//===- llvm/Bitcode/BitcodeWriter.h - Bitcode writers -----------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This header defines interfaces to write LLVM bitcode files/streams.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_BITCODE_BITCODEWRITER_H
 
#define LLVM_BITCODE_BITCODEWRITER_H
 
 
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/IR/ModuleSummaryIndex.h"
 
#include "llvm/MC/StringTableBuilder.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/MemoryBufferRef.h"
 
#include <map>
 
#include <memory>
 
#include <string>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class BitstreamWriter;
 
class Module;
 
class raw_ostream;
 
 
 
  class BitcodeWriter {
 
    SmallVectorImpl<char> &Buffer;
 
    std::unique_ptr<BitstreamWriter> Stream;
 
 
 
    StringTableBuilder StrtabBuilder{StringTableBuilder::RAW};
 
 
 
    // Owns any strings created by the irsymtab writer until we create the
 
    // string table.
 
    BumpPtrAllocator Alloc;
 
 
 
    bool WroteStrtab = false, WroteSymtab = false;
 
 
 
    void writeBlob(unsigned Block, unsigned Record, StringRef Blob);
 
 
 
    std::vector<Module *> Mods;
 
 
 
  public:
 
    /// Create a BitcodeWriter that writes to Buffer.
 
    BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS = nullptr);
 
 
 
    ~BitcodeWriter();
 
 
 
    /// Attempt to write a symbol table to the bitcode file. This must be called
 
    /// at most once after all modules have been written.
 
    ///
 
    /// A reader does not require a symbol table to interpret a bitcode file;
 
    /// the symbol table is needed only to improve link-time performance. So
 
    /// this function may decide not to write a symbol table. It may so decide
 
    /// if, for example, the target is unregistered or the IR is malformed.
 
    void writeSymtab();
 
 
 
    /// Write the bitcode file's string table. This must be called exactly once
 
    /// after all modules and the optional symbol table have been written.
 
    void writeStrtab();
 
 
 
    /// Copy the string table for another module into this bitcode file. This
 
    /// should be called after copying the module itself into the bitcode file.
 
    void copyStrtab(StringRef Strtab);
 
 
 
    /// Write the specified module to the buffer specified at construction time.
 
    ///
 
    /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
 
    /// Value in \c M.  These will be reconstructed exactly when \a M is
 
    /// deserialized.
 
    ///
 
    /// If \c Index is supplied, the bitcode will contain the summary index
 
    /// (currently for use in ThinLTO optimization).
 
    ///
 
    /// \p GenerateHash enables hashing the Module and including the hash in the
 
    /// bitcode (currently for use in ThinLTO incremental build).
 
    ///
 
    /// If \p ModHash is non-null, when GenerateHash is true, the resulting
 
    /// hash is written into ModHash. When GenerateHash is false, that value
 
    /// is used as the hash instead of computing from the generated bitcode.
 
    /// Can be used to produce the same module hash for a minimized bitcode
 
    /// used just for the thin link as in the regular full bitcode that will
 
    /// be used in the backend.
 
    void writeModule(const Module &M, bool ShouldPreserveUseListOrder = false,
 
                     const ModuleSummaryIndex *Index = nullptr,
 
                     bool GenerateHash = false, ModuleHash *ModHash = nullptr);
 
 
 
    /// Write the specified thin link bitcode file (i.e., the minimized bitcode
 
    /// file) to the buffer specified at construction time. The thin link
 
    /// bitcode file is used for thin link, and it only contains the necessary
 
    /// information for thin link.
 
    ///
 
    /// ModHash is for use in ThinLTO incremental build, generated while the
 
    /// IR bitcode file writing.
 
    void writeThinLinkBitcode(const Module &M, const ModuleSummaryIndex &Index,
 
                              const ModuleHash &ModHash);
 
 
 
    void writeIndex(
 
        const ModuleSummaryIndex *Index,
 
        const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex);
 
  };
 
 
 
  /// Write the specified module to the specified raw output stream.
 
  ///
 
  /// For streams where it matters, the given stream should be in "binary"
 
  /// mode.
 
  ///
 
  /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
 
  /// Value in \c M.  These will be reconstructed exactly when \a M is
 
  /// deserialized.
 
  ///
 
  /// If \c Index is supplied, the bitcode will contain the summary index
 
  /// (currently for use in ThinLTO optimization).
 
  ///
 
  /// \p GenerateHash enables hashing the Module and including the hash in the
 
  /// bitcode (currently for use in ThinLTO incremental build).
 
  ///
 
  /// If \p ModHash is non-null, when GenerateHash is true, the resulting
 
  /// hash is written into ModHash. When GenerateHash is false, that value
 
  /// is used as the hash instead of computing from the generated bitcode.
 
  /// Can be used to produce the same module hash for a minimized bitcode
 
  /// used just for the thin link as in the regular full bitcode that will
 
  /// be used in the backend.
 
  void WriteBitcodeToFile(const Module &M, raw_ostream &Out,
 
                          bool ShouldPreserveUseListOrder = false,
 
                          const ModuleSummaryIndex *Index = nullptr,
 
                          bool GenerateHash = false,
 
                          ModuleHash *ModHash = nullptr);
 
 
 
  /// Write the specified thin link bitcode file (i.e., the minimized bitcode
 
  /// file) to the given raw output stream, where it will be written in a new
 
  /// bitcode block. The thin link bitcode file is used for thin link, and it
 
  /// only contains the necessary information for thin link.
 
  ///
 
  /// ModHash is for use in ThinLTO incremental build, generated while the IR
 
  /// bitcode file writing.
 
  void writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
 
                                  const ModuleSummaryIndex &Index,
 
                                  const ModuleHash &ModHash);
 
 
 
  /// Write the specified module summary index to the given raw output stream,
 
  /// where it will be written in a new bitcode block. This is used when
 
  /// writing the combined index file for ThinLTO. When writing a subset of the
 
  /// index for a distributed backend, provide the \p ModuleToSummariesForIndex
 
  /// map.
 
  void writeIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out,
 
                        const std::map<std::string, GVSummaryMapTy>
 
                            *ModuleToSummariesForIndex = nullptr);
 
 
 
  /// If EmbedBitcode is set, save a copy of the llvm IR as data in the
 
  ///  __LLVM,__bitcode section (.llvmbc on non-MacOS).
 
  /// If available, pass the serialized module via the Buf parameter. If not,
 
  /// pass an empty (default-initialized) MemoryBufferRef, and the serialization
 
  /// will be handled by this API. The same behavior happens if the provided Buf
 
  /// is not bitcode (i.e. if it's invalid data or even textual LLVM assembly).
 
  /// If EmbedCmdline is set, the command line is also exported in
 
  /// the corresponding section (__LLVM,_cmdline / .llvmcmd) - even if CmdArgs
 
  /// were empty.
 
  void embedBitcodeInModule(Module &M, MemoryBufferRef Buf, bool EmbedBitcode,
 
                            bool EmbedCmdline,
 
                            const std::vector<uint8_t> &CmdArgs);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_BITCODE_BITCODEWRITER_H