//===- lib/CodeGen/DIE.h - DWARF Info Entries -------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Data structures for DWARF info entries.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_DIE_H
 
#define LLVM_CODEGEN_DIE_H
 
 
 
#include "llvm/ADT/FoldingSet.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/BinaryFormat/Dwarf.h"
 
#include "llvm/CodeGen/DwarfStringPoolEntry.h"
 
#include "llvm/Support/AlignOf.h"
 
#include "llvm/Support/Allocator.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <iterator>
 
#include <new>
 
#include <type_traits>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class AsmPrinter;
 
class DIE;
 
class DIEUnit;
 
class DwarfCompileUnit;
 
class MCExpr;
 
class MCSection;
 
class MCSymbol;
 
class raw_ostream;
 
 
 
//===--------------------------------------------------------------------===//
 
/// Dwarf abbreviation data, describes one attribute of a Dwarf abbreviation.
 
class DIEAbbrevData {
 
  /// Dwarf attribute code.
 
  dwarf::Attribute Attribute;
 
 
 
  /// Dwarf form code.
 
  dwarf::Form Form;
 
 
 
  /// Dwarf attribute value for DW_FORM_implicit_const
 
  int64_t Value = 0;
 
 
 
public:
 
  DIEAbbrevData(dwarf::Attribute A, dwarf::Form F)
 
      : Attribute(A), Form(F) {}
 
  DIEAbbrevData(dwarf::Attribute A, int64_t V)
 
      : Attribute(A), Form(dwarf::DW_FORM_implicit_const), Value(V) {}
 
 
 
  /// Accessors.
 
  /// @{
 
  dwarf::Attribute getAttribute() const { return Attribute; }
 
  dwarf::Form getForm() const { return Form; }
 
  int64_t getValue() const { return Value; }
 
  /// @}
 
 
 
  /// Used to gather unique data for the abbreviation folding set.
 
  void Profile(FoldingSetNodeID &ID) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// Dwarf abbreviation, describes the organization of a debug information
 
/// object.
 
class DIEAbbrev : public FoldingSetNode {
 
  /// Unique number for node.
 
  unsigned Number = 0;
 
 
 
  /// Dwarf tag code.
 
  dwarf::Tag Tag;
 
 
 
  /// Whether or not this node has children.
 
  ///
 
  /// This cheats a bit in all of the uses since the values in the standard
 
  /// are 0 and 1 for no children and children respectively.
 
  bool Children;
 
 
 
  /// Raw data bytes for abbreviation.
 
  SmallVector<DIEAbbrevData, 12> Data;
 
 
 
public:
 
  DIEAbbrev(dwarf::Tag T, bool C) : Tag(T), Children(C) {}
 
 
 
  /// Accessors.
 
  /// @{
 
  dwarf::Tag getTag() const { return Tag; }
 
  unsigned getNumber() const { return Number; }
 
  bool hasChildren() const { return Children; }
 
  const SmallVectorImpl<DIEAbbrevData> &getData() const { return Data; }
 
  void setChildrenFlag(bool hasChild) { Children = hasChild; }
 
  void setNumber(unsigned N) { Number = N; }
 
  /// @}
 
 
 
  /// Adds another set of attribute information to the abbreviation.
 
  void AddAttribute(dwarf::Attribute Attribute, dwarf::Form Form) {
 
    Data.push_back(DIEAbbrevData(Attribute, Form));
 
  }
 
 
 
  /// Adds attribute with DW_FORM_implicit_const value
 
  void AddImplicitConstAttribute(dwarf::Attribute Attribute, int64_t Value) {
 
    Data.push_back(DIEAbbrevData(Attribute, Value));
 
  }
 
 
 
  /// Used to gather unique data for the abbreviation folding set.
 
  void Profile(FoldingSetNodeID &ID) const;
 
 
 
  /// Print the abbreviation using the specified asm printer.
 
  void Emit(const AsmPrinter *AP) const;
 
 
 
  void print(raw_ostream &O) const;
 
  void dump() const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// Helps unique DIEAbbrev objects and assigns abbreviation numbers.
 
///
 
/// This class will unique the DIE abbreviations for a llvm::DIE object and
 
/// assign a unique abbreviation number to each unique DIEAbbrev object it
 
/// finds. The resulting collection of DIEAbbrev objects can then be emitted
 
/// into the .debug_abbrev section.
 
class DIEAbbrevSet {
 
  /// The bump allocator to use when creating DIEAbbrev objects in the uniqued
 
  /// storage container.
 
  BumpPtrAllocator &Alloc;
 
  /// FoldingSet that uniques the abbreviations.
 
  FoldingSet<DIEAbbrev> AbbreviationsSet;
 
  /// A list of all the unique abbreviations in use.
 
  std::vector<DIEAbbrev *> Abbreviations;
 
 
 
public:
 
  DIEAbbrevSet(BumpPtrAllocator &A) : Alloc(A) {}
 
  ~DIEAbbrevSet();
 
 
 
  /// Generate the abbreviation declaration for a DIE and return a pointer to
 
  /// the generated abbreviation.
 
  ///
 
  /// \param Die the debug info entry to generate the abbreviation for.
 
  /// \returns A reference to the uniqued abbreviation declaration that is
 
  /// owned by this class.
 
  DIEAbbrev &uniqueAbbreviation(DIE &Die);
 
 
 
  /// Print all abbreviations using the specified asm printer.
 
  void Emit(const AsmPrinter *AP, MCSection *Section) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// An integer value DIE.
 
///
 
class DIEInteger {
 
  uint64_t Integer;
 
 
 
public:
 
  explicit DIEInteger(uint64_t I) : Integer(I) {}
 
 
 
  /// Choose the best form for integer.
 
  static dwarf::Form BestForm(bool IsSigned, uint64_t Int) {
 
    if (IsSigned) {
 
      const int64_t SignedInt = Int;
 
      if ((char)Int == SignedInt)
 
        return dwarf::DW_FORM_data1;
 
      if ((short)Int == SignedInt)
 
        return dwarf::DW_FORM_data2;
 
      if ((int)Int == SignedInt)
 
        return dwarf::DW_FORM_data4;
 
    } else {
 
      if ((unsigned char)Int == Int)
 
        return dwarf::DW_FORM_data1;
 
      if ((unsigned short)Int == Int)
 
        return dwarf::DW_FORM_data2;
 
      if ((unsigned int)Int == Int)
 
        return dwarf::DW_FORM_data4;
 
    }
 
    return dwarf::DW_FORM_data8;
 
  }
 
 
 
  uint64_t getValue() const { return Integer; }
 
  void setValue(uint64_t Val) { Integer = Val; }
 
 
 
  void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// An expression DIE.
 
class DIEExpr {
 
  const MCExpr *Expr;
 
 
 
public:
 
  explicit DIEExpr(const MCExpr *E) : Expr(E) {}
 
 
 
  /// Get MCExpr.
 
  const MCExpr *getValue() const { return Expr; }
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A label DIE.
 
class DIELabel {
 
  const MCSymbol *Label;
 
 
 
public:
 
  explicit DIELabel(const MCSymbol *L) : Label(L) {}
 
 
 
  /// Get MCSymbol.
 
  const MCSymbol *getValue() const { return Label; }
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A BaseTypeRef DIE.
 
class DIEBaseTypeRef {
 
  const DwarfCompileUnit *CU;
 
  const uint64_t Index;
 
  static constexpr unsigned ULEB128PadSize = 4;
 
 
 
public:
 
  explicit DIEBaseTypeRef(const DwarfCompileUnit *TheCU, uint64_t Idx)
 
    : CU(TheCU), Index(Idx) {}
 
 
 
  /// EmitValue - Emit base type reference.
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  /// sizeOf - Determine size of the base type reference in bytes.
 
  unsigned sizeOf(const dwarf::FormParams &, dwarf::Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
  uint64_t getIndex() const { return Index; }
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A simple label difference DIE.
 
///
 
class DIEDelta {
 
  const MCSymbol *LabelHi;
 
  const MCSymbol *LabelLo;
 
 
 
public:
 
  DIEDelta(const MCSymbol *Hi, const MCSymbol *Lo) : LabelHi(Hi), LabelLo(Lo) {}
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A container for string pool string values.
 
///
 
/// This class is used with the DW_FORM_strp and DW_FORM_GNU_str_index forms.
 
class DIEString {
 
  DwarfStringPoolEntryRef S;
 
 
 
public:
 
  DIEString(DwarfStringPoolEntryRef S) : S(S) {}
 
 
 
  /// Grab the string out of the object.
 
  StringRef getString() const { return S.getString(); }
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A container for inline string values.
 
///
 
/// This class is used with the DW_FORM_string form.
 
class DIEInlineString {
 
  StringRef S;
 
 
 
public:
 
  template <typename Allocator>
 
  explicit DIEInlineString(StringRef Str, Allocator &A) : S(Str.copy(A)) {}
 
 
 
  ~DIEInlineString() = default;
 
 
 
  /// Grab the string out of the object.
 
  StringRef getString() const { return S; }
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &, dwarf::Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A pointer to another debug information entry.  An instance of this class can
 
/// also be used as a proxy for a debug information entry not yet defined
 
/// (ie. types.)
 
class DIEEntry {
 
  DIE *Entry;
 
 
 
public:
 
  DIEEntry() = delete;
 
  explicit DIEEntry(DIE &E) : Entry(&E) {}
 
 
 
  DIE &getEntry() const { return *Entry; }
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// Represents a pointer to a location list in the debug_loc
 
/// section.
 
class DIELocList {
 
  /// Index into the .debug_loc vector.
 
  size_t Index;
 
 
 
public:
 
  DIELocList(size_t I) : Index(I) {}
 
 
 
  /// Grab the current index out.
 
  size_t getValue() const { return Index; }
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A BaseTypeRef DIE.
 
class DIEAddrOffset {
 
  DIEInteger Addr;
 
  DIEDelta Offset;
 
 
 
public:
 
  explicit DIEAddrOffset(uint64_t Idx, const MCSymbol *Hi, const MCSymbol *Lo)
 
      : Addr(Idx), Offset(Hi, Lo) {}
 
 
 
  void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &FormParams, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A debug information entry value. Some of these roughly correlate
 
/// to DWARF attribute classes.
 
class DIEBlock;
 
class DIELoc;
 
class DIEValue {
 
public:
 
  enum Type {
 
    isNone,
 
#define HANDLE_DIEVALUE(T) is##T,
 
#include "llvm/CodeGen/DIEValue.def"
 
  };
 
 
 
private:
 
  /// Type of data stored in the value.
 
  Type Ty = isNone;
 
  dwarf::Attribute Attribute = (dwarf::Attribute)0;
 
  dwarf::Form Form = (dwarf::Form)0;
 
 
 
  /// Storage for the value.
 
  ///
 
  /// All values that aren't standard layout (or are larger than 8 bytes)
 
  /// should be stored by reference instead of by value.
 
  using ValTy =
 
      AlignedCharArrayUnion<DIEInteger, DIEString, DIEExpr, DIELabel,
 
                            DIEDelta *, DIEEntry, DIEBlock *, DIELoc *,
 
                            DIELocList, DIEBaseTypeRef *, DIEAddrOffset *>;
 
 
 
  static_assert(sizeof(ValTy) <= sizeof(uint64_t) ||
 
                    sizeof(ValTy) <= sizeof(void *),
 
                "Expected all large types to be stored via pointer");
 
 
 
  /// Underlying stored value.
 
  ValTy Val;
 
 
 
  template <class T> void construct(T V) {
 
    static_assert(std::is_standard_layout<T>::value ||
 
                      std::is_pointer<T>::value,
 
                  "Expected standard layout or pointer");
 
    new (reinterpret_cast<void *>(&Val)) T(V);
 
  }
 
 
 
  template <class T> T *get() { return reinterpret_cast<T *>(&Val); }
 
  template <class T> const T *get() const {
 
    return reinterpret_cast<const T *>(&Val);
 
  }
 
  template <class T> void destruct() { get<T>()->~T(); }
 
 
 
  /// Destroy the underlying value.
 
  ///
 
  /// This should get optimized down to a no-op.  We could skip it if we could
 
  /// add a static assert on \a std::is_trivially_copyable(), but we currently
 
  /// support versions of GCC that don't understand that.
 
  void destroyVal() {
 
    switch (Ty) {
 
    case isNone:
 
      return;
 
#define HANDLE_DIEVALUE_SMALL(T)                                               \
 
  case is##T:                                                                  \
 
    destruct<DIE##T>();                                                        \
 
    return;
 
#define HANDLE_DIEVALUE_LARGE(T)                                               \
 
  case is##T:                                                                  \
 
    destruct<const DIE##T *>();                                                \
 
    return;
 
#include "llvm/CodeGen/DIEValue.def"
 
    }
 
  }
 
 
 
  /// Copy the underlying value.
 
  ///
 
  /// This should get optimized down to a simple copy.  We need to actually
 
  /// construct the value, rather than calling memcpy, to satisfy strict
 
  /// aliasing rules.
 
  void copyVal(const DIEValue &X) {
 
    switch (Ty) {
 
    case isNone:
 
      return;
 
#define HANDLE_DIEVALUE_SMALL(T)                                               \
 
  case is##T:                                                                  \
 
    construct<DIE##T>(*X.get<DIE##T>());                                       \
 
    return;
 
#define HANDLE_DIEVALUE_LARGE(T)                                               \
 
  case is##T:                                                                  \
 
    construct<const DIE##T *>(*X.get<const DIE##T *>());                       \
 
    return;
 
#include "llvm/CodeGen/DIEValue.def"
 
    }
 
  }
 
 
 
public:
 
  DIEValue() = default;
 
 
 
  DIEValue(const DIEValue &X) : Ty(X.Ty), Attribute(X.Attribute), Form(X.Form) {
 
    copyVal(X);
 
  }
 
 
 
  DIEValue &operator=(const DIEValue &X) {
 
    destroyVal();
 
    Ty = X.Ty;
 
    Attribute = X.Attribute;
 
    Form = X.Form;
 
    copyVal(X);
 
    return *this;
 
  }
 
 
 
  ~DIEValue() { destroyVal(); }
 
 
 
#define HANDLE_DIEVALUE_SMALL(T)                                               \
 
  DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T &V)      \
 
      : Ty(is##T), Attribute(Attribute), Form(Form) {                          \
 
    construct<DIE##T>(V);                                                      \
 
  }
 
#define HANDLE_DIEVALUE_LARGE(T)                                               \
 
  DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T *V)      \
 
      : Ty(is##T), Attribute(Attribute), Form(Form) {                          \
 
    assert(V && "Expected valid value");                                       \
 
    construct<const DIE##T *>(V);                                              \
 
  }
 
#include "llvm/CodeGen/DIEValue.def"
 
 
 
  /// Accessors.
 
  /// @{
 
  Type getType() const { return Ty; }
 
  dwarf::Attribute getAttribute() const { return Attribute; }
 
  dwarf::Form getForm() const { return Form; }
 
  explicit operator bool() const { return Ty; }
 
  /// @}
 
 
 
#define HANDLE_DIEVALUE_SMALL(T)                                               \
 
  const DIE##T &getDIE##T() const {                                            \
 
    assert(getType() == is##T && "Expected " #T);                              \
 
    return *get<DIE##T>();                                                     \
 
  }
 
#define HANDLE_DIEVALUE_LARGE(T)                                               \
 
  const DIE##T &getDIE##T() const {                                            \
 
    assert(getType() == is##T && "Expected " #T);                              \
 
    return **get<const DIE##T *>();                                            \
 
  }
 
#include "llvm/CodeGen/DIEValue.def"
 
 
 
  /// Emit value via the Dwarf writer.
 
  void emitValue(const AsmPrinter *AP) const;
 
 
 
  /// Return the size of a value in bytes.
 
  unsigned sizeOf(const dwarf::FormParams &FormParams) const;
 
 
 
  void print(raw_ostream &O) const;
 
  void dump() const;
 
};
 
 
 
struct IntrusiveBackListNode {
 
  PointerIntPair<IntrusiveBackListNode *, 1> Next;
 
 
 
  IntrusiveBackListNode() : Next(this, true) {}
 
 
 
  IntrusiveBackListNode *getNext() const {
 
    return Next.getInt() ? nullptr : Next.getPointer();
 
  }
 
};
 
 
 
struct IntrusiveBackListBase {
 
  using Node = IntrusiveBackListNode;
 
 
 
  Node *Last = nullptr;
 
 
 
  bool empty() const { return !Last; }
 
 
 
  void push_back(Node &N) {
 
    assert(N.Next.getPointer() == &N && "Expected unlinked node");
 
    assert(N.Next.getInt() == true && "Expected unlinked node");
 
 
 
    if (Last) {
 
      N.Next = Last->Next;
 
      Last->Next.setPointerAndInt(&N, false);
 
    }
 
    Last = &N;
 
  }
 
 
 
  void push_front(Node &N) {
 
    assert(N.Next.getPointer() == &N && "Expected unlinked node");
 
    assert(N.Next.getInt() == true && "Expected unlinked node");
 
 
 
    if (Last) {
 
      N.Next.setPointerAndInt(Last->Next.getPointer(), false);
 
      Last->Next.setPointerAndInt(&N, true);
 
    } else {
 
      Last = &N;
 
    }
 
  }
 
};
 
 
 
template <class T> class IntrusiveBackList : IntrusiveBackListBase {
 
public:
 
  using IntrusiveBackListBase::empty;
 
 
 
  void push_back(T &N) { IntrusiveBackListBase::push_back(N); }
 
  void push_front(T &N) { IntrusiveBackListBase::push_front(N); }
 
  T &back() { return *static_cast<T *>(Last); }
 
  const T &back() const { return *static_cast<T *>(Last); }
 
  T &front() {
 
    return *static_cast<T *>(Last ? Last->Next.getPointer() : nullptr);
 
  }
 
  const T &front() const {
 
    return *static_cast<T *>(Last ? Last->Next.getPointer() : nullptr);
 
  }
 
 
 
  void takeNodes(IntrusiveBackList<T> &Other) {
 
    if (Other.empty())
 
      return;
 
 
 
    T *FirstNode = static_cast<T *>(Other.Last->Next.getPointer());
 
    T *IterNode = FirstNode;
 
    do {
 
      // Keep a pointer to the node and increment the iterator.
 
      T *TmpNode = IterNode;
 
      IterNode = static_cast<T *>(IterNode->Next.getPointer());
 
 
 
      // Unlink the node and push it back to this list.
 
      TmpNode->Next.setPointerAndInt(TmpNode, true);
 
      push_back(*TmpNode);
 
    } while (IterNode != FirstNode);
 
 
 
    Other.Last = nullptr;
 
  }
 
 
 
  class const_iterator;
 
  class iterator
 
      : public iterator_facade_base<iterator, std::forward_iterator_tag, T> {
 
    friend class const_iterator;
 
 
 
    Node *N = nullptr;
 
 
 
  public:
 
    iterator() = default;
 
    explicit iterator(T *N) : N(N) {}
 
 
 
    iterator &operator++() {
 
      N = N->getNext();
 
      return *this;
 
    }
 
 
 
    explicit operator bool() const { return N; }
 
    T &operator*() const { return *static_cast<T *>(N); }
 
 
 
    bool operator==(const iterator &X) const { return N == X.N; }
 
  };
 
 
 
  class const_iterator
 
      : public iterator_facade_base<const_iterator, std::forward_iterator_tag,
 
                                    const T> {
 
    const Node *N = nullptr;
 
 
 
  public:
 
    const_iterator() = default;
 
    // Placate MSVC by explicitly scoping 'iterator'.
 
    const_iterator(typename IntrusiveBackList<T>::iterator X) : N(X.N) {}
 
    explicit const_iterator(const T *N) : N(N) {}
 
 
 
    const_iterator &operator++() {
 
      N = N->getNext();
 
      return *this;
 
    }
 
 
 
    explicit operator bool() const { return N; }
 
    const T &operator*() const { return *static_cast<const T *>(N); }
 
 
 
    bool operator==(const const_iterator &X) const { return N == X.N; }
 
  };
 
 
 
  iterator begin() {
 
    return Last ? iterator(static_cast<T *>(Last->Next.getPointer())) : end();
 
  }
 
  const_iterator begin() const {
 
    return const_cast<IntrusiveBackList *>(this)->begin();
 
  }
 
  iterator end() { return iterator(); }
 
  const_iterator end() const { return const_iterator(); }
 
 
 
  static iterator toIterator(T &N) { return iterator(&N); }
 
  static const_iterator toIterator(const T &N) { return const_iterator(&N); }
 
};
 
 
 
/// A list of DIE values.
 
///
 
/// This is a singly-linked list, but instead of reversing the order of
 
/// insertion, we keep a pointer to the back of the list so we can push in
 
/// order.
 
///
 
/// There are two main reasons to choose a linked list over a customized
 
/// vector-like data structure.
 
///
 
///  1. For teardown efficiency, we want DIEs to be BumpPtrAllocated.  Using a
 
///     linked list here makes this way easier to accomplish.
 
///  2. Carrying an extra pointer per \a DIEValue isn't expensive.  45% of DIEs
 
///     have 2 or fewer values, and 90% have 5 or fewer.  A vector would be
 
///     over-allocated by 50% on average anyway, the same cost as the
 
///     linked-list node.
 
class DIEValueList {
 
  struct Node : IntrusiveBackListNode {
 
    DIEValue V;
 
 
 
    explicit Node(DIEValue V) : V(V) {}
 
  };
 
 
 
  using ListTy = IntrusiveBackList<Node>;
 
 
 
  ListTy List;
 
 
 
public:
 
  class const_value_iterator;
 
  class value_iterator
 
      : public iterator_adaptor_base<value_iterator, ListTy::iterator,
 
                                     std::forward_iterator_tag, DIEValue> {
 
    friend class const_value_iterator;
 
 
 
    using iterator_adaptor =
 
        iterator_adaptor_base<value_iterator, ListTy::iterator,
 
                              std::forward_iterator_tag, DIEValue>;
 
 
 
  public:
 
    value_iterator() = default;
 
    explicit value_iterator(ListTy::iterator X) : iterator_adaptor(X) {}
 
 
 
    explicit operator bool() const { return bool(wrapped()); }
 
    DIEValue &operator*() const { return wrapped()->V; }
 
  };
 
 
 
  class const_value_iterator : public iterator_adaptor_base<
 
                                   const_value_iterator, ListTy::const_iterator,
 
                                   std::forward_iterator_tag, const DIEValue> {
 
    using iterator_adaptor =
 
        iterator_adaptor_base<const_value_iterator, ListTy::const_iterator,
 
                              std::forward_iterator_tag, const DIEValue>;
 
 
 
  public:
 
    const_value_iterator() = default;
 
    const_value_iterator(DIEValueList::value_iterator X)
 
        : iterator_adaptor(X.wrapped()) {}
 
    explicit const_value_iterator(ListTy::const_iterator X)
 
        : iterator_adaptor(X) {}
 
 
 
    explicit operator bool() const { return bool(wrapped()); }
 
    const DIEValue &operator*() const { return wrapped()->V; }
 
  };
 
 
 
  using value_range = iterator_range<value_iterator>;
 
  using const_value_range = iterator_range<const_value_iterator>;
 
 
 
  value_iterator addValue(BumpPtrAllocator &Alloc, const DIEValue &V) {
 
    List.push_back(*new (Alloc) Node(V));
 
    return value_iterator(ListTy::toIterator(List.back()));
 
  }
 
  template <class T>
 
  value_iterator addValue(BumpPtrAllocator &Alloc, dwarf::Attribute Attribute,
 
                    dwarf::Form Form, T &&Value) {
 
    return addValue(Alloc, DIEValue(Attribute, Form, std::forward<T>(Value)));
 
  }
 
 
 
  /// Take ownership of the nodes in \p Other, and append them to the back of
 
  /// the list.
 
  void takeValues(DIEValueList &Other) { List.takeNodes(Other.List); }
 
 
 
  value_range values() {
 
    return make_range(value_iterator(List.begin()), value_iterator(List.end()));
 
  }
 
  const_value_range values() const {
 
    return make_range(const_value_iterator(List.begin()),
 
                      const_value_iterator(List.end()));
 
  }
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// A structured debug information entry.  Has an abbreviation which
 
/// describes its organization.
 
class DIE : IntrusiveBackListNode, public DIEValueList {
 
  friend class IntrusiveBackList<DIE>;
 
  friend class DIEUnit;
 
 
 
  /// Dwarf unit relative offset.
 
  unsigned Offset = 0;
 
  /// Size of instance + children.
 
  unsigned Size = 0;
 
  unsigned AbbrevNumber = ~0u;
 
  /// Dwarf tag code.
 
  dwarf::Tag Tag = (dwarf::Tag)0;
 
  /// Set to true to force a DIE to emit an abbreviation that says it has
 
  /// children even when it doesn't. This is used for unit testing purposes.
 
  bool ForceChildren = false;
 
  /// Children DIEs.
 
  IntrusiveBackList<DIE> Children;
 
 
 
  /// The owner is either the parent DIE for children of other DIEs, or a
 
  /// DIEUnit which contains this DIE as its unit DIE.
 
  PointerUnion<DIE *, DIEUnit *> Owner;
 
 
 
  explicit DIE(dwarf::Tag Tag) : Tag(Tag) {}
 
 
 
public:
 
  DIE() = delete;
 
  DIE(const DIE &RHS) = delete;
 
  DIE(DIE &&RHS) = delete;
 
  DIE &operator=(const DIE &RHS) = delete;
 
  DIE &operator=(const DIE &&RHS) = delete;
 
 
 
  static DIE *get(BumpPtrAllocator &Alloc, dwarf::Tag Tag) {
 
    return new (Alloc) DIE(Tag);
 
  }
 
 
 
  // Accessors.
 
  unsigned getAbbrevNumber() const { return AbbrevNumber; }
 
  dwarf::Tag getTag() const { return Tag; }
 
  /// Get the compile/type unit relative offset of this DIE.
 
  unsigned getOffset() const {
 
    // A real Offset can't be zero because the unit headers are at offset zero.
 
    assert(Offset && "Offset being queried before it's been computed.");
 
    return Offset;
 
  }
 
  unsigned getSize() const {
 
    // A real Size can't be zero because it includes the non-empty abbrev code.
 
    assert(Size && "Size being queried before it's been ocmputed.");
 
    return Size;
 
  }
 
  bool hasChildren() const { return ForceChildren || !Children.empty(); }
 
  void setForceChildren(bool B) { ForceChildren = B; }
 
 
 
  using child_iterator = IntrusiveBackList<DIE>::iterator;
 
  using const_child_iterator = IntrusiveBackList<DIE>::const_iterator;
 
  using child_range = iterator_range<child_iterator>;
 
  using const_child_range = iterator_range<const_child_iterator>;
 
 
 
  child_range children() {
 
    return make_range(Children.begin(), Children.end());
 
  }
 
  const_child_range children() const {
 
    return make_range(Children.begin(), Children.end());
 
  }
 
 
 
  DIE *getParent() const;
 
 
 
  /// Generate the abbreviation for this DIE.
 
  ///
 
  /// Calculate the abbreviation for this, which should be uniqued and
 
  /// eventually used to call \a setAbbrevNumber().
 
  DIEAbbrev generateAbbrev() const;
 
 
 
  /// Set the abbreviation number for this DIE.
 
  void setAbbrevNumber(unsigned I) { AbbrevNumber = I; }
 
 
 
  /// Get the absolute offset within the .debug_info or .debug_types section
 
  /// for this DIE.
 
  uint64_t getDebugSectionOffset() const;
 
 
 
  /// Compute the offset of this DIE and all its children.
 
  ///
 
  /// This function gets called just before we are going to generate the debug
 
  /// information and gives each DIE a chance to figure out its CU relative DIE
 
  /// offset, unique its abbreviation and fill in the abbreviation code, and
 
  /// return the unit offset that points to where the next DIE will be emitted
 
  /// within the debug unit section. After this function has been called for all
 
  /// DIE objects, the DWARF can be generated since all DIEs will be able to
 
  /// properly refer to other DIE objects since all DIEs have calculated their
 
  /// offsets.
 
  ///
 
  /// \param FormParams Used when calculating sizes.
 
  /// \param AbbrevSet the abbreviation used to unique DIE abbreviations.
 
  /// \param CUOffset the compile/type unit relative offset in bytes.
 
  /// \returns the offset for the DIE that follows this DIE within the
 
  /// current compile/type unit.
 
  unsigned computeOffsetsAndAbbrevs(const dwarf::FormParams &FormParams,
 
                                    DIEAbbrevSet &AbbrevSet, unsigned CUOffset);
 
 
 
  /// Climb up the parent chain to get the compile unit or type unit DIE that
 
  /// this DIE belongs to.
 
  ///
 
  /// \returns the compile or type unit DIE that owns this DIE, or NULL if
 
  /// this DIE hasn't been added to a unit DIE.
 
  const DIE *getUnitDie() const;
 
 
 
  /// Climb up the parent chain to get the compile unit or type unit that this
 
  /// DIE belongs to.
 
  ///
 
  /// \returns the DIEUnit that represents the compile or type unit that owns
 
  /// this DIE, or NULL if this DIE hasn't been added to a unit DIE.
 
  DIEUnit *getUnit() const;
 
 
 
  void setOffset(unsigned O) { Offset = O; }
 
  void setSize(unsigned S) { Size = S; }
 
 
 
  /// Add a child to the DIE.
 
  DIE &addChild(DIE *Child) {
 
    assert(!Child->getParent() && "Child should be orphaned");
 
    Child->Owner = this;
 
    Children.push_back(*Child);
 
    return Children.back();
 
  }
 
 
 
  DIE &addChildFront(DIE *Child) {
 
    assert(!Child->getParent() && "Child should be orphaned");
 
    Child->Owner = this;
 
    Children.push_front(*Child);
 
    return Children.front();
 
  }
 
 
 
  /// Find a value in the DIE with the attribute given.
 
  ///
 
  /// Returns a default-constructed DIEValue (where \a DIEValue::getType()
 
  /// gives \a DIEValue::isNone) if no such attribute exists.
 
  DIEValue findAttribute(dwarf::Attribute Attribute) const;
 
 
 
  void print(raw_ostream &O, unsigned IndentCount = 0) const;
 
  void dump() const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// Represents a compile or type unit.
 
class DIEUnit {
 
  /// The compile unit or type unit DIE. This variable must be an instance of
 
  /// DIE so that we can calculate the DIEUnit from any DIE by traversing the
 
  /// parent backchain and getting the Unit DIE, and then casting itself to a
 
  /// DIEUnit. This allows us to be able to find the DIEUnit for any DIE without
 
  /// having to store a pointer to the DIEUnit in each DIE instance.
 
  DIE Die;
 
  /// The section this unit will be emitted in. This may or may not be set to
 
  /// a valid section depending on the client that is emitting DWARF.
 
  MCSection *Section = nullptr;
 
  uint64_t Offset = 0; /// .debug_info or .debug_types absolute section offset.
 
protected:
 
  virtual ~DIEUnit() = default;
 
 
 
public:
 
  explicit DIEUnit(dwarf::Tag UnitTag);
 
  DIEUnit(const DIEUnit &RHS) = delete;
 
  DIEUnit(DIEUnit &&RHS) = delete;
 
  void operator=(const DIEUnit &RHS) = delete;
 
  void operator=(const DIEUnit &&RHS) = delete;
 
  /// Set the section that this DIEUnit will be emitted into.
 
  ///
 
  /// This function is used by some clients to set the section. Not all clients
 
  /// that emit DWARF use this section variable.
 
  void setSection(MCSection *Section) {
 
    assert(!this->Section);
 
    this->Section = Section;
 
  }
 
 
 
  virtual const MCSymbol *getCrossSectionRelativeBaseAddress() const {
 
    return nullptr;
 
  }
 
 
 
  /// Return the section that this DIEUnit will be emitted into.
 
  ///
 
  /// \returns Section pointer which can be NULL.
 
  MCSection *getSection() const { return Section; }
 
  void setDebugSectionOffset(uint64_t O) { Offset = O; }
 
  uint64_t getDebugSectionOffset() const { return Offset; }
 
  DIE &getUnitDie() { return Die; }
 
  const DIE &getUnitDie() const { return Die; }
 
};
 
 
 
struct BasicDIEUnit final : DIEUnit {
 
  explicit BasicDIEUnit(dwarf::Tag UnitTag) : DIEUnit(UnitTag) {}
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// DIELoc - Represents an expression location.
 
//
 
class DIELoc : public DIEValueList {
 
  mutable unsigned Size = 0; // Size in bytes excluding size header.
 
 
 
public:
 
  DIELoc() = default;
 
 
 
  /// Calculate the size of the location expression.
 
  unsigned computeSize(const dwarf::FormParams &FormParams) const;
 
 
 
  // TODO: move setSize() and Size to DIEValueList.
 
  void setSize(unsigned size) { Size = size; }
 
 
 
  /// BestForm - Choose the best form for data.
 
  ///
 
  dwarf::Form BestForm(unsigned DwarfVersion) const {
 
    if (DwarfVersion > 3)
 
      return dwarf::DW_FORM_exprloc;
 
    // Pre-DWARF4 location expressions were blocks and not exprloc.
 
    if ((unsigned char)Size == Size)
 
      return dwarf::DW_FORM_block1;
 
    if ((unsigned short)Size == Size)
 
      return dwarf::DW_FORM_block2;
 
    if ((unsigned int)Size == Size)
 
      return dwarf::DW_FORM_block4;
 
    return dwarf::DW_FORM_block;
 
  }
 
 
 
  void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// DIEBlock - Represents a block of values.
 
//
 
class DIEBlock : public DIEValueList {
 
  mutable unsigned Size = 0; // Size in bytes excluding size header.
 
 
 
public:
 
  DIEBlock() = default;
 
 
 
  /// Calculate the size of the location expression.
 
  unsigned computeSize(const dwarf::FormParams &FormParams) const;
 
 
 
  // TODO: move setSize() and Size to DIEValueList.
 
  void setSize(unsigned size) { Size = size; }
 
 
 
  /// BestForm - Choose the best form for data.
 
  ///
 
  dwarf::Form BestForm() const {
 
    if ((unsigned char)Size == Size)
 
      return dwarf::DW_FORM_block1;
 
    if ((unsigned short)Size == Size)
 
      return dwarf::DW_FORM_block2;
 
    if ((unsigned int)Size == Size)
 
      return dwarf::DW_FORM_block4;
 
    return dwarf::DW_FORM_block;
 
  }
 
 
 
  void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
 
  unsigned sizeOf(const dwarf::FormParams &, dwarf::Form Form) const;
 
 
 
  void print(raw_ostream &O) const;
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_DIE_H