must be specified with \p LeftoverRegs of type \p LeftoverTy.
 
  void insertParts(Register DstReg, LLT ResultTy,
 
                   LLT PartTy, ArrayRef<Register> PartRegs,
 
                   LLT LeftoverTy = LLT(), ArrayRef<Register> LeftoverRegs = {});
 
 
 
  /// Merge \p PartRegs with different types into \p DstReg.
 
  void mergeMixedSubvectors(Register DstReg, ArrayRef<Register> PartRegs);
 
 
 
  void appendVectorElts(SmallVectorImpl<Register> &Elts, Register Reg);
 
 
 
  /// Unmerge \p SrcReg into smaller sized values, and append them to \p
 
  /// Parts. The elements of \p Parts will be the greatest common divisor type
 
  /// of \p DstTy, \p NarrowTy and the type of \p SrcReg. This will compute and
 
  /// return the GCD type.
 
  LLT extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
 
                     LLT NarrowTy, Register SrcReg);
 
 
 
  /// Unmerge \p SrcReg into \p GCDTy typed registers. This will append all of
 
  /// the unpacked registers to \p Parts. This version is if the common unmerge
 
  /// type is already known.
 
  void extractGCDType(SmallVectorImpl<Register> &Parts, LLT GCDTy,
 
                      Register SrcReg);
 
 
 
  /// Produce a merge of values in \p VRegs to define \p DstReg. Perform a merge
 
  /// from the least common multiple type, and convert as appropriate to \p
 
  /// DstReg.
 
  ///
 
  /// \p VRegs should each have type \p GCDTy. This type should be greatest
 
  /// common divisor type of \p DstReg, \p NarrowTy, and an undetermined source
 
  /// type.
 
  ///
 
  /// \p NarrowTy is the desired result merge source type. If the source value
 
  /// needs to be widened to evenly cover \p DstReg, inserts high bits
 
  /// corresponding to the extension opcode \p PadStrategy.
 
  ///
 
  /// \p VRegs will be cleared, and the the result \p NarrowTy register pieces
 
  /// will replace it. Returns The complete LCMTy that \p VRegs will cover when
 
  /// merged.
 
  LLT buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
 
                          SmallVectorImpl<Register> &VRegs,
 
                          unsigned PadStrategy = TargetOpcode::G_ANYEXT);
 
 
 
  /// Merge the values in \p RemergeRegs to an \p LCMTy typed value. Extract the
 
  /// low bits into \p DstReg. This is intended to use the outputs from
 
  /// buildLCMMergePieces after processing.
 
  void buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
 
                                ArrayRef<Register> RemergeRegs);
 
 
 
  /// Perform generic multiplication of values held in multiple registers.
 
  /// Generated instructions use only types NarrowTy and i1.
 
  /// Destination can be same or two times size of the source.
 
  void multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
 
                         ArrayRef<Register> Src1Regs,
 
                         ArrayRef<Register> Src2Regs, LLT NarrowTy);
 
 
 
  void changeOpcode(MachineInstr &MI, unsigned NewOpcode);
 
 
 
  LegalizeResult tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
 
                                        LLT SrcTy, LLT NarrowTy,
 
                                        unsigned ScalarOpc);
 
 
 
  // Memcpy family legalization helpers.
 
  LegalizeResult lowerMemset(MachineInstr &MI, Register Dst, Register Val,
 
                             uint64_t KnownLen, Align Alignment,
 
                             bool IsVolatile);
 
  LegalizeResult lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
 
                                   uint64_t KnownLen, Align DstAlign,
 
                                   Align SrcAlign, bool IsVolatile);
 
  LegalizeResult lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
 
                             uint64_t KnownLen, uint64_t Limit, Align DstAlign,
 
                             Align SrcAlign, bool IsVolatile);
 
  LegalizeResult lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
 
                              uint64_t KnownLen, Align DstAlign, Align SrcAlign,
 
                              bool IsVolatile);
 
 
 
public:
 
  /// Return the alignment to use for a stack temporary object with the given
 
  /// type.
 
  Align getStackTemporaryAlignment(LLT Type, Align MinAlign = Align()) const;
 
 
 
  /// Create a stack temporary based on the size in bytes and the alignment
 
  MachineInstrBuilder createStackTemporary(TypeSize Bytes, Align Alignment,
 
                                           MachinePointerInfo &PtrInfo);
 
 
 
  /// Get a pointer to vector element \p Index located in memory for a vector of
 
  /// type \p VecTy starting at a base address of \p VecPtr. If \p Index is out
 
  /// of bounds the returned pointer is unspecified, but will be within the
 
  /// vector bounds.
 
  Register getVectorElementPointer(Register VecPtr, LLT VecTy, Register Index);
 
 
 
  /// Handles most opcodes. Split \p MI into same instruction on sub-vectors or
 
  /// scalars with \p NumElts elements (1 for scalar). Supports uneven splits:
 
  /// there can be leftover sub-vector with fewer then \p NumElts or a leftover
 
  /// scalar. To avoid this use moreElements first and set MI number of elements
 
  /// to multiple of \p NumElts. Non-vector operands that should be used on all
 
  /// sub-instructions without split are listed in \p NonVecOpIndices.
 
  LegalizeResult fewerElementsVectorMultiEltType(
 
      GenericMachineInstr &MI, unsigned NumElts,
 
      std::initializer_list<unsigned> NonVecOpIndices = {});
 
 
 
  LegalizeResult fewerElementsVectorPhi(GenericMachineInstr &MI,
 
                                        unsigned NumElts);
 
 
 
  LegalizeResult moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
 
                                       LLT MoreTy);
 
  LegalizeResult moreElementsVectorShuffle(MachineInstr &MI, unsigned TypeIdx,
 
                                           LLT MoreTy);
 
 
 
  LegalizeResult fewerElementsVectorUnmergeValues(MachineInstr &MI,
 
                                                  unsigned TypeIdx,
 
                                                  LLT NarrowTy);
 
  LegalizeResult fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
 
                                          LLT NarrowTy);
 
  LegalizeResult fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
 
                                                           unsigned TypeIdx,
 
                                                           LLT NarrowTy);
 
 
 
  LegalizeResult reduceLoadStoreWidth(GLoadStore &MI, unsigned TypeIdx,
 
                                      LLT NarrowTy);
 
 
 
  LegalizeResult narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
 
                                             LLT HalfTy, LLT ShiftAmtTy);
 
 
 
  LegalizeResult fewerElementsVectorReductions(MachineInstr &MI,
 
                                               unsigned TypeIdx, LLT NarrowTy);
 
 
 
  LegalizeResult fewerElementsVectorShuffle(MachineInstr &MI, unsigned TypeIdx,
 
                                            LLT NarrowTy);
 
 
 
  LegalizeResult narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
 
                                    LLT NarrowTy);
 
  LegalizeResult narrowScalarMul(MachineInstr &MI, LLT Ty);
 
  LegalizeResult narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
 
 
  LegalizeResult narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
  LegalizeResult narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, LLT Ty);
 
 
 
  /// Perform Bitcast legalize action on G_EXTRACT_VECTOR_ELT.
 
  LegalizeResult bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
 
                                         LLT CastTy);
 
 
 
  /// Perform Bitcast legalize action on G_INSERT_VECTOR_ELT.
 
  LegalizeResult bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
 
                                        LLT CastTy);
 
 
 
  LegalizeResult lowerBitcast(MachineInstr &MI);
 
  LegalizeResult lowerLoad(GAnyLoad &MI);
 
  LegalizeResult lowerStore(GStore &MI);
 
  LegalizeResult lowerBitCount(MachineInstr &MI);
 
  LegalizeResult lowerFunnelShiftWithInverse(MachineInstr &MI);
 
  LegalizeResult lowerFunnelShiftAsShifts(MachineInstr &MI);
 
  LegalizeResult lowerFunnelShift(MachineInstr &MI);
 
  LegalizeResult lowerRotateWithReverseRotate(MachineInstr &MI);
 
  LegalizeResult lowerRotate(MachineInstr &MI);
 
 
 
  LegalizeResult lowerU64ToF32BitOps(MachineInstr &MI);
 
  LegalizeResult lowerUITOFP(MachineInstr &MI);
 
  LegalizeResult lowerSITOFP(MachineInstr &MI);
 
  LegalizeResult lowerFPTOUI(MachineInstr &MI);
 
  LegalizeResult lowerFPTOSI(MachineInstr &MI);
 
 
 
  LegalizeResult lowerFPTRUNC_F64_TO_F16(MachineInstr &MI);
 
  LegalizeResult lowerFPTRUNC(MachineInstr &MI);
 
  LegalizeResult lowerFPOWI(MachineInstr &MI);
 
 
 
  LegalizeResult lowerISFPCLASS(MachineInstr &MI);
 
 
 
  LegalizeResult lowerMinMax(MachineInstr &MI);
 
  LegalizeResult lowerFCopySign(MachineInstr &MI);
 
  LegalizeResult lowerFMinNumMaxNum(MachineInstr &MI);
 
  LegalizeResult lowerFMad(MachineInstr &MI);
 
  LegalizeResult lowerIntrinsicRound(MachineInstr &MI);
 
  LegalizeResult lowerFFloor(MachineInstr &MI);
 
  LegalizeResult lowerMergeValues(MachineInstr &MI);
 
  LegalizeResult lowerUnmergeValues(MachineInstr &MI);
 
  LegalizeResult lowerExtractInsertVectorElt(MachineInstr &MI);
 
  LegalizeResult lowerShuffleVector(MachineInstr &MI);
 
  LegalizeResult lowerDynStackAlloc(MachineInstr &MI);
 
  LegalizeResult lowerExtract(MachineInstr &MI);
 
  LegalizeResult lowerInsert(MachineInstr &MI);
 
  LegalizeResult lowerSADDO_SSUBO(MachineInstr &MI);
 
  LegalizeResult lowerAddSubSatToMinMax(MachineInstr &MI);
 
  LegalizeResult lowerAddSubSatToAddoSubo(MachineInstr &MI);
 
  LegalizeResult lowerShlSat(MachineInstr &MI);
 
  LegalizeResult lowerBswap(MachineInstr &MI);
 
  LegalizeResult lowerBitreverse(MachineInstr &MI);
 
  LegalizeResult lowerReadWriteRegister(MachineInstr &MI);
 
  LegalizeResult lowerSMULH_UMULH(MachineInstr &MI);
 
  LegalizeResult lowerSelect(MachineInstr &MI);
 
  LegalizeResult lowerDIVREM(MachineInstr &MI);
 
  LegalizeResult lowerAbsToAddXor(MachineInstr &MI);
 
  LegalizeResult lowerAbsToMaxNeg(MachineInstr &MI);
 
  LegalizeResult lowerVectorReduction(MachineInstr &MI);
 
  LegalizeResult lowerMemcpyInline(MachineInstr &MI);
 
  LegalizeResult lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen = 0);
 
};
 
 
 
/// Helper function that creates a libcall to the given \p Name using the given
 
/// calling convention \p CC.
 
LegalizerHelper::LegalizeResult
 
createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
 
              const CallLowering::ArgInfo &Result,
 
              ArrayRef<CallLowering::ArgInfo> Args, CallingConv::ID CC);
 
 
 
/// Helper function that creates the given libcall.
 
LegalizerHelper::LegalizeResult
 
createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
 
              const CallLowering::ArgInfo &Result,
 
              ArrayRef<CallLowering::ArgInfo> Args);
 
 
 
/// Create a libcall to memcpy et al.
 
LegalizerHelper::LegalizeResult
 
createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
 
                 MachineInstr &MI, LostDebugLocObserver &LocObserver);
 
 
 
} // End namespace llvm.
 
 
 
#endif