//===- CodeGen/Analysis.h - CodeGen LLVM IR Analysis Utilities --*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file declares several CodeGen-specific LLVM IR analysis utilities.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_ANALYSIS_H
 
#define LLVM_CODEGEN_ANALYSIS_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/CodeGen/ISDOpcodes.h"
 
#include "llvm/IR/Instructions.h"
 
 
 
namespace llvm {
 
template <typename T> class SmallVectorImpl;
 
class GlobalValue;
 
class LLT;
 
class MachineBasicBlock;
 
class MachineFunction;
 
class TargetLoweringBase;
 
class TargetLowering;
 
class TargetMachine;
 
struct EVT;
 
 
 
/// Compute the linearized index of a member in a nested
 
/// aggregate/struct/array.
 
///
 
/// Given an LLVM IR aggregate type and a sequence of insertvalue or
 
/// extractvalue indices that identify a member, return the linearized index of
 
/// the start of the member, i.e the number of element in memory before the
 
/// sought one. This is disconnected from the number of bytes.
 
///
 
/// \param Ty is the type indexed by \p Indices.
 
/// \param Indices is an optional pointer in the indices list to the current
 
/// index.
 
/// \param IndicesEnd is the end of the indices list.
 
/// \param CurIndex is the current index in the recursion.
 
///
 
/// \returns \p CurIndex plus the linear index in \p Ty  the indices list.
 
unsigned ComputeLinearIndex(Type *Ty,
 
                            const unsigned *Indices,
 
                            const unsigned *IndicesEnd,
 
                            unsigned CurIndex = 0);
 
 
 
inline unsigned ComputeLinearIndex(Type *Ty,
 
                                   ArrayRef<unsigned> Indices,
 
                                   unsigned CurIndex = 0) {
 
  return ComputeLinearIndex(Ty, Indices.begin(), Indices.end(), CurIndex);
 
}
 
 
 
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 
/// EVTs that represent all the individual underlying
 
/// non-aggregate types that comprise it.
 
///
 
/// If Offsets is non-null, it points to a vector to be filled in
 
/// with the in-memory offsets of each of the individual values.
 
///
 
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty,
 
                     SmallVectorImpl<EVT> &ValueVTs,
 
                     SmallVectorImpl<uint64_t> *Offsets = nullptr,
 
                     uint64_t StartingOffset = 0);
 
 
 
/// Variant of ComputeValueVTs that also produces the memory VTs.
 
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty,
 
                     SmallVectorImpl<EVT> &ValueVTs,
 
                     SmallVectorImpl<EVT> *MemVTs,
 
                     SmallVectorImpl<uint64_t> *Offsets = nullptr,
 
                     uint64_t StartingOffset = 0);
 
 
 
/// computeValueLLTs - Given an LLVM IR type, compute a sequence of
 
/// LLTs that represent all the individual underlying
 
/// non-aggregate types that comprise it.
 
///
 
/// If Offsets is non-null, it points to a vector to be filled in
 
/// with the in-memory offsets of each of the individual values.
 
///
 
void computeValueLLTs(const DataLayout &DL, Type &Ty,
 
                      SmallVectorImpl<LLT> &ValueTys,
 
                      SmallVectorImpl<uint64_t> *Offsets = nullptr,
 
                      uint64_t StartingOffset = 0);
 
 
 
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 
GlobalValue *ExtractTypeInfo(Value *V);
 
 
 
/// getFCmpCondCode - Return the ISD condition code corresponding to
 
/// the given LLVM IR floating-point condition code.  This includes
 
/// consideration of global floating-point math flags.
 
///
 
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred);
 
 
 
/// getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats,
 
/// return the equivalent code if we're allowed to assume that NaNs won't occur.
 
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC);
 
 
 
/// getICmpCondCode - Return the ISD condition code corresponding to
 
/// the given LLVM IR integer condition code.
 
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred);
 
 
 
/// getICmpCondCode - Return the LLVM IR integer condition code
 
/// corresponding to the given ISD integer condition code.
 
ICmpInst::Predicate getICmpCondCode(ISD::CondCode Pred);
 
 
 
/// Test if the given instruction is in a position to be optimized
 
/// with a tail-call. This roughly means that it's in a block with
 
/// a return and there's nothing that needs to be scheduled
 
/// between it and the return.
 
///
 
/// This function only tests target-independent requirements.
 
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM);
 
 
 
/// Test if given that the input instruction is in the tail call position, if
 
/// there is an attribute mismatch between the caller and the callee that will
 
/// inhibit tail call optimizations.
 
/// \p AllowDifferingSizes is an output parameter which, if forming a tail call
 
/// is permitted, determines whether it's permitted only if the size of the
 
/// caller's and callee's return types match exactly.
 
bool attributesPermitTailCall(const Function *F, const Instruction *I,
 
                              const ReturnInst *Ret,
 
                              const TargetLoweringBase &TLI,
 
                              bool *AllowDifferingSizes = nullptr);
 
 
 
/// Test if given that the input instruction is in the tail call position if the
 
/// return type or any attributes of the function will inhibit tail call
 
/// optimization.
 
bool returnTypeIsEligibleForTailCall(const Function *F, const Instruction *I,
 
                                     const ReturnInst *Ret,
 
                                     const TargetLoweringBase &TLI);
 
 
 
DenseMap<const MachineBasicBlock *, int>
 
getEHScopeMembership(const MachineFunction &MF);
 
 
 
} // End llvm namespace
 
 
 
#endif