//===- BitstreamWriter.h - Low-level bitstream writer interface -*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This header defines the BitstreamWriter class.  This class can be used to
 
// write an arbitrary bitstream, regardless of its contents.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_BITSTREAM_BITSTREAMWRITER_H
 
#define LLVM_BITSTREAM_BITSTREAMWRITER_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Bitstream/BitCodes.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/MathExtras.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <algorithm>
 
#include <optional>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class BitstreamWriter {
 
  /// Out - The buffer that keeps unflushed bytes.
 
  SmallVectorImpl<char> &Out;
 
 
 
  /// FS - The file stream that Out flushes to. If FS is nullptr, it does not
 
  /// support read or seek, Out cannot be flushed until all data are written.
 
  raw_fd_stream *FS;
 
 
 
  /// FlushThreshold - If FS is valid, this is the threshold (unit B) to flush
 
  /// FS.
 
  const uint64_t FlushThreshold;
 
 
 
  /// CurBit - Always between 0 and 31 inclusive, specifies the next bit to use.
 
  unsigned CurBit;
 
 
 
  /// CurValue - The current value. Only bits < CurBit are valid.
 
  uint32_t CurValue;
 
 
 
  /// CurCodeSize - This is the declared size of code values used for the
 
  /// current block, in bits.
 
  unsigned CurCodeSize;
 
 
 
  /// BlockInfoCurBID - When emitting a BLOCKINFO_BLOCK, this is the currently
 
  /// selected BLOCK ID.
 
  unsigned BlockInfoCurBID;
 
 
 
  /// CurAbbrevs - Abbrevs installed at in this block.
 
  std::vector<std::shared_ptr<BitCodeAbbrev>> CurAbbrevs;
 
 
 
  struct Block {
 
    unsigned PrevCodeSize;
 
    size_t StartSizeWord;
 
    std::vector<std::shared_ptr<BitCodeAbbrev>> PrevAbbrevs;
 
    Block(unsigned PCS, size_t SSW) : PrevCodeSize(PCS), StartSizeWord(SSW) {}
 
  };
 
 
 
  /// BlockScope - This tracks the current blocks that we have entered.
 
  std::vector<Block> BlockScope;
 
 
 
  /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks.
 
  /// These describe abbreviations that all blocks of the specified ID inherit.
 
  struct BlockInfo {
 
    unsigned BlockID;
 
    std::vector<std::shared_ptr<BitCodeAbbrev>> Abbrevs;
 
  };
 
  std::vector<BlockInfo> BlockInfoRecords;
 
 
 
  void WriteWord(unsigned Value) {
 
    Value = support::endian::byte_swap<uint32_t, support::little>(Value);
 
    Out.append(reinterpret_cast<const char *>(&Value),
 
               reinterpret_cast<const char *>(&Value + 1));
 
  }
 
 
 
  uint64_t GetNumOfFlushedBytes() const { return FS ? FS->tell() : 0; }
 
 
 
  size_t GetBufferOffset() const { return Out.size() + GetNumOfFlushedBytes(); }
 
 
 
  size_t GetWordIndex() const {
 
    size_t Offset = GetBufferOffset();
 
    assert((Offset & 3) == 0 && "Not 32-bit aligned");
 
    return Offset / 4;
 
  }
 
 
 
  /// If the related file stream supports reading, seeking and writing, flush
 
  /// the buffer if its size is above a threshold.
 
  void FlushToFile() {
 
    if (!FS)
 
      return;
 
    if (Out.size() < FlushThreshold)
 
      return;
 
    FS->write((char *)&Out.front(), Out.size());
 
    Out.clear();
 
  }
 
 
 
public:
 
  /// Create a BitstreamWriter that writes to Buffer \p O.
 
  ///
 
  /// \p FS is the file stream that \p O flushes to incrementally. If \p FS is
 
  /// null, \p O does not flush incrementially, but writes to disk at the end.
 
  ///
 
  /// \p FlushThreshold is the threshold (unit M) to flush \p O if \p FS is
 
  /// valid. Flushing only occurs at (sub)block boundaries.
 
  BitstreamWriter(SmallVectorImpl<char> &O, raw_fd_stream *FS = nullptr,
 
                  uint32_t FlushThreshold = 512)
 
      : Out(O), FS(FS), FlushThreshold(FlushThreshold << 20), CurBit(0),
 
        CurValue(0), CurCodeSize(2) {}
 
 
 
  ~BitstreamWriter() {
 
    assert(CurBit == 0 && "Unflushed data remaining");
 
    assert(BlockScope.empty() && CurAbbrevs.empty() && "Block imbalance");
 
  }
 
 
 
  /// Retrieve the current position in the stream, in bits.
 
  uint64_t GetCurrentBitNo() const { return GetBufferOffset() * 8 + CurBit; }
 
 
 
  /// Retrieve the number of bits currently used to encode an abbrev ID.
 
  unsigned GetAbbrevIDWidth() const { return CurCodeSize; }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Basic Primitives for emitting bits to the stream.
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// Backpatch a 32-bit word in the output at the given bit offset
 
  /// with the specified value.
 
  void BackpatchWord(uint64_t BitNo, unsigned NewWord) {
 
    using namespace llvm::support;
 
    uint64_t ByteNo = BitNo / 8;
 
    uint64_t StartBit = BitNo & 7;
 
    uint64_t NumOfFlushedBytes = GetNumOfFlushedBytes();
 
 
 
    if (ByteNo >= NumOfFlushedBytes) {
 
      assert((!endian::readAtBitAlignment<uint32_t, little, unaligned>(
 
                 &Out[ByteNo - NumOfFlushedBytes], StartBit)) &&
 
             "Expected to be patching over 0-value placeholders");
 
      endian::writeAtBitAlignment<uint32_t, little, unaligned>(
 
          &Out[ByteNo - NumOfFlushedBytes], NewWord, StartBit);
 
      return;
 
    }
 
 
 
    // If the byte offset to backpatch is flushed, use seek to backfill data.
 
    // First, save the file position to restore later.
 
    uint64_t CurPos = FS->tell();
 
 
 
    // Copy data to update into Bytes from the file FS and the buffer Out.
 
    char Bytes[9]; // Use one more byte to silence a warning from Visual C++.
 
    size_t BytesNum = StartBit ? 8 : 4;
 
    size_t BytesFromDisk = std::min(static_cast<uint64_t>(BytesNum), NumOfFlushedBytes - ByteNo);
 
    size_t BytesFromBuffer = BytesNum - BytesFromDisk;
 
 
 
    // When unaligned, copy existing data into Bytes from the file FS and the
 
    // buffer Out so that it can be updated before writing. For debug builds
 
    // read bytes unconditionally in order to check that the existing value is 0
 
    // as expected.
 
#ifdef NDEBUG
 
    if (StartBit)
 
#endif
 
    {
 
      FS->seek(ByteNo);
 
      ssize_t BytesRead = FS->read(Bytes, BytesFromDisk);
 
      (void)BytesRead; // silence warning
 
      assert(BytesRead >= 0 && static_cast<size_t>(BytesRead) == BytesFromDisk);
 
      for (size_t i = 0; i < BytesFromBuffer; ++i)
 
        Bytes[BytesFromDisk + i] = Out[i];
 
      assert((!endian::readAtBitAlignment<uint32_t, little, unaligned>(
 
                 Bytes, StartBit)) &&
 
             "Expected to be patching over 0-value placeholders");
 
    }
 
 
 
    // Update Bytes in terms of bit offset and value.
 
    endian::writeAtBitAlignment<uint32_t, little, unaligned>(Bytes, NewWord,
 
                                                             StartBit);
 
 
 
    // Copy updated data back to the file FS and the buffer Out.
 
    FS->seek(ByteNo);
 
    FS->write(Bytes, BytesFromDisk);
 
    for (size_t i = 0; i < BytesFromBuffer; ++i)
 
      Out[i] = Bytes[BytesFromDisk + i];
 
 
 
    // Restore the file position.
 
    FS->seek(CurPos);
 
  }
 
 
 
  void BackpatchWord64(uint64_t BitNo, uint64_t Val) {
 
    BackpatchWord(BitNo, (uint32_t)Val);
 
    BackpatchWord(BitNo + 32, (uint32_t)(Val >> 32));
 
  }
 
 
 
  void Emit(uint32_t Val, unsigned NumBits) {
 
    assert(NumBits && NumBits <= 32 && "Invalid value size!");
 
    assert((Val & ~(~0U >> (32-NumBits))) == 0 && "High bits set!");
 
    CurValue |= Val << CurBit;
 
    if (CurBit + NumBits < 32) {
 
      CurBit += NumBits;
 
      return;
 
    }
 
 
 
    // Add the current word.
 
    WriteWord(CurValue);
 
 
 
    if (CurBit)
 
      CurValue = Val >> (32-CurBit);
 
    else
 
      CurValue = 0;
 
    CurBit = (CurBit+NumBits) & 31;
 
  }
 
 
 
  void FlushToWord() {
 
    if (CurBit) {
 
      WriteWord(CurValue);
 
      CurBit = 0;
 
      CurValue = 0;
 
    }
 
  }
 
 
 
  void EmitVBR(uint32_t Val, unsigned NumBits) {
 
    assert(NumBits <= 32 && "Too many bits to emit!");
 
    uint32_t Threshold = 1U << (NumBits-1);
 
 
 
    // Emit the bits with VBR encoding, NumBits-1 bits at a time.
 
    while (Val >= Threshold) {
 
      Emit((Val & ((1 << (NumBits-1))-1)) | (1 << (NumBits-1)), NumBits);
 
      Val >>= NumBits-1;
 
    }
 
 
 
    Emit(Val, NumBits);
 
  }
 
 
 
  void EmitVBR64(uint64_t Val, unsigned NumBits) {
 
    assert(NumBits <= 32 && "Too many bits to emit!");
 
    if ((uint32_t)Val == Val)
 
      return EmitVBR((uint32_t)Val, NumBits);
 
 
 
    uint32_t Threshold = 1U << (NumBits-1);
 
 
 
    // Emit the bits with VBR encoding, NumBits-1 bits at a time.
 
    while (Val >= Threshold) {
 
      Emit(((uint32_t)Val & ((1 << (NumBits - 1)) - 1)) | (1 << (NumBits - 1)),
 
           NumBits);
 
      Val >>= NumBits-1;
 
    }
 
 
 
    Emit((uint32_t)Val, NumBits);
 
  }
 
 
 
  /// EmitCode - Emit the specified code.
 
  void EmitCode(unsigned Val) {
 
    Emit(Val, CurCodeSize);
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Block Manipulation
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// getBlockInfo - If there is block info for the specified ID, return it,
 
  /// otherwise return null.
 
  BlockInfo *getBlockInfo(unsigned BlockID) {
 
    // Common case, the most recent entry matches BlockID.
 
    if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
 
      return &BlockInfoRecords.back();
 
 
 
    for (BlockInfo &BI : BlockInfoRecords)
 
      if (BI.BlockID == BlockID)
 
        return &BI;
 
    return nullptr;
 
  }
 
 
 
  void EnterSubblock(unsigned BlockID, unsigned CodeLen) {
 
    // Block header:
 
    //    [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
 
    EmitCode(bitc::ENTER_SUBBLOCK);
 
    EmitVBR(BlockID, bitc::BlockIDWidth);
 
    EmitVBR(CodeLen, bitc::CodeLenWidth);
 
    FlushToWord();
 
 
 
    size_t BlockSizeWordIndex = GetWordIndex();
 
    unsigned OldCodeSize = CurCodeSize;
 
 
 
    // Emit a placeholder, which will be replaced when the block is popped.
 
    Emit(0, bitc::BlockSizeWidth);
 
 
 
    CurCodeSize = CodeLen;
 
 
 
    // Push the outer block's abbrev set onto the stack, start out with an
 
    // empty abbrev set.
 
    BlockScope.emplace_back(OldCodeSize, BlockSizeWordIndex);
 
    BlockScope.back().PrevAbbrevs.swap(CurAbbrevs);
 
 
 
    // If there is a blockinfo for this BlockID, add all the predefined abbrevs
 
    // to the abbrev list.
 
    if (BlockInfo *Info = getBlockInfo(BlockID))
 
      append_range(CurAbbrevs, Info->Abbrevs);
 
  }
 
 
 
  void ExitBlock() {
 
    assert(!BlockScope.empty() && "Block scope imbalance!");
 
    const Block &B = BlockScope.back();
 
 
 
    // Block tail:
 
    //    [END_BLOCK, <align4bytes>]
 
    EmitCode(bitc::END_BLOCK);
 
    FlushToWord();
 
 
 
    // Compute the size of the block, in words, not counting the size field.
 
    size_t SizeInWords = GetWordIndex() - B.StartSizeWord - 1;
 
    uint64_t BitNo = uint64_t(B.StartSizeWord) * 32;
 
 
 
    // Update the block size field in the header of this sub-block.
 
    BackpatchWord(BitNo, SizeInWords);
 
 
 
    // Restore the inner block's code size and abbrev table.
 
    CurCodeSize = B.PrevCodeSize;
 
    CurAbbrevs = std::move(B.PrevAbbrevs);
 
    BlockScope.pop_back();
 
    FlushToFile();
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Record Emission
 
  //===--------------------------------------------------------------------===//
 
 
 
private:
 
  /// EmitAbbreviatedLiteral - Emit a literal value according to its abbrev
 
  /// record.  This is a no-op, since the abbrev specifies the literal to use.
 
  template<typename uintty>
 
  void EmitAbbreviatedLiteral(const BitCodeAbbrevOp &Op, uintty V) {
 
    assert(Op.isLiteral() && "Not a literal");
 
    // If the abbrev specifies the literal value to use, don't emit
 
    // anything.
 
    assert(V == Op.getLiteralValue() &&
 
           "Invalid abbrev for record!");
 
  }
 
 
 
  /// EmitAbbreviatedField - Emit a single scalar field value with the specified
 
  /// encoding.
 
  template<typename uintty>
 
  void EmitAbbreviatedField(const BitCodeAbbrevOp &Op, uintty V) {
 
    assert(!Op.isLiteral() && "Literals should use EmitAbbreviatedLiteral!");
 
 
 
    // Encode the value as we are commanded.
 
    switch (Op.getEncoding()) {
 
    default: llvm_unreachable("Unknown encoding!");
 
    case BitCodeAbbrevOp::Fixed:
 
      if (Op.getEncodingData())
 
        Emit((unsigned)V, (unsigned)Op.getEncodingData());
 
      break;
 
    case BitCodeAbbrevOp::VBR:
 
      if (Op.getEncodingData())
 
        EmitVBR64(V, (unsigned)Op.getEncodingData());
 
      break;
 
    case BitCodeAbbrevOp::Char6:
 
      Emit(BitCodeAbbrevOp::EncodeChar6((char)V), 6);
 
      break;
 
    }
 
  }
 
 
 
  /// EmitRecordWithAbbrevImpl - This is the core implementation of the record
 
  /// emission code.  If BlobData is non-null, then it specifies an array of
 
  /// data that should be emitted as part of the Blob or Array operand that is
 
  /// known to exist at the end of the record. If Code is specified, then
 
  /// it is the record code to emit before the Vals, which must not contain
 
  /// the code.
 
  template <typename uintty>
 
  void EmitRecordWithAbbrevImpl(unsigned Abbrev, ArrayRef<uintty> Vals,
 
                                StringRef Blob, std::optional<unsigned> Code) {
 
    const char *BlobData = Blob.data();
 
    unsigned BlobLen = (unsigned) Blob.size();
 
    unsigned AbbrevNo = Abbrev-bitc::FIRST_APPLICATION_ABBREV;
 
    assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!");
 
    const BitCodeAbbrev *Abbv = CurAbbrevs[AbbrevNo].get();
 
 
 
    EmitCode(Abbrev);
 
 
 
    unsigned i = 0, e = static_cast<unsigned>(Abbv->getNumOperandInfos());
 
    if (Code) {
 
      assert(e && "Expected non-empty abbreviation");
 
      const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i++);
 
 
 
      if (Op.isLiteral())
 
        EmitAbbreviatedLiteral(Op, *Code);
 
      else {
 
        assert(Op.getEncoding() != BitCodeAbbrevOp::Array &&
 
               Op.getEncoding() != BitCodeAbbrevOp::Blob &&
 
               "Expected literal or scalar");
 
        EmitAbbreviatedField(Op, *Code);
 
      }
 
    }
 
 
 
    unsigned RecordIdx = 0;
 
    for (; i != e; ++i) {
 
      const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i);
 
      if (Op.isLiteral()) {
 
        assert(RecordIdx < Vals.size() && "Invalid abbrev/record");
 
        EmitAbbreviatedLiteral(Op, Vals[RecordIdx]);
 
        ++RecordIdx;
 
      } else if (Op.getEncoding() == BitCodeAbbrevOp::Array) {
 
        // Array case.
 
        assert(i + 2 == e && "array op not second to last?");
 
        const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i);
 
 
 
        // If this record has blob data, emit it, otherwise we must have record
 
        // entries to encode this way.
 
        if (BlobData) {
 
          assert(RecordIdx == Vals.size() &&
 
                 "Blob data and record entries specified for array!");
 
          // Emit a vbr6 to indicate the number of elements present.
 
          EmitVBR(static_cast<uint32_t>(BlobLen), 6);
 
 
 
          // Emit each field.
 
          for (unsigned i = 0; i != BlobLen; ++i)
 
            EmitAbbreviatedField(EltEnc, (unsigned char)BlobData[i]);
 
 
 
          // Know that blob data is consumed for assertion below.
 
          BlobData = nullptr;
 
        } else {
 
          // Emit a vbr6 to indicate the number of elements present.
 
          EmitVBR(static_cast<uint32_t>(Vals.size()-RecordIdx), 6);
 
 
 
          // Emit each field.
 
          for (unsigned e = Vals.size(); RecordIdx != e; ++RecordIdx)
 
            EmitAbbreviatedField(EltEnc, Vals[RecordIdx]);
 
        }
 
      } else if (Op.getEncoding() == BitCodeAbbrevOp::Blob) {
 
        // If this record has blob data, emit it, otherwise we must have record
 
        // entries to encode this way.
 
 
 
        if (BlobData) {
 
          assert(RecordIdx == Vals.size() &&
 
                 "Blob data and record entries specified for blob operand!");
 
 
 
          assert(Blob.data() == BlobData && "BlobData got moved");
 
          assert(Blob.size() == BlobLen && "BlobLen got changed");
 
          emitBlob(Blob);
 
          BlobData = nullptr;
 
        } else {
 
          emitBlob(Vals.slice(RecordIdx));
 
        }
 
      } else {  // Single scalar field.
 
        assert(RecordIdx < Vals.size() && "Invalid abbrev/record");
 
        EmitAbbreviatedField(Op, Vals[RecordIdx]);
 
        ++RecordIdx;
 
      }
 
    }
 
    assert(RecordIdx == Vals.size() && "Not all record operands emitted!");
 
    assert(BlobData == nullptr &&
 
           "Blob data specified for record that doesn't use it!");
 
  }
 
 
 
public:
 
  /// Emit a blob, including flushing before and tail-padding.
 
  template <class UIntTy>
 
  void emitBlob(ArrayRef<UIntTy> Bytes, bool ShouldEmitSize = true) {
 
    // Emit a vbr6 to indicate the number of elements present.
 
    if (ShouldEmitSize)
 
      EmitVBR(static_cast<uint32_t>(Bytes.size()), 6);
 
 
 
    // Flush to a 32-bit alignment boundary.
 
    FlushToWord();
 
 
 
    // Emit literal bytes.
 
    assert(llvm::all_of(Bytes, [](UIntTy B) { return isUInt<8>(B); }));
 
    Out.append(Bytes.begin(), Bytes.end());
 
 
 
    // Align end to 32-bits.
 
    while (GetBufferOffset() & 3)
 
      Out.push_back(0);
 
  }
 
  void emitBlob(StringRef Bytes, bool ShouldEmitSize = true) {
 
    emitBlob(ArrayRef((const uint8_t *)Bytes.data(), Bytes.size()),
 
             ShouldEmitSize);
 
  }
 
 
 
  /// EmitRecord - Emit the specified record to the stream, using an abbrev if
 
  /// we have one to compress the output.
 
  template <typename Container>
 
  void EmitRecord(unsigned Code, const Container &Vals, unsigned Abbrev = 0) {
 
    if (!Abbrev) {
 
      // If we don't have an abbrev to use, emit this in its fully unabbreviated
 
      // form.
 
      auto Count = static_cast<uint32_t>(std::size(Vals));
 
      EmitCode(bitc::UNABBREV_RECORD);
 
      EmitVBR(Code, 6);
 
      EmitVBR(Count, 6);
 
      for (unsigned i = 0, e = Count; i != e; ++i)
 
        EmitVBR64(Vals[i], 6);
 
      return;
 
    }
 
 
 
    EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), StringRef(), Code);
 
  }
 
 
 
  /// EmitRecordWithAbbrev - Emit a record with the specified abbreviation.
 
  /// Unlike EmitRecord, the code for the record should be included in Vals as
 
  /// the first entry.
 
  template <typename Container>
 
  void EmitRecordWithAbbrev(unsigned Abbrev, const Container &Vals) {
 
    EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), StringRef(), std::nullopt);
 
  }
 
 
 
  /// EmitRecordWithBlob - Emit the specified record to the stream, using an
 
  /// abbrev that includes a blob at the end.  The blob data to emit is
 
  /// specified by the pointer and length specified at the end.  In contrast to
 
  /// EmitRecord, this routine expects that the first entry in Vals is the code
 
  /// of the record.
 
  template <typename Container>
 
  void EmitRecordWithBlob(unsigned Abbrev, const Container &Vals,
 
                          StringRef Blob) {
 
    EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), Blob, std::nullopt);
 
  }
 
  template <typename Container>
 
  void EmitRecordWithBlob(unsigned Abbrev, const Container &Vals,
 
                          const char *BlobData, unsigned BlobLen) {
 
    return EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals),
 
                                    StringRef(BlobData, BlobLen), std::nullopt);
 
  }
 
 
 
  /// EmitRecordWithArray - Just like EmitRecordWithBlob, works with records
 
  /// that end with an array.
 
  template <typename Container>
 
  void EmitRecordWithArray(unsigned Abbrev, const Container &Vals,
 
                           StringRef Array) {
 
    EmitRecordWithAbbrevImpl(Abbrev, ArrayRef(Vals), Array, std::nullopt);
 
  }
 
  template <typename Container>
 
  void EmitRecordWithArray(unsigned Abbrev, const Container &Vals,
 
                           const char *ArrayData, unsigned ArrayLen) {
 
    return EmitRecordWithAbbrevImpl(
 
        Abbrev, ArrayRef(Vals), StringRef(ArrayData, ArrayLen), std::nullopt);
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Abbrev Emission
 
  //===--------------------------------------------------------------------===//
 
 
 
private:
 
  // Emit the abbreviation as a DEFINE_ABBREV record.
 
  void EncodeAbbrev(const BitCodeAbbrev &Abbv) {
 
    EmitCode(bitc::DEFINE_ABBREV);
 
    EmitVBR(Abbv.getNumOperandInfos(), 5);
 
    for (unsigned i = 0, e = static_cast<unsigned>(Abbv.getNumOperandInfos());
 
         i != e; ++i) {
 
      const BitCodeAbbrevOp &Op = Abbv.getOperandInfo(i);
 
      Emit(Op.isLiteral(), 1);
 
      if (Op.isLiteral()) {
 
        EmitVBR64(Op.getLiteralValue(), 8);
 
      } else {
 
        Emit(Op.getEncoding(), 3);
 
        if (Op.hasEncodingData())
 
          EmitVBR64(Op.getEncodingData(), 5);
 
      }
 
    }
 
  }
 
public:
 
 
 
  /// Emits the abbreviation \p Abbv to the stream.
 
  unsigned EmitAbbrev(std::shared_ptr<BitCodeAbbrev> Abbv) {
 
    EncodeAbbrev(*Abbv);
 
    CurAbbrevs.push_back(std::move(Abbv));
 
    return static_cast<unsigned>(CurAbbrevs.size())-1 +
 
      bitc::FIRST_APPLICATION_ABBREV;
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // BlockInfo Block Emission
 
  //===--------------------------------------------------------------------===//
 
 
 
  /// EnterBlockInfoBlock - Start emitting the BLOCKINFO_BLOCK.
 
  void EnterBlockInfoBlock() {
 
    EnterSubblock(bitc::BLOCKINFO_BLOCK_ID, 2);
 
    BlockInfoCurBID = ~0U;
 
    BlockInfoRecords.clear();
 
  }
 
private:
 
  /// SwitchToBlockID - If we aren't already talking about the specified block
 
  /// ID, emit a BLOCKINFO_CODE_SETBID record.
 
  void SwitchToBlockID(unsigned BlockID) {
 
    if (BlockInfoCurBID == BlockID) return;
 
    SmallVector<unsigned, 2> V;
 
    V.push_back(BlockID);
 
    EmitRecord(bitc::BLOCKINFO_CODE_SETBID, V);
 
    BlockInfoCurBID = BlockID;
 
  }
 
 
 
  BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
 
    if (BlockInfo *BI = getBlockInfo(BlockID))
 
      return *BI;
 
 
 
    // Otherwise, add a new record.
 
    BlockInfoRecords.emplace_back();
 
    BlockInfoRecords.back().BlockID = BlockID;
 
    return BlockInfoRecords.back();
 
  }
 
 
 
public:
 
 
 
  /// EmitBlockInfoAbbrev - Emit a DEFINE_ABBREV record for the specified
 
  /// BlockID.
 
  unsigned EmitBlockInfoAbbrev(unsigned BlockID, std::shared_ptr<BitCodeAbbrev> Abbv) {
 
    SwitchToBlockID(BlockID);
 
    EncodeAbbrev(*Abbv);
 
 
 
    // Add the abbrev to the specified block record.
 
    BlockInfo &Info = getOrCreateBlockInfo(BlockID);
 
    Info.Abbrevs.push_back(std::move(Abbv));
 
 
 
    return Info.Abbrevs.size()-1+bitc::FIRST_APPLICATION_ABBREV;
 
  }
 
};
 
 
 
 
 
} // End llvm namespace
 
 
 
#endif