//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file provides a helper that implements much of the TTI interface in
/// terms of the target-independent code generator and TargetLowering
/// interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
#define LLVM_CODEGEN_BASICTTIIMPL_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <optional>
#include <utility>
namespace llvm {
class Function;
class GlobalValue;
class LLVMContext;
class ScalarEvolution;
class SCEV;
class TargetMachine;
extern cl::opt<unsigned> PartialUnrollingThreshold;
/// Base class which can be used to help build a TTI implementation.
///
/// This class provides as much implementation of the TTI interface as is
/// possible using the target independent parts of the code generator.
///
/// In order to subclass it, your class must implement a getST() method to
/// return the subtarget, and a getTLI() method to return the target lowering.
/// We need these methods implemented in the derived class so that this class
/// doesn't have to duplicate storage for them.
template <typename T>
class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
private:
using BaseT = TargetTransformInfoImplCRTPBase<T>;
using TTI = TargetTransformInfo;
/// Helper function to access this as a T.
T *thisT() { return static_cast<T *>(this); }
/// Estimate a cost of Broadcast as an extract and sequence of insert
/// operations.
InstructionCost getBroadcastShuffleOverhead(FixedVectorType *VTy,
TTI::TargetCostKind CostKind) {
InstructionCost Cost = 0;
// Broadcast cost is equal to the cost of extracting the zero'th element
// plus the cost of inserting it into every element of the result vector.
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
CostKind, 0, nullptr, nullptr);
for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
CostKind, i, nullptr, nullptr);
}
return Cost;
}
/// Estimate a cost of shuffle as a sequence of extract and insert
/// operations.
InstructionCost getPermuteShuffleOverhead(FixedVectorType *VTy,
TTI::TargetCostKind CostKind) {
InstructionCost Cost = 0;
// Shuffle cost is equal to the cost of extracting element from its argument
// plus the cost of inserting them onto the result vector.
// e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
// index 0 of first vector, index 1 of second vector,index 2 of first
// vector and finally index 3 of second vector and insert them at index
// <0,1,2,3> of result vector.
for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
CostKind, i, nullptr, nullptr);
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
CostKind, i, nullptr, nullptr);
}
return Cost;
}
/// Estimate a cost of subvector extraction as a sequence of extract and
/// insert operations.
InstructionCost getExtractSubvectorOverhead(VectorType *VTy,
TTI::TargetCostKind CostKind,
int Index,
FixedVectorType *SubVTy) {
assert(VTy && SubVTy &&
"Can only extract subvectors from vectors");
int NumSubElts = SubVTy->getNumElements();
assert((!isa<FixedVectorType>(VTy) ||
(Index + NumSubElts) <=
(int)cast<FixedVectorType>(VTy)->getNumElements()) &&
"SK_ExtractSubvector index out of range");
InstructionCost Cost = 0;
// Subvector extraction cost is equal to the cost of extracting element from
// the source type plus the cost of inserting them into the result vector
// type.
for (int i = 0; i != NumSubElts; ++i) {
Cost +=
thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
CostKind, i + Index, nullptr, nullptr);
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy,
CostKind, i, nullptr, nullptr);
}
return Cost;
}
/// Estimate a cost of subvector insertion as a sequence of extract and
/// insert operations.
InstructionCost getInsertSubvectorOverhead(VectorType *VTy,
TTI::TargetCostKind CostKind,
int Index,
FixedVectorType *SubVTy) {
assert(VTy && SubVTy &&
"Can only insert subvectors into vectors");
int NumSubElts = SubVTy->getNumElements();
assert((!isa<FixedVectorType>(VTy) ||
(Index + NumSubElts) <=
(int)cast<FixedVectorType>(VTy)->getNumElements()) &&
"SK_InsertSubvector index out of range");
InstructionCost Cost = 0;
// Subvector insertion cost is equal to the cost of extracting element from
// the source type plus the cost of inserting them into the result vector
// type.
for (int i = 0; i != NumSubElts; ++i) {
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy,
CostKind, i, nullptr, nullptr);
Cost +=
thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, CostKind,
i + Index, nullptr, nullptr);
}
return Cost;
}
/// Local query method delegates up to T which *must* implement this!
const TargetSubtargetInfo *getST() const {
return static_cast<const T *>(this)->getST();
}
/// Local query method delegates up to T which *must* implement this!
const TargetLoweringBase *getTLI() const {
return static_cast<const T *>(this)->getTLI();
}
static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
switch (M) {
case TTI::MIM_Unindexed:
return ISD::UNINDEXED;
case TTI::MIM_PreInc:
return ISD::PRE_INC;
case TTI::MIM_PreDec:
return ISD::PRE_DEC;
case TTI::MIM_PostInc:
return ISD::POST_INC;
case TTI::MIM_PostDec:
return ISD::POST_DEC;
}
llvm_unreachable("Unexpected MemIndexedMode");
}
InstructionCost getCommonMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
Align Alignment,
bool VariableMask,
bool IsGatherScatter,
TTI::TargetCostKind CostKind) {
// We cannot scalarize scalable vectors, so return Invalid.
if (isa<ScalableVectorType>(DataTy))
return InstructionCost::getInvalid();
auto *VT = cast<FixedVectorType>(DataTy);
// Assume the target does not have support for gather/scatter operations
// and provide a rough estimate.
//
// First, compute the cost of the individual memory operations.
InstructionCost AddrExtractCost =
IsGatherScatter
? getVectorInstrCost(Instruction::ExtractElement,
FixedVectorType::get(
PointerType::get(VT->getElementType(), 0),
VT->getNumElements()),
CostKind, -1, nullptr, nullptr)
: 0;
InstructionCost LoadCost =
VT->getNumElements() *
(AddrExtractCost +
getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind));
// Next, compute the cost of packing the result in a vector.
InstructionCost PackingCost =
getScalarizationOverhead(VT, Opcode != Instruction::Store,
Opcode == Instruction::Store, CostKind);
InstructionCost ConditionalCost = 0;
if (VariableMask) {
// Compute the cost of conditionally executing the memory operations with
// variable masks. This includes extracting the individual conditions, a
// branches and PHIs to combine the results.
// NOTE: Estimating the cost of conditionally executing the memory
// operations accurately is quite difficult and the current solution
// provides a very rough estimate only.
ConditionalCost =
VT->getNumElements() *
(getVectorInstrCost(
Instruction::ExtractElement,
FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()),
VT->getNumElements()),
CostKind, -1, nullptr, nullptr) +
getCFInstrCost(Instruction::Br, CostKind) +
getCFInstrCost(Instruction::PHI, CostKind));
}
return LoadCost + PackingCost + ConditionalCost;
}
protected:
explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
: BaseT(DL) {}
virtual ~BasicTTIImplBase() = default;
using TargetTransformInfoImplBase::DL;
public:
/// \name Scalar TTI Implementations
/// @{
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
unsigned AddressSpace, Align Alignment,
unsigned *Fast) const {
EVT E = EVT::getIntegerVT(Context, BitWidth);
return getTLI()->allowsMisalignedMemoryAccesses(
E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
}
bool hasBranchDivergence() { return false; }
bool useGPUDivergenceAnalysis() { return false; }
bool isSourceOfDivergence(const Value *V) { return false; }
bool isAlwaysUniform(const Value *V) { return false; }
unsigned getFlatAddressSpace() {
// Return an invalid address space.
return -1;
}
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
return false;
}
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
}
unsigned getAssumedAddrSpace(const Value *V) const {
return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
}
bool isSingleThreaded() const {
return getTLI()->getTargetMachine().Options.ThreadModel ==
ThreadModel::Single;
}
std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const {
return getTLI()->getTargetMachine().getPredicatedAddrSpace(V);
}
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const {
return nullptr;
}
bool isLegalAddImmediate(int64_t imm) {
return getTLI()->isLegalAddImmediate(imm);
}
bool isLegalICmpImmediate(int64_t imm) {
return getTLI()->isLegalICmpImmediate(imm);
}
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace, Instruction *I = nullptr) {
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
}
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
Type *ScalarValTy) const {
auto &&IsSupportedByTarget = [this, ScalarMemTy, ScalarValTy](unsigned VF) {
auto *SrcTy = FixedVectorType::get(ScalarMemTy, VF / 2);
EVT VT = getTLI()->getValueType(DL, SrcTy);
if (getTLI()->isOperationLegal(ISD::STORE, VT) ||
getTLI()->isOperationCustom(ISD::STORE, VT))
return true;
EVT ValVT =
getTLI()->getValueType(DL, FixedVectorType::get(ScalarValTy, VF / 2));
EVT LegalizedVT =
getTLI()->getTypeToTransformTo(ScalarMemTy->getContext(), VT);
return getTLI()->isTruncStoreLegal(LegalizedVT, ValVT);
};
while (VF > 2 && IsSupportedByTarget(VF))
VF /= 2;
return VF;
}
bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
const DataLayout &DL) const {
EVT VT = getTLI()->getValueType(DL, Ty);
return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
}
bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
const DataLayout &DL) const {
EVT VT = getTLI()->getValueType(DL, Ty);
return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
}
bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
}
bool isNumRegsMajorCostOfLSR() {
return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR();
}
bool isProfitableLSRChainElement(Instruction *I) {
return TargetTransformInfoImplBase::isProfitableLSRChainElement(I);
}
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale, unsigned AddrSpace) {
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
return 0;
return -1;
}
bool isTruncateFree(Type *Ty1, Type *Ty2) {
return getTLI()->isTruncateFree(Ty1, Ty2);
}
bool isProfitableToHoist(Instruction *I) {
return getTLI()->isProfitableToHoist(I);
}
bool useAA() const { return getST()->useAA(); }
bool isTypeLegal(Type *Ty) {
EVT VT = getTLI()->getValueType(DL, Ty);
return getTLI()->isTypeLegal(VT);
}
unsigned getRegUsageForType(Type *Ty) {
EVT ETy = getTLI()->getValueType(DL, Ty);
return getTLI()->getNumRegisters(Ty->getContext(), ETy);
}
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) {
return BaseT::getGEPCost(PointeeType, Ptr, Operands, CostKind);
}
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JumpTableSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) {
/// Try to find the estimated number of clusters. Note that the number of
/// clusters identified in this function could be different from the actual
/// numbers found in lowering. This function ignore switches that are
/// lowered with a mix of jump table / bit test / BTree. This function was
/// initially intended to be used when estimating the cost of switch in
/// inline cost heuristic, but it's a generic cost model to be used in other
/// places (e.g., in loop unrolling).
unsigned N = SI.getNumCases();
const TargetLoweringBase *TLI = getTLI();
const DataLayout &DL = this->getDataLayout();
JumpTableSize = 0;
bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
// Early exit if both a jump table and bit test are not allowed.
if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
return N;
APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
APInt MinCaseVal = MaxCaseVal;
for (auto CI : SI.cases()) {
const APInt &CaseVal = CI.getCaseValue()->getValue();
if (CaseVal.sgt(MaxCaseVal))
MaxCaseVal = CaseVal;
if (CaseVal.slt(MinCaseVal))
MinCaseVal = CaseVal;
}
// Check if suitable for a bit test
if (N <= DL.getIndexSizeInBits(0u)) {
SmallPtrSet<const BasicBlock *, 4> Dests;
for (auto I : SI.cases())
Dests.insert(I.getCaseSuccessor());
if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
DL))
return 1;
}
// Check if suitable for a jump table.
if (IsJTAllowed) {
if (N < 2 || N < TLI->getMinimumJumpTableEntries())
return N;
uint64_t Range =
(MaxCaseVal - MinCaseVal)
.getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
// Check whether a range of clusters is dense enough for a jump table
if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
JumpTableSize = Range;
return 1;
}
}
return N;
}
bool shouldBuildLookupTables() {
const TargetLoweringBase *TLI = getTLI();
return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
bool shouldBuildRelLookupTables() const {
const TargetMachine &TM = getTLI()->getTargetMachine();
// If non-PIC mode, do not generate a relative lookup table.
if (!TM.isPositionIndependent())
return false;
/// Relative lookup table entries consist of 32-bit offsets.
/// Do not generate relative lookup tables for large code models
/// in 64-bit achitectures where 32-bit offsets might not be enough.
if (TM.getCodeModel() == CodeModel::Medium ||
TM.getCodeModel() == CodeModel::Large)
return false;
Triple TargetTriple = TM.getTargetTriple();
if (!TargetTriple.isArch64Bit())
return false;
// TODO: Triggers issues on aarch64 on darwin, so temporarily disable it
// there.
if (TargetTriple.getArch() == Triple::aarch64 && TargetTriple.isOSDarwin())
return false;
return true;
}
bool haveFastSqrt(Type *Ty) {
const TargetLoweringBase *TLI = getTLI();
EVT VT = TLI->getValueType(DL, Ty);
return TLI->isTypeLegal(VT) &&
TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
}
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
return true;
}
InstructionCost getFPOpCost(Type *Ty) {
// Check whether FADD is available, as a proxy for floating-point in
// general.
const TargetLoweringBase *TLI = getTLI();
EVT VT = TLI->getValueType(DL, Ty);
if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
return TargetTransformInfo::TCC_Basic;
return TargetTransformInfo::TCC_Expensive;
}
unsigned getInliningThresholdMultiplier() { return 1; }
unsigned adjustInliningThreshold(const CallBase *CB) { return 0; }
int getInlinerVectorBonusPercent() { return 150; }
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// This unrolling functionality is target independent, but to provide some
// motivation for its intended use, for x86:
// According to the Intel 64 and IA-32 Architectures Optimization Reference
// Manual, Intel Core models and later have a loop stream detector (and
// associated uop queue) that can benefit from partial unrolling.
// The relevant requirements are:
// - The loop must have no more than 4 (8 for Nehalem and later) branches
// taken, and none of them may be calls.
// - The loop can have no more than 18 (28 for Nehalem and later) uops.
// According to the Software Optimization Guide for AMD Family 15h
// Processors, models 30h-4fh (Steamroller and later) have a loop predictor
// and loop buffer which can benefit from partial unrolling.
// The relevant requirements are:
// - The loop must have fewer than 16 branches
// - The loop must have less than 40 uops in all executed loop branches
// The number of taken branches in a loop is hard to estimate here, and
// benchmarking has revealed that it is better not to be conservative when
// estimating the branch count. As a result, we'll ignore the branch limits
// until someone finds a case where it matters in practice.
unsigned MaxOps;
const TargetSubtargetInfo *ST = getST();
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
MaxOps = PartialUnrollingThreshold;
else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
else
return;
// Scan the loop: don't unroll loops with calls.
for (BasicBlock *BB : L->blocks()) {
for (Instruction &I : *BB) {
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!thisT()->isLoweredToCall(F))
continue;
}
if (ORE) {
ORE->emit([&]() {
return OptimizationRemark("TTI", "DontUnroll", L->getStartLoc(),
L->getHeader())
<< "advising against unrolling the loop because it "
"contains a "
<< ore::NV("Call", &I);
});
}
return;
}
}
}
// Enable runtime and partial unrolling up to the specified size.
// Enable using trip count upper bound to unroll loops.
UP.Partial = UP.Runtime = UP.UpperBound = true;
UP.PartialThreshold = MaxOps;
// Avoid unrolling when optimizing for size.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
// Set number of instructions optimized when "back edge"
// becomes "fall through" to default value of 2.
UP.BEInsns = 2;
}
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
PP.PeelCount = 0;
PP.AllowPeeling = true;
PP.AllowLoopNestsPeeling = false;
PP.PeelProfiledIterations = true;
}
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC,
TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) {
return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
}
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
LoopVectorizationLegality *LVL,
InterleavedAccessInfo *IAI) {
return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
}
PredicationStyle emitGetActiveLaneMask() {
return BaseT::emitGetActiveLaneMask();
}
std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) {
return BaseT::instCombineIntrinsic(IC, II);
}
std::optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) {
return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
KnownBitsComputed);
}
std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) {
return BaseT::simplifyDemandedVectorEltsIntrinsic(
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
SimplifyAndSetOp);
}
virtual std::optional<unsigned>
getCacheSize(TargetTransformInfo::CacheLevel Level) const {
return std::optional<unsigned>(
getST()->getCacheSize(static_cast<unsigned>(Level)));
}
virtual std::optional<unsigned>
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
std::optional<unsigned> TargetResult =
getST()->getCacheAssociativity(static_cast<unsigned>(Level));
if (TargetResult)
return TargetResult;
return BaseT::getCacheAssociativity(Level);
}
virtual unsigned getCacheLineSize() const {
return getST()->getCacheLineSize();
}
virtual unsigned getPrefetchDistance() const {
return getST()->getPrefetchDistance();
}
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) const {
return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
NumPrefetches, HasCall);
}
virtual unsigned getMaxPrefetchIterationsAhead() const {
return getST()->getMaxPrefetchIterationsAhead();
}
virtual bool enableWritePrefetching() const {
return getST()->enableWritePrefetching();
}
virtual bool shouldPrefetchAddressSpace(unsigned AS) const {
return getST()->shouldPrefetchAddressSpace(AS);
}
/// @}
/// \name Vector TTI Implementations
/// @{
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
return TypeSize::getFixed(32);
}
std::optional<unsigned> getMaxVScale() const { return std::nullopt; }
std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; }
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the demanded result elements need to be inserted and/or
/// extracted from vectors.
InstructionCost getScalarizationOverhead(VectorType *InTy,
const APInt &DemandedElts,
bool Insert, bool Extract,
TTI::TargetCostKind CostKind) {
/// FIXME: a bitfield is not a reasonable abstraction for talking about
/// which elements are needed from a scalable vector
if (isa<ScalableVectorType>(InTy))
return InstructionCost::getInvalid();
auto *Ty = cast<FixedVectorType>(InTy);
assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
"Vector size mismatch");
InstructionCost Cost = 0;
for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
if (!DemandedElts[i])
continue;
if (Insert)
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty,
CostKind, i, nullptr, nullptr);
if (Extract)
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
CostKind, i, nullptr, nullptr);
}
return Cost;
}
/// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert,
bool Extract,
TTI::TargetCostKind CostKind) {
if (isa<ScalableVectorType>(InTy))
return InstructionCost::getInvalid();
auto *Ty = cast<FixedVectorType>(InTy);
APInt DemandedElts = APInt::getAllOnes(Ty->getNumElements());
return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
CostKind);
}
/// Estimate the overhead of scalarizing an instructions unique
/// non-constant operands. The (potentially vector) types to use for each of
/// argument are passes via Tys.
InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) {
assert(Args.size() == Tys.size() && "Expected matching Args and Tys");
InstructionCost Cost = 0;
SmallPtrSet<const Value*, 4> UniqueOperands;
for (int I = 0, E = Args.size(); I != E; I++) {
// Disregard things like metadata arguments.
const Value *A = Args[I];
Type *Ty = Tys[I];
if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
!Ty->isPtrOrPtrVectorTy())
continue;
if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
if (auto *VecTy = dyn_cast<VectorType>(Ty))
Cost += getScalarizationOverhead(VecTy, /*Insert*/ false,
/*Extract*/ true, CostKind);
}
}
return Cost;
}
/// Estimate the overhead of scalarizing the inputs and outputs of an
/// instruction, with return type RetTy and arguments Args of type Tys. If
/// Args are unknown (empty), then the cost associated with one argument is
/// added as a heuristic.
InstructionCost getScalarizationOverhead(VectorType *RetTy,
ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) {
InstructionCost Cost = getScalarizationOverhead(
RetTy, /*Insert*/ true, /*Extract*/ false, CostKind);
if (!Args.empty())
Cost += getOperandsScalarizationOverhead(Args, Tys, CostKind);
else
// When no information on arguments is provided, we add the cost
// associated with one argument as a heuristic.
Cost += getScalarizationOverhead(RetTy, /*Insert*/ false,
/*Extract*/ true, CostKind);
return Cost;
}
/// Estimate the cost of type-legalization and the legalized type.
std::pair<InstructionCost, MVT> getTypeLegalizationCost(Type *Ty) const {
LLVMContext &C = Ty->getContext();
EVT MTy = getTLI()->getValueType(DL, Ty);
InstructionCost Cost = 1;
// We keep legalizing the type until we find a legal kind. We assume that
// the only operation that costs anything is the split. After splitting
// we need to handle two types.
while (true) {
TargetLoweringBase::LegalizeKind LK = getTLI()->getTypeConversion(C, MTy);
if (LK.first == TargetLoweringBase::TypeScalarizeScalableVector) {
// Ensure we return a sensible simple VT here, since many callers of
// this function require it.
MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
return std::make_pair(InstructionCost::getInvalid(), VT);
}
if (LK.first == TargetLoweringBase::TypeLegal)
return std::make_pair(Cost, MTy.getSimpleVT());
if (LK.first == TargetLoweringBase::TypeSplitVector ||
LK.first == TargetLoweringBase::TypeExpandInteger)
Cost *= 2;
// Do not loop with f128 type.
if (MTy == LK.second)
return std::make_pair(Cost, MTy.getSimpleVT());
// Keep legalizing the type.
MTy = LK.second;
}
}
unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr) {
// Check if any of the operands are vector operands.
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
Opd1Info, Opd2Info,
Args, CxtI);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
bool IsFloat = Ty->isFPOrFPVectorTy();
// Assume that floating point arithmetic operations cost twice as much as
// integer operations.
InstructionCost OpCost = (IsFloat ? 2 : 1);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
// TODO: Once we have extract/insert subvector cost we need to use them.
return LT.first * OpCost;
}
if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered, then assume that the code is twice
// as expensive.
return LT.first * 2 * OpCost;
}
// An 'Expand' of URem and SRem is special because it may default
// to expanding the operation into a sequence of sub-operations
// i.e. X % Y -> X-(X/Y)*Y.
if (ISD == ISD::UREM || ISD == ISD::SREM) {
bool IsSigned = ISD == ISD::SREM;
if (TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIVREM : ISD::UDIVREM,
LT.second) ||
TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIV : ISD::UDIV,
LT.second)) {
unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv;
InstructionCost DivCost = thisT()->getArithmeticInstrCost(
DivOpc, Ty, CostKind, Opd1Info, Opd2Info);
InstructionCost MulCost =
thisT()->getArithmeticInstrCost(Instruction::Mul, Ty, CostKind);
InstructionCost SubCost =
thisT()->getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
return DivCost + MulCost + SubCost;
}
}
// We cannot scalarize scalable vectors, so return Invalid.
if (isa<ScalableVectorType>(Ty))
return InstructionCost::getInvalid();
// Else, assume that we need to scalarize this op.
// TODO: If one of the types get legalized by splitting, handle this
// similarly to what getCastInstrCost() does.
if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
InstructionCost Cost = thisT()->getArithmeticInstrCost(
Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
Args, CxtI);
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
SmallVector<Type *> Tys(Args.size(), Ty);
return getScalarizationOverhead(VTy, Args, Tys, CostKind) +
VTy->getNumElements() * Cost;
}
// We don't know anything about this scalar instruction.
return OpCost;
}
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind,
ArrayRef<int> Mask) const {
int Limit = Mask.size() * 2;
if (Mask.empty() ||
// Extra check required by isSingleSourceMaskImpl function (called by
// ShuffleVectorInst::isSingleSourceMask).
any_of(Mask, [Limit](int I) { return I >= Limit; }))
return Kind;
int Index;
switch (Kind) {
case TTI::SK_PermuteSingleSrc:
if (ShuffleVectorInst::isReverseMask(Mask))
return TTI::SK_Reverse;
if (ShuffleVectorInst::isZeroEltSplatMask(Mask))
return TTI::SK_Broadcast;
break;
case TTI::SK_PermuteTwoSrc:
if (ShuffleVectorInst::isSelectMask(Mask))
return TTI::SK_Select;
if (ShuffleVectorInst::isTransposeMask(Mask))
return TTI::SK_Transpose;
if (ShuffleVectorInst::isSpliceMask(Mask, Index))
return TTI::SK_Splice;
break;
case TTI::SK_Select:
case TTI::SK_Reverse:
case TTI::SK_Broadcast:
case TTI::SK_Transpose:
case TTI::SK_InsertSubvector:
case TTI::SK_ExtractSubvector:
case TTI::SK_Splice:
break;
}
return Kind;
}
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask,
TTI::TargetCostKind CostKind, int Index,
VectorType *SubTp,
ArrayRef<const Value *> Args = std::nullopt) {
switch (improveShuffleKindFromMask(Kind, Mask)) {
case TTI::SK_Broadcast:
if (auto *FVT = dyn_cast<FixedVectorType>(Tp))
return getBroadcastShuffleOverhead(FVT, CostKind);
return InstructionCost::getInvalid();
case TTI::SK_Select:
case TTI::SK_Splice:
case TTI::SK_Reverse:
case TTI::SK_Transpose:
case TTI::SK_PermuteSingleSrc:
case TTI::SK_PermuteTwoSrc:
if (auto *FVT = dyn_cast<FixedVectorType>(Tp))
return getPermuteShuffleOverhead(FVT, CostKind);
return InstructionCost::getInvalid();
case TTI::SK_ExtractSubvector:
return getExtractSubvectorOverhead(Tp, CostKind, Index,
cast<FixedVectorType>(SubTp));
case TTI::SK_InsertSubvector:
return getInsertSubvectorOverhead(Tp, CostKind, Index,
cast<FixedVectorType>(SubTp));
}
llvm_unreachable("Unknown TTI::ShuffleKind");
}
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0)
return 0;
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
TypeSize SrcSize = SrcLT.second.getSizeInBits();
TypeSize DstSize = DstLT.second.getSizeInBits();
bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
switch (Opcode) {
default:
break;
case Instruction::Trunc:
// Check for NOOP conversions.
if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
return 0;
[[fallthrough]];
case Instruction::BitCast:
// Bitcast between types that are legalized to the same type are free and
// assume int to/from ptr of the same size is also free.
if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
SrcSize == DstSize)
return 0;
break;
case Instruction::FPExt:
if (I && getTLI()->isExtFree(I))
return 0;
break;
case Instruction::ZExt:
if (TLI->isZExtFree(SrcLT.second, DstLT.second))
return 0;
[[fallthrough]];
case Instruction::SExt:
if (I && getTLI()->isExtFree(I))
return 0;
// If this is a zext/sext of a load, return 0 if the corresponding
// extending load exists on target and the result type is legal.
if (CCH == TTI::CastContextHint::Normal) {
EVT ExtVT = EVT::getEVT(Dst);
EVT LoadVT = EVT::getEVT(Src);
unsigned LType =
((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
if (DstLT.first == SrcLT.first &&
TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
return 0;
}
break;
case Instruction::AddrSpaceCast:
if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
Dst->getPointerAddressSpace()))
return 0;
break;
}
auto *SrcVTy = dyn_cast<VectorType>(Src);
auto *DstVTy = dyn_cast<VectorType>(Dst);
// If the cast is marked as legal (or promote) then assume low cost.
if (SrcLT.first == DstLT.first &&
TLI->isOperationLegalOrPromote(ISD, DstLT.second))
return SrcLT.first;
// Handle scalar conversions.
if (!SrcVTy && !DstVTy) {
// Just check the op cost. If the operation is legal then assume it costs
// 1.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return 1;
// Assume that illegal scalar instruction are expensive.
return 4;
}
// Check vector-to-vector casts.
if (DstVTy && SrcVTy) {
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
// Assume that Zext is done using AND.
if (Opcode == Instruction::ZExt)
return SrcLT.first;
// Assume that sext is done using SHL and SRA.
if (Opcode == Instruction::SExt)
return SrcLT.first * 2;
// Just check the op cost. If the operation is legal then assume it
// costs
// 1 and multiply by the type-legalization overhead.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return SrcLT.first * 1;
}
// If we are legalizing by splitting, query the concrete TTI for the cost
// of casting the original vector twice. We also need to factor in the
// cost of the split itself. Count that as 1, to be consistent with
// getTypeLegalizationCost().
bool SplitSrc =
TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
TargetLowering::TypeSplitVector;
bool SplitDst =
TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
TargetLowering::TypeSplitVector;
if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isVector() &&
DstVTy->getElementCount().isVector()) {
Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
T *TTI = static_cast<T *>(this);
// If both types need to be split then the split is free.
InstructionCost SplitCost =
(!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
return SplitCost +
(2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
CostKind, I));
}
// Scalarization cost is Invalid, can't assume any num elements.
if (isa<ScalableVectorType>(DstVTy))
return InstructionCost::getInvalid();
// In other cases where the source or destination are illegal, assume
// the operation will get scalarized.
unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
InstructionCost Cost = thisT()->getCastInstrCost(
Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(DstVTy, /*Insert*/ true, /*Extract*/ true,
CostKind) +
Num * Cost;
}
// We already handled vector-to-vector and scalar-to-scalar conversions.
// This
// is where we handle bitcast between vectors and scalars. We need to assume
// that the conversion is scalarized in one way or another.
if (Opcode == Instruction::BitCast) {
// Illegal bitcasts are done by storing and loading from a stack slot.
return (SrcVTy ? getScalarizationOverhead(SrcVTy, /*Insert*/ false,
/*Extract*/ true, CostKind)
: 0) +
(DstVTy ? getScalarizationOverhead(DstVTy, /*Insert*/ true,
/*Extract*/ false, CostKind)
: 0);
}
llvm_unreachable("Unhandled cast");
}
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy, unsigned Index) {
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
CostKind, Index, nullptr, nullptr) +
thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
TTI::CastContextHint::None, CostKind);
}
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
return BaseT::getCFInstrCost(Opcode, CostKind, I);
}
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// TODO: Handle other cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
// Selects on vectors are actually vector selects.
if (ISD == ISD::SELECT) {
assert(CondTy && "CondTy must exist");
if (CondTy->isVectorTy())
ISD = ISD::VSELECT;
}
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
!TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
// Otherwise, assume that the cast is scalarized.
// TODO: If one of the types get legalized by splitting, handle this
// similarly to what getCastInstrCost() does.
if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
if (isa<ScalableVectorType>(ValTy))
return InstructionCost::getInvalid();
unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
if (CondTy)
CondTy = CondTy->getScalarType();
InstructionCost Cost = thisT()->getCmpSelInstrCost(
Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I);
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(ValVTy, /*Insert*/ true,
/*Extract*/ false, CostKind) +
Num * Cost;
}
// Unknown scalar opcode.
return 1;
}
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0, Value *Op1) {
return getRegUsageForType(Val->getScalarType());
}
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index) {
Value *Op0 = nullptr;
Value *Op1 = nullptr;
if (auto *IE = dyn_cast<InsertElementInst>(&I)) {
Op0 = IE->getOperand(0);
Op1 = IE->getOperand(1);
}
return thisT()->getVectorInstrCost(I.getOpcode(), Val, CostKind, Index, Op0,
Op1);
}
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind) {
assert(DemandedDstElts.getBitWidth() == (unsigned)VF * ReplicationFactor &&
"Unexpected size of DemandedDstElts.");
InstructionCost Cost;
auto *SrcVT = FixedVectorType::get(EltTy, VF);
auto *ReplicatedVT = FixedVectorType::get(EltTy, VF * ReplicationFactor);
// The Mask shuffling cost is extract all the elements of the Mask
// and insert each of them Factor times into the wide vector:
//
// E.g. an interleaved group with factor 3:
// %mask = icmp ult <8 x i32> %vec1, %vec2
// %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
// <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
// The cost is estimated as extract all mask elements from the <8xi1> mask
// vector and insert them factor times into the <24xi1> shuffled mask
// vector.
APInt DemandedSrcElts = APIntOps::ScaleBitMask(DemandedDstElts, VF);
Cost += thisT()->getScalarizationOverhead(SrcVT, DemandedSrcElts,
/*Insert*/ false,
/*Extract*/ true, CostKind);
Cost += thisT()->getScalarizationOverhead(ReplicatedVT, DemandedDstElts,
/*Insert*/ true,
/*Extract*/ false, CostKind);
return Cost;
}
InstructionCost
getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
unsigned AddressSpace, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo OpInfo = {TTI::OK_AnyValue, TTI::OP_None},
const Instruction *I = nullptr) {
assert(!Src->isVoidTy() && "Invalid type");
// Assume types, such as structs, are expensive.
if (getTLI()->getValueType(DL, Src, true) == MVT::Other)
return 4;
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
// Assuming that all loads of legal types cost 1.
InstructionCost Cost = LT.first;
if (CostKind != TTI::TCK_RecipThroughput)
return Cost;
const DataLayout &DL = this->getDataLayout();
if (Src->isVectorTy() &&
// In practice it's not currently possible to have a change in lane
// length for extending loads or truncating stores so both types should
// have the same scalable property.
TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src),
LT.second.getSizeInBits())) {
// This is a vector load that legalizes to a larger type than the vector
// itself. Unless the corresponding extending load or truncating store is
// legal, then this will scalarize.
TargetLowering::LegalizeAction LA = TargetLowering::Expand;
EVT MemVT = getTLI()->getValueType(DL, Src);
if (Opcode == Instruction::Store)
LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
else
LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
// This is a vector load/store for some illegal type that is scalarized.
// We must account for the cost of building or decomposing the vector.
Cost += getScalarizationOverhead(
cast<VectorType>(Src), Opcode != Instruction::Store,
Opcode == Instruction::Store, CostKind);
}
}
return Cost;
}
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, true, false,
CostKind);
}
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
true, CostKind);
}
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond = false, bool UseMaskForGaps = false) {
// We cannot scalarize scalable vectors, so return Invalid.
if (isa<ScalableVectorType>(VecTy))
return InstructionCost::getInvalid();
auto *VT = cast<FixedVectorType>(VecTy);
unsigned NumElts = VT->getNumElements();
assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
unsigned NumSubElts = NumElts / Factor;
auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);
// Firstly, the cost of load/store operation.
InstructionCost Cost;
if (UseMaskForCond || UseMaskForGaps)
Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment,
AddressSpace, CostKind);
else
Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
CostKind);
// Legalize the vector type, and get the legalized and unlegalized type
// sizes.
MVT VecTyLT = getTypeLegalizationCost(VecTy).second;
unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
unsigned VecTyLTSize = VecTyLT.getStoreSize();
// Scale the cost of the memory operation by the fraction of legalized
// instructions that will actually be used. We shouldn't account for the
// cost of dead instructions since they will be removed.
//
// E.g., An interleaved load of factor 8:
// %vec = load <16 x i64>, <16 x i64>* %ptr
// %v0 = shufflevector %vec, undef, <0, 8>
//
// If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
// used (those corresponding to elements [0:1] and [8:9] of the unlegalized
// type). The other loads are unused.
//
// TODO: Note that legalization can turn masked loads/stores into unmasked
// (legalized) loads/stores. This can be reflected in the cost.
if (Cost.isValid() && VecTySize > VecTyLTSize) {
// The number of loads of a legal type it will take to represent a load
// of the unlegalized vector type.
unsigned NumLegalInsts = divideCeil(VecTySize, VecTyLTSize);
// The number of elements of the unlegalized type that correspond to a
// single legal instruction.
unsigned NumEltsPerLegalInst = divideCeil(NumElts, NumLegalInsts);
// Determine which legal instructions will be used.
BitVector UsedInsts(NumLegalInsts, false);
for (unsigned Index : Indices)
for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
// Scale the cost of the load by the fraction of legal instructions that
// will be used.
Cost = divideCeil(UsedInsts.count() * *Cost.getValue(), NumLegalInsts);
}
// Then plus the cost of interleave operation.
assert(Indices.size() <= Factor &&
"Interleaved memory op has too many members");
const APInt DemandedAllSubElts = APInt::getAllOnes(NumSubElts);
const APInt DemandedAllResultElts = APInt::getAllOnes(NumElts);
APInt DemandedLoadStoreElts = APInt::getZero(NumElts);
for (unsigned Index : Indices) {
assert(Index < Factor && "Invalid index for interleaved memory op");
for (unsigned Elm = 0; Elm < NumSubElts; Elm++)
DemandedLoadStoreElts.setBit(Index + Elm * Factor);
}
if (Opcode == Instruction::Load) {
// The interleave cost is similar to extract sub vectors' elements
// from the wide vector, and insert them into sub vectors.
//
// E.g. An interleaved load of factor 2 (with one member of index 0):
// %vec = load <8 x i32>, <8 x i32>* %ptr
// %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
// The cost is estimated as extract elements at 0, 2, 4, 6 from the
// <8 x i32> vector and insert them into a <4 x i32> vector.
InstructionCost InsSubCost = thisT()->getScalarizationOverhead(
SubVT, DemandedAllSubElts,
/*Insert*/ true, /*Extract*/ false, CostKind);
Cost += Indices.size() * InsSubCost;
Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
/*Insert*/ false,
/*Extract*/ true, CostKind);
} else {
// The interleave cost is extract elements from sub vectors, and
// insert them into the wide vector.
//
// E.g. An interleaved store of factor 3 with 2 members at indices 0,1:
// (using VF=4):
// %v0_v1 = shuffle %v0, %v1, <0,4,undef,1,5,undef,2,6,undef,3,7,undef>
// %gaps.mask = <true, true, false, true, true, false,
// true, true, false, true, true, false>
// call llvm.masked.store <12 x i32> %v0_v1, <12 x i32>* %ptr,
// i32 Align, <12 x i1> %gaps.mask
// The cost is estimated as extract all elements (of actual members,
// excluding gaps) from both <4 x i32> vectors and insert into the <12 x
// i32> vector.
InstructionCost ExtSubCost = thisT()->getScalarizationOverhead(
SubVT, DemandedAllSubElts,
/*Insert*/ false, /*Extract*/ true, CostKind);
Cost += ExtSubCost * Indices.size();
Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
/*Insert*/ true,
/*Extract*/ false, CostKind);
}
if (!UseMaskForCond)
return Cost;
Type *I8Type = Type::getInt8Ty(VT->getContext());
Cost += thisT()->getReplicationShuffleCost(
I8Type, Factor, NumSubElts,
UseMaskForGaps ? DemandedLoadStoreElts : DemandedAllResultElts,
CostKind);
// The Gaps mask is invariant and created outside the loop, therefore the
// cost of creating it is not accounted for here. However if we have both
// a MaskForGaps and some other mask that guards the execution of the
// memory access, we need to account for the cost of And-ing the two masks
// inside the loop.
if (UseMaskForGaps) {
auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
CostKind);
}
return Cost;
}
/// Get intrinsic cost based on arguments.
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
// Check for generically free intrinsics.
if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0)
return 0;
// Assume that target intrinsics are cheap.
Intrinsic::ID IID = ICA.getID();
if (Function::isTargetIntrinsic(IID))
return TargetTransformInfo::TCC_Basic;
if (ICA.isTypeBasedOnly())
return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
Type *RetTy = ICA.getReturnType();
ElementCount RetVF =
(RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount()
: ElementCount::getFixed(1));
const IntrinsicInst *I = ICA.getInst();
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
FastMathFlags FMF = ICA.getFlags();
switch (IID) {
default:
break;
case Intrinsic::powi:
if (auto *RHSC = dyn_cast<ConstantInt>(Args[1])) {
bool ShouldOptForSize = I->getParent()->getParent()->hasOptSize();
if (getTLI()->isBeneficialToExpandPowI(RHSC->getSExtValue(),
ShouldOptForSize)) {
// The cost is modeled on the expansion performed by ExpandPowI in
// SelectionDAGBuilder.
APInt Exponent = RHSC->getValue().abs();
unsigned ActiveBits = Exponent.getActiveBits();
unsigned PopCount = Exponent.countPopulation();
InstructionCost Cost = (ActiveBits + PopCount - 2) *
thisT()->getArithmeticInstrCost(
Instruction::FMul, RetTy, CostKind);
if (RHSC->getSExtValue() < 0)
Cost += thisT()->getArithmeticInstrCost(Instruction::FDiv, RetTy,
CostKind);
return Cost;
}
}
break;
case Intrinsic::cttz:
// FIXME: If necessary, this should go in target-specific overrides.
if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCttz(RetTy))
return TargetTransformInfo::TCC_Basic;
break;
case Intrinsic::ctlz:
// FIXME: If necessary, this should go in target-specific overrides.
if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCtlz(RetTy))
return TargetTransformInfo::TCC_Basic;
break;
case Intrinsic::memcpy:
return thisT()->getMemcpyCost(ICA.getInst());
case Intrinsic::masked_scatter: {
const Value *Mask = Args[3];
bool VarMask = !isa<Constant>(Mask);
Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue();
return thisT()->getGatherScatterOpCost(Instruction::Store,
ICA.getArgTypes()[0], Args[1],
VarMask, Alignment, CostKind, I);
}
case Intrinsic::masked_gather: {
const Value *Mask = Args[2];
bool VarMask = !isa<Constant>(Mask);
Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue();
return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
VarMask, Alignment, CostKind, I);
}
case Intrinsic::experimental_stepvector: {
if (isa<ScalableVectorType>(RetTy))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
// The cost of materialising a constant integer vector.
return TargetTransformInfo::TCC_Basic;
}
case Intrinsic::vector_extract: {
// FIXME: Handle case where a scalable vector is extracted from a scalable
// vector
if (isa<ScalableVectorType>(RetTy))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue();
return thisT()->getShuffleCost(
TTI::SK_ExtractSubvector, cast<VectorType>(Args[0]->getType()),
std::nullopt, CostKind, Index, cast<VectorType>(RetTy));
}
case Intrinsic::vector_insert: {
// FIXME: Handle case where a scalable vector is inserted into a scalable
// vector
if (isa<ScalableVectorType>(Args[1]->getType()))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
return thisT()->getShuffleCost(
TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()),
std::nullopt, CostKind, Index, cast<VectorType>(Args[1]->getType()));
}
case Intrinsic::experimental_vector_reverse: {
return thisT()->getShuffleCost(
TTI::SK_Reverse, cast<VectorType>(Args[0]->getType()), std::nullopt,
CostKind, 0, cast<VectorType>(RetTy));
}
case Intrinsic::experimental_vector_splice: {
unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
return thisT()->getShuffleCost(
TTI::SK_Splice, cast<VectorType>(Args[0]->getType()), std::nullopt,
CostKind, Index, cast<VectorType>(RetTy));
}
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_fmax:
case Intrinsic::vector_reduce_fmin:
case Intrinsic::vector_reduce_umax:
case Intrinsic::vector_reduce_umin: {
IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, I, 1);
return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
}
case Intrinsic::vector_reduce_fadd:
case Intrinsic::vector_reduce_fmul: {
IntrinsicCostAttributes Attrs(
IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, I, 1);
return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
}
case Intrinsic::fshl:
case Intrinsic::fshr: {
const Value *X = Args[0];
const Value *Y = Args[1];
const Value *Z = Args[2];
const TTI::OperandValueInfo OpInfoX = TTI::getOperandInfo(X);
const TTI::OperandValueInfo OpInfoY = TTI::getOperandInfo(Y);
const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(Z);
const TTI::OperandValueInfo OpInfoBW =
{TTI::OK_UniformConstantValue,
isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
: TTI::OP_None};
// fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
// fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
InstructionCost Cost = 0;
Cost +=
thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
Cost +=
thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
Cost += thisT()->getArithmeticInstrCost(
BinaryOperator::Shl, RetTy, CostKind, OpInfoX,
{OpInfoZ.Kind, TTI::OP_None});
Cost += thisT()->getArithmeticInstrCost(
BinaryOperator::LShr, RetTy, CostKind, OpInfoY,
{OpInfoZ.Kind, TTI::OP_None});
// Non-constant shift amounts requires a modulo.
if (!OpInfoZ.isConstant())
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
CostKind, OpInfoZ, OpInfoBW);
// For non-rotates (X != Y) we must add shift-by-zero handling costs.
if (X != Y) {
Type *CondTy = RetTy->getWithNewBitWidth(1);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
CmpInst::ICMP_EQ, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
CmpInst::ICMP_EQ, CostKind);
}
return Cost;
}
case Intrinsic::get_active_lane_mask: {
EVT ResVT = getTLI()->getValueType(DL, RetTy, true);
EVT ArgType = getTLI()->getValueType(DL, ICA.getArgTypes()[0], true);
// If we're not expanding the intrinsic then we assume this is cheap
// to implement.
if (!getTLI()->shouldExpandGetActiveLaneMask(ResVT, ArgType)) {
return getTypeLegalizationCost(RetTy).first;
}
// Create the expanded types that will be used to calculate the uadd_sat
// operation.
Type *ExpRetTy = VectorType::get(
ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount());
IntrinsicCostAttributes Attrs(Intrinsic::uadd_sat, ExpRetTy, {}, FMF);
InstructionCost Cost =
thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, ExpRetTy, RetTy,
CmpInst::ICMP_ULT, CostKind);
return Cost;
}
}
// Assume that we need to scalarize this intrinsic.
// Compute the scalarization overhead based on Args for a vector
// intrinsic.
InstructionCost ScalarizationCost = InstructionCost::getInvalid();
if (RetVF.isVector() && !RetVF.isScalable()) {
ScalarizationCost = 0;
if (!RetTy->isVoidTy())
ScalarizationCost += getScalarizationOverhead(
cast<VectorType>(RetTy),
/*Insert*/ true, /*Extract*/ false, CostKind);
ScalarizationCost +=
getOperandsScalarizationOverhead(Args, ICA.getArgTypes(), CostKind);
}
IntrinsicCostAttributes Attrs(IID, RetTy, ICA.getArgTypes(), FMF, I,
ScalarizationCost);
return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
}
/// Get intrinsic cost based on argument types.
/// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
/// cost of scalarizing the arguments and the return value will be computed
/// based on types.
InstructionCost
getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
Intrinsic::ID IID = ICA.getID();
Type *RetTy = ICA.getReturnType();
const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
FastMathFlags FMF = ICA.getFlags();
InstructionCost ScalarizationCostPassed = ICA.getScalarizationCost();
bool SkipScalarizationCost = ICA.skipScalarizationCost();
VectorType *VecOpTy = nullptr;
if (!Tys.empty()) {
// The vector reduction operand is operand 0 except for fadd/fmul.
// Their operand 0 is a scalar start value, so the vector op is operand 1.
unsigned VecTyIndex = 0;
if (IID == Intrinsic::vector_reduce_fadd ||
IID == Intrinsic::vector_reduce_fmul)
VecTyIndex = 1;
assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]);
}
// Library call cost - other than size, make it expensive.
unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10;
unsigned ISD = 0;
switch (IID) {
default: {
// Scalable vectors cannot be scalarized, so return Invalid.
if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
return isa<ScalableVectorType>(Ty);
}))
return InstructionCost::getInvalid();
// Assume that we need to scalarize this intrinsic.
InstructionCost ScalarizationCost =
SkipScalarizationCost ? ScalarizationCostPassed : 0;
unsigned ScalarCalls = 1;
Type *ScalarRetTy = RetTy;
if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
if (!SkipScalarizationCost)
ScalarizationCost = getScalarizationOverhead(
RetVTy, /*Insert*/ true, /*Extract*/ false, CostKind);
ScalarCalls = std::max(ScalarCalls,
cast<FixedVectorType>(RetVTy)->getNumElements());
ScalarRetTy = RetTy->getScalarType();
}
SmallVector<Type *, 4> ScalarTys;
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
Type *Ty = Tys[i];
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
if (!SkipScalarizationCost)
ScalarizationCost += getScalarizationOverhead(
VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
ScalarCalls = std::max(ScalarCalls,
cast<FixedVectorType>(VTy)->getNumElements());
Ty = Ty->getScalarType();
}
ScalarTys.push_back(Ty);
}
if (ScalarCalls == 1)
return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
InstructionCost ScalarCost =
thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
return ScalarCalls * ScalarCost + ScalarizationCost;
}
// Look for intrinsics that can be lowered directly or turned into a scalar
// intrinsic call.
case Intrinsic::sqrt:
ISD = ISD::FSQRT;
break;
case Intrinsic::sin:
ISD = ISD::FSIN;
break;
case Intrinsic::cos:
ISD = ISD::FCOS;
break;
case Intrinsic::exp:
ISD = ISD::FEXP;
break;
case Intrinsic::exp2:
ISD = ISD::FEXP2;
break;
case Intrinsic::log:
ISD = ISD::FLOG;
break;
case Intrinsic::log10:
ISD = ISD::FLOG10;
break;
case Intrinsic::log2:
ISD = ISD::FLOG2;
break;
case Intrinsic::fabs:
ISD = ISD::FABS;
break;
case Intrinsic::canonicalize:
ISD = ISD::FCANONICALIZE;
break;
case Intrinsic::minnum:
ISD = ISD::FMINNUM;
break;
case Intrinsic::maxnum:
ISD = ISD::FMAXNUM;
break;
case Intrinsic::minimum:
ISD = ISD::FMINIMUM;
break;
case Intrinsic::maximum:
ISD = ISD::FMAXIMUM;
break;
case Intrinsic::copysign:
ISD = ISD::FCOPYSIGN;
break;
case Intrinsic::floor:
ISD = ISD::FFLOOR;
break;
case Intrinsic::ceil:
ISD = ISD::FCEIL;
break;
case Intrinsic::trunc:
ISD = ISD::FTRUNC;
break;
case Intrinsic::nearbyint:
ISD = ISD::FNEARBYINT;
break;
case Intrinsic::rint:
ISD = ISD::FRINT;
break;
case Intrinsic::round:
ISD = ISD::FROUND;
break;
case Intrinsic::roundeven:
ISD = ISD::FROUNDEVEN;
break;
case Intrinsic::pow:
ISD = ISD::FPOW;
break;
case Intrinsic::fma:
ISD = ISD::FMA;
break;
case Intrinsic::fmuladd:
ISD = ISD::FMA;
break;
case Intrinsic::experimental_constrained_fmuladd:
ISD = ISD::STRICT_FMA;
break;
// FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::sideeffect:
case Intrinsic::pseudoprobe:
case Intrinsic::arithmetic_fence:
return 0;
case Intrinsic::masked_store: {
Type *Ty = Tys[0];
Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0,
CostKind);
}
case Intrinsic::masked_load: {
Type *Ty = RetTy;
Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0,
CostKind);
}
case Intrinsic::vector_reduce_add:
return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy,
std::nullopt, CostKind);
case Intrinsic::vector_reduce_mul:
return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy,
std::nullopt, CostKind);
case Intrinsic::vector_reduce_and:
return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy,
std::nullopt, CostKind);
case Intrinsic::vector_reduce_or:
return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy,
std::nullopt, CostKind);
case Intrinsic::vector_reduce_xor:
return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy,
std::nullopt, CostKind);
case Intrinsic::vector_reduce_fadd:
return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy,
FMF, CostKind);
case Intrinsic::vector_reduce_fmul:
return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy,
FMF, CostKind);
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_fmax:
case Intrinsic::vector_reduce_fmin:
return thisT()->getMinMaxReductionCost(
VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
/*IsUnsigned=*/false, CostKind);
case Intrinsic::vector_reduce_umax:
case Intrinsic::vector_reduce_umin:
return thisT()->getMinMaxReductionCost(
VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
/*IsUnsigned=*/true, CostKind);
case Intrinsic::abs: {
// abs(X) = select(icmp(X,0),X,sub(0,X))
Type *CondTy = RetTy->getWithNewBitWidth(1);
CmpInst::Predicate Pred = CmpInst::ICMP_SGT;
InstructionCost Cost = 0;
Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
Pred, CostKind);
Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
Pred, CostKind);
// TODO: Should we add an OperandValueProperties::OP_Zero property?
Cost += thisT()->getArithmeticInstrCost(
BinaryOperator::Sub, RetTy, CostKind, {TTI::OK_UniformConstantValue, TTI::OP_None});
return Cost;
}
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin: {
// minmax(X,Y) = select(icmp(X,Y),X,Y)
Type *CondTy = RetTy->getWithNewBitWidth(1);
bool IsUnsigned = IID == Intrinsic::umax || IID == Intrinsic::umin;
CmpInst::Predicate Pred =
IsUnsigned ? CmpInst::ICMP_UGT : CmpInst::ICMP_SGT;
InstructionCost Cost = 0;
Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
Pred, CostKind);
Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
Pred, CostKind);
return Cost;
}
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat: {
Type *CondTy = RetTy->getWithNewBitWidth(1);
Type *OpTy = StructType::create({RetTy, CondTy});
Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
? Intrinsic::sadd_with_overflow
: Intrinsic::ssub_with_overflow;
CmpInst::Predicate Pred = CmpInst::ICMP_SGT;
// SatMax -> Overflow && SumDiff < 0
// SatMin -> Overflow && SumDiff >= 0
InstructionCost Cost = 0;
IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
nullptr, ScalarizationCostPassed);
Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
Pred, CostKind);
Cost += 2 * thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
CondTy, Pred, CostKind);
return Cost;
}
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat: {
Type *CondTy = RetTy->getWithNewBitWidth(1);
Type *OpTy = StructType::create({RetTy, CondTy});
Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
? Intrinsic::uadd_with_overflow
: Intrinsic::usub_with_overflow;
InstructionCost Cost = 0;
IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
nullptr, ScalarizationCostPassed);
Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return Cost;
}
case Intrinsic::smul_fix:
case Intrinsic::umul_fix: {
unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
unsigned ExtOp =
IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
TTI::CastContextHint CCH = TTI::CastContextHint::None;
InstructionCost Cost = 0;
Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
Cost +=
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
CCH, CostKind);
Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy,
CostKind,
{TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_UniformConstantValue, TTI::OP_None});
Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind,
{TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_UniformConstantValue, TTI::OP_None});
Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
return Cost;
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow: {
Type *SumTy = RetTy->getContainedType(0);
Type *OverflowTy = RetTy->getContainedType(1);
unsigned Opcode = IID == Intrinsic::sadd_with_overflow
? BinaryOperator::Add
: BinaryOperator::Sub;
// Add:
// Overflow -> (Result < LHS) ^ (RHS < 0)
// Sub:
// Overflow -> (Result < LHS) ^ (RHS > 0)
InstructionCost Cost = 0;
Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
Cost += 2 * thisT()->getCmpSelInstrCost(
Instruction::ICmp, SumTy, OverflowTy,
CmpInst::ICMP_SGT, CostKind);
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Xor, OverflowTy,
CostKind);
return Cost;
}
case Intrinsic::uadd_with_overflow:
case Intrinsic::usub_with_overflow: {
Type *SumTy = RetTy->getContainedType(0);
Type *OverflowTy = RetTy->getContainedType(1);
unsigned Opcode = IID == Intrinsic::uadd_with_overflow
? BinaryOperator::Add
: BinaryOperator::Sub;
CmpInst::Predicate Pred = IID == Intrinsic::uadd_with_overflow
? CmpInst::ICMP_ULT
: CmpInst::ICMP_UGT;
InstructionCost Cost = 0;
Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy,
Pred, CostKind);
return Cost;
}
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
Type *MulTy = RetTy->getContainedType(0);
Type *OverflowTy = RetTy->getContainedType(1);
unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
bool IsSigned = IID == Intrinsic::smul_with_overflow;
unsigned ExtOp = IsSigned ? Instruction::SExt : Instruction::ZExt;
TTI::CastContextHint CCH = TTI::CastContextHint::None;
InstructionCost Cost = 0;
Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
Cost +=
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
CCH, CostKind);
Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, ExtTy,
CostKind,
{TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_UniformConstantValue, TTI::OP_None});
if (IsSigned)
Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy,
CostKind,
{TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_UniformConstantValue, TTI::OP_None});
Cost += thisT()->getCmpSelInstrCost(
BinaryOperator::ICmp, MulTy, OverflowTy, CmpInst::ICMP_NE, CostKind);
return Cost;
}
case Intrinsic::fptosi_sat:
case Intrinsic::fptoui_sat: {
if (Tys.empty())
break;
Type *FromTy = Tys[0];
bool IsSigned = IID == Intrinsic::fptosi_sat;
InstructionCost Cost = 0;
IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FromTy,
{FromTy, FromTy});
Cost += thisT()->getIntrinsicInstrCost(Attrs1, CostKind);
IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FromTy,
{FromTy, FromTy});
Cost += thisT()->getIntrinsicInstrCost(Attrs2, CostKind);
Cost += thisT()->getCastInstrCost(
IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FromTy,
TTI::CastContextHint::None, CostKind);
if (IsSigned) {
Type *CondTy = RetTy->getWithNewBitWidth(1);
Cost += thisT()->getCmpSelInstrCost(
BinaryOperator::FCmp, FromTy, CondTy, CmpInst::FCMP_UNO, CostKind);
Cost += thisT()->getCmpSelInstrCost(
BinaryOperator::Select, RetTy, CondTy, CmpInst::FCMP_UNO, CostKind);
}
return Cost;
}
case Intrinsic::ctpop:
ISD = ISD::CTPOP;
// In case of legalization use TCC_Expensive. This is cheaper than a
// library call but still not a cheap instruction.
SingleCallCost = TargetTransformInfo::TCC_Expensive;
break;
case Intrinsic::ctlz:
ISD = ISD::CTLZ;
break;
case Intrinsic::cttz:
ISD = ISD::CTTZ;
break;
case Intrinsic::bswap:
ISD = ISD::BSWAP;
break;
case Intrinsic::bitreverse:
ISD = ISD::BITREVERSE;
break;
}
const TargetLoweringBase *TLI = getTLI();
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
TLI->isFAbsFree(LT.second)) {
return 0;
}
// The operation is legal. Assume it costs 1.
// If the type is split to multiple registers, assume that there is some
// overhead to this.
// TODO: Once we have extract/insert subvector cost we need to use them.
if (LT.first > 1)
return (LT.first * 2);
else
return (LT.first * 1);
} else if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered then assume
// that the code is twice as expensive.
return (LT.first * 2);
}
// If we can't lower fmuladd into an FMA estimate the cost as a floating
// point mul followed by an add.
if (IID == Intrinsic::fmuladd)
return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
CostKind) +
thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
CostKind);
if (IID == Intrinsic::experimental_constrained_fmuladd) {
IntrinsicCostAttributes FMulAttrs(
Intrinsic::experimental_constrained_fmul, RetTy, Tys);
IntrinsicCostAttributes FAddAttrs(
Intrinsic::experimental_constrained_fadd, RetTy, Tys);
return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
}
// Else, assume that we need to scalarize this intrinsic. For math builtins
// this will emit a costly libcall, adding call overhead and spills. Make it
// very expensive.
if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
// Scalable vectors cannot be scalarized, so return Invalid.
if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
return isa<ScalableVectorType>(Ty);
}))
return InstructionCost::getInvalid();
InstructionCost ScalarizationCost =
SkipScalarizationCost
? ScalarizationCostPassed
: getScalarizationOverhead(RetVTy, /*Insert*/ true,
/*Extract*/ false, CostKind);
unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements();
SmallVector<Type *, 4> ScalarTys;
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
Type *Ty = Tys[i];
if (Ty->isVectorTy())
Ty = Ty->getScalarType();
ScalarTys.push_back(Ty);
}
IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF);
InstructionCost ScalarCost =
thisT()->getIntrinsicInstrCost(Attrs, CostKind);
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
if (auto *VTy = dyn_cast<VectorType>(Tys[i])) {
if (!ICA.skipScalarizationCost())
ScalarizationCost += getScalarizationOverhead(
VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
ScalarCalls = std::max(ScalarCalls,
cast<FixedVectorType>(VTy)->getNumElements());
}
}
return ScalarCalls * ScalarCost + ScalarizationCost;
}
// This is going to be turned into a library call, make it expensive.
return SingleCallCost;
}
/// Compute a cost of the given call instruction.
///
/// Compute the cost of calling function F with return type RetTy and
/// argument types Tys. F might be nullptr, in this case the cost of an
/// arbitrary call with the specified signature will be returned.
/// This is used, for instance, when we estimate call of a vector
/// counterpart of the given function.
/// \param F Called function, might be nullptr.
/// \param RetTy Return value types.
/// \param Tys Argument types.
/// \returns The cost of Call instruction.
InstructionCost getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) {
return 10;
}
unsigned getNumberOfParts(Type *Tp) {
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
return LT.first.isValid() ? *LT.first.getValue() : 0;
}
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *,
const SCEV *) {
return 0;
}
/// Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
/// We're assuming that reduction operation are performing the following way:
///
/// %val1 = shufflevector<n x t> %val, <n x t> %undef,
/// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
/// \----------------v-------------/ \----------v------------/
/// n/2 elements n/2 elements
/// %red1 = op <n x t> %val, <n x t> val1
/// After this operation we have a vector %red1 where only the first n/2
/// elements are meaningful, the second n/2 elements are undefined and can be
/// dropped. All other operations are actually working with the vector of
/// length n/2, not n, though the real vector length is still n.
/// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
/// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
/// \----------------v-------------/ \----------v------------/
/// n/4 elements 3*n/4 elements
/// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
/// length n/2, the resulting vector has length n/4 etc.
///
/// The cost model should take into account that the actual length of the
/// vector is reduced on each iteration.
InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty,
TTI::TargetCostKind CostKind) {
// Targets must implement a default value for the scalable case, since
// we don't know how many lanes the vector has.
if (isa<ScalableVectorType>(Ty))
return InstructionCost::getInvalid();
Type *ScalarTy = Ty->getElementType();
unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
if ((Opcode == Instruction::Or || Opcode == Instruction::And) &&
ScalarTy == IntegerType::getInt1Ty(Ty->getContext()) &&
NumVecElts >= 2) {
// Or reduction for i1 is represented as:
// %val = bitcast <ReduxWidth x i1> to iReduxWidth
// %res = cmp ne iReduxWidth %val, 0
// And reduction for i1 is represented as:
// %val = bitcast <ReduxWidth x i1> to iReduxWidth
// %res = cmp eq iReduxWidth %val, 11111
Type *ValTy = IntegerType::get(Ty->getContext(), NumVecElts);
return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty,
TTI::CastContextHint::None, CostKind) +
thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy,
CmpInst::makeCmpResultType(ValTy),
CmpInst::BAD_ICMP_PREDICATE, CostKind);
}
unsigned NumReduxLevels = Log2_32(NumVecElts);
InstructionCost ArithCost = 0;
InstructionCost ShuffleCost = 0;
std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
unsigned LongVectorCount = 0;
unsigned MVTLen =
LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
while (NumVecElts > MVTLen) {
NumVecElts /= 2;
VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
ShuffleCost +=
thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
CostKind, NumVecElts, SubTy);
ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
Ty = SubTy;
++LongVectorCount;
}
NumReduxLevels -= LongVectorCount;
// The minimal length of the vector is limited by the real length of vector
// operations performed on the current platform. That's why several final
// reduction operations are performed on the vectors with the same
// architecture-dependent length.
// By default reductions need one shuffle per reduction level.
ShuffleCost +=
NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
std::nullopt, CostKind, 0, Ty);
ArithCost +=
NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty, CostKind);
return ShuffleCost + ArithCost +
thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
CostKind, 0, nullptr, nullptr);
}
/// Try to calculate the cost of performing strict (in-order) reductions,
/// which involves doing a sequence of floating point additions in lane
/// order, starting with an initial value. For example, consider a scalar
/// initial value 'InitVal' of type float and a vector of type <4 x float>:
///
/// Vector = <float %v0, float %v1, float %v2, float %v3>
///
/// %add1 = %InitVal + %v0
/// %add2 = %add1 + %v1
/// %add3 = %add2 + %v2
/// %add4 = %add3 + %v3
///
/// As a simple estimate we can say the cost of such a reduction is 4 times
/// the cost of a scalar FP addition. We can only estimate the costs for
/// fixed-width vectors here because for scalable vectors we do not know the
/// runtime number of operations.
InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty,
TTI::TargetCostKind CostKind) {
// Targets must implement a default value for the scalable case, since
// we don't know how many lanes the vector has.
if (isa<ScalableVectorType>(Ty))
return InstructionCost::getInvalid();
auto *VTy = cast<FixedVectorType>(Ty);
InstructionCost ExtractCost = getScalarizationOverhead(
VTy, /*Insert=*/false, /*Extract=*/true, CostKind);
InstructionCost ArithCost = thisT()->getArithmeticInstrCost(
Opcode, VTy->getElementType(), CostKind);
ArithCost *= VTy->getNumElements();
return ExtractCost + ArithCost;
}
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (TTI::requiresOrderedReduction(FMF))
return getOrderedReductionCost(Opcode, Ty, CostKind);
return getTreeReductionCost(Opcode, Ty, CostKind);
}
/// Try to calculate op costs for min/max reduction operations.
/// \param CondTy Conditional type for the Select instruction.
InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsUnsigned,
TTI::TargetCostKind CostKind) {
// Targets must implement a default value for the scalable case, since
// we don't know how many lanes the vector has.
if (isa<ScalableVectorType>(Ty))
return InstructionCost::getInvalid();
Type *ScalarTy = Ty->getElementType();
Type *ScalarCondTy = CondTy->getElementType();
unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
unsigned NumReduxLevels = Log2_32(NumVecElts);
unsigned CmpOpcode;
if (Ty->isFPOrFPVectorTy()) {
CmpOpcode = Instruction::FCmp;
} else {
assert(Ty->isIntOrIntVectorTy() &&
"expecting floating point or integer type for min/max reduction");
CmpOpcode = Instruction::ICmp;
}
InstructionCost MinMaxCost = 0;
InstructionCost ShuffleCost = 0;
std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
unsigned LongVectorCount = 0;
unsigned MVTLen =
LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
while (NumVecElts > MVTLen) {
NumVecElts /= 2;
auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts);
ShuffleCost +=
thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
CostKind, NumVecElts, SubTy);
MinMaxCost +=
thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
Ty = SubTy;
++LongVectorCount;
}
NumReduxLevels -= LongVectorCount;
// The minimal length of the vector is limited by the real length of vector
// operations performed on the current platform. That's why several final
// reduction opertions are perfomed on the vectors with the same
// architecture-dependent length.
ShuffleCost +=
NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
std::nullopt, CostKind, 0, Ty);
MinMaxCost +=
NumReduxLevels *
(thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind));
// The last min/max should be in vector registers and we counted it above.
// So just need a single extractelement.
return ShuffleCost + MinMaxCost +
thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
CostKind, 0, nullptr, nullptr);
}
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
Type *ResTy, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
// Without any native support, this is equivalent to the cost of
// vecreduce.opcode(ext(Ty A)).
VectorType *ExtTy = VectorType::get(ResTy, Ty);
InstructionCost RedCost =
thisT()->getArithmeticReductionCost(Opcode, ExtTy, FMF, CostKind);
InstructionCost ExtCost = thisT()->getCastInstrCost(
IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
TTI::CastContextHint::None, CostKind);
return RedCost + ExtCost;
}
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
VectorType *Ty,
TTI::TargetCostKind CostKind) {
// Without any native support, this is equivalent to the cost of
// vecreduce.add(mul(ext(Ty A), ext(Ty B))) or
// vecreduce.add(mul(A, B)).
VectorType *ExtTy = VectorType::get(ResTy, Ty);
InstructionCost RedCost = thisT()->getArithmeticReductionCost(
Instruction::Add, ExtTy, std::nullopt, CostKind);
InstructionCost ExtCost = thisT()->getCastInstrCost(
IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
TTI::CastContextHint::None, CostKind);
InstructionCost MulCost =
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
return RedCost + MulCost + 2 * ExtCost;
}
InstructionCost getVectorSplitCost() { return 1; }
/// @}
};
/// Concrete BasicTTIImpl that can be used if no further customization
/// is needed.
class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
using BaseT = BasicTTIImplBase<BasicTTIImpl>;
friend class BasicTTIImplBase<BasicTTIImpl>;
const TargetSubtargetInfo *ST;
const TargetLoweringBase *TLI;
const TargetSubtargetInfo *getST() const { return ST; }
const TargetLoweringBase *getTLI() const { return TLI; }
public:
explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
};
} // end namespace llvm
#endif // LLVM_CODEGEN_BASICTTIIMPL_H