Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- llvm/Bitcode/BitcodeReader.h - Bitcode reader ------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This header defines interfaces to read LLVM bitcode files/streams.
  10. //
  11. //===----------------------------------------------------------------------===//
  12.  
  13. #ifndef LLVM_BITCODE_BITCODEREADER_H
  14. #define LLVM_BITCODE_BITCODEREADER_H
  15.  
  16. #include "llvm/ADT/ArrayRef.h"
  17. #include "llvm/ADT/StringRef.h"
  18. #include "llvm/Bitstream/BitCodeEnums.h"
  19. #include "llvm/IR/GlobalValue.h"
  20. #include "llvm/Support/Endian.h"
  21. #include "llvm/Support/Error.h"
  22. #include "llvm/Support/ErrorOr.h"
  23. #include "llvm/Support/MemoryBufferRef.h"
  24. #include <cstdint>
  25. #include <memory>
  26. #include <optional>
  27. #include <string>
  28. #include <system_error>
  29. #include <vector>
  30. namespace llvm {
  31.  
  32. class LLVMContext;
  33. class Module;
  34. class MemoryBuffer;
  35. class Metadata;
  36. class ModuleSummaryIndex;
  37. class Type;
  38. class Value;
  39.  
  40. // Callback to override the data layout string of an imported bitcode module.
  41. // The first argument is the target triple, the second argument the data layout
  42. // string from the input, or a default string. It will be used if the callback
  43. // returns std::nullopt.
  44. typedef std::function<std::optional<std::string>(StringRef, StringRef)>
  45.     DataLayoutCallbackFuncTy;
  46.  
  47. typedef std::function<Type *(unsigned)> GetTypeByIDTy;
  48.  
  49. typedef std::function<unsigned(unsigned, unsigned)> GetContainedTypeIDTy;
  50.  
  51. typedef std::function<void(Value *, unsigned, GetTypeByIDTy,
  52.                            GetContainedTypeIDTy)>
  53.     ValueTypeCallbackTy;
  54.  
  55. typedef std::function<void(Metadata **, unsigned, GetTypeByIDTy,
  56.                            GetContainedTypeIDTy)>
  57.     MDTypeCallbackTy;
  58.  
  59. // These functions are for converting Expected/Error values to
  60. // ErrorOr/std::error_code for compatibility with legacy clients. FIXME:
  61. // Remove these functions once no longer needed by the C and libLTO APIs.
  62.  
  63. std::error_code errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, Error Err);
  64.  
  65. template <typename T>
  66. ErrorOr<T> expectedToErrorOrAndEmitErrors(LLVMContext &Ctx, Expected<T> Val) {
  67.   if (!Val)
  68.     return errorToErrorCodeAndEmitErrors(Ctx, Val.takeError());
  69.   return std::move(*Val);
  70. }
  71.  
  72. struct ParserCallbacks {
  73.   std::optional<DataLayoutCallbackFuncTy> DataLayout;
  74.   /// The ValueType callback is called for every function definition or
  75.   /// declaration and allows accessing the type information, also behind
  76.   /// pointers. This can be useful, when the opaque pointer upgrade cleans all
  77.   /// type information behind pointers.
  78.   /// The second argument to ValueTypeCallback is the type ID of the
  79.   /// function, the two passed functions can be used to extract type
  80.   /// information.
  81.   std::optional<ValueTypeCallbackTy> ValueType;
  82.   /// The MDType callback is called for every value in metadata.
  83.   std::optional<MDTypeCallbackTy> MDType;
  84.  
  85.   ParserCallbacks() = default;
  86.   explicit ParserCallbacks(DataLayoutCallbackFuncTy DataLayout)
  87.       : DataLayout(DataLayout) {}
  88. };
  89.  
  90.   struct BitcodeFileContents;
  91.  
  92.   /// Basic information extracted from a bitcode module to be used for LTO.
  93.   struct BitcodeLTOInfo {
  94.     bool IsThinLTO;
  95.     bool HasSummary;
  96.     bool EnableSplitLTOUnit;
  97.   };
  98.  
  99.   /// Represents a module in a bitcode file.
  100.   class BitcodeModule {
  101.     // This covers the identification (if present) and module blocks.
  102.     ArrayRef<uint8_t> Buffer;
  103.     StringRef ModuleIdentifier;
  104.  
  105.     // The string table used to interpret this module.
  106.     StringRef Strtab;
  107.  
  108.     // The bitstream location of the IDENTIFICATION_BLOCK.
  109.     uint64_t IdentificationBit;
  110.  
  111.     // The bitstream location of this module's MODULE_BLOCK.
  112.     uint64_t ModuleBit;
  113.  
  114.     BitcodeModule(ArrayRef<uint8_t> Buffer, StringRef ModuleIdentifier,
  115.                   uint64_t IdentificationBit, uint64_t ModuleBit)
  116.         : Buffer(Buffer), ModuleIdentifier(ModuleIdentifier),
  117.           IdentificationBit(IdentificationBit), ModuleBit(ModuleBit) {}
  118.  
  119.     // Calls the ctor.
  120.     friend Expected<BitcodeFileContents>
  121.     getBitcodeFileContents(MemoryBufferRef Buffer);
  122.  
  123.     Expected<std::unique_ptr<Module>>
  124.     getModuleImpl(LLVMContext &Context, bool MaterializeAll,
  125.                   bool ShouldLazyLoadMetadata, bool IsImporting,
  126.                   ParserCallbacks Callbacks = {});
  127.  
  128.   public:
  129.     StringRef getBuffer() const {
  130.       return StringRef((const char *)Buffer.begin(), Buffer.size());
  131.     }
  132.  
  133.     StringRef getStrtab() const { return Strtab; }
  134.  
  135.     StringRef getModuleIdentifier() const { return ModuleIdentifier; }
  136.  
  137.     /// Read the bitcode module and prepare for lazy deserialization of function
  138.     /// bodies. If ShouldLazyLoadMetadata is true, lazily load metadata as well.
  139.     /// If IsImporting is true, this module is being parsed for ThinLTO
  140.     /// importing into another module.
  141.     Expected<std::unique_ptr<Module>>
  142.     getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
  143.                   bool IsImporting, ParserCallbacks Callbacks = {});
  144.  
  145.     /// Read the entire bitcode module and return it.
  146.     Expected<std::unique_ptr<Module>>
  147.     parseModule(LLVMContext &Context, ParserCallbacks Callbacks = {});
  148.  
  149.     /// Returns information about the module to be used for LTO: whether to
  150.     /// compile with ThinLTO, and whether it has a summary.
  151.     Expected<BitcodeLTOInfo> getLTOInfo();
  152.  
  153.     /// Parse the specified bitcode buffer, returning the module summary index.
  154.     Expected<std::unique_ptr<ModuleSummaryIndex>> getSummary();
  155.  
  156.     /// Parse the specified bitcode buffer and merge its module summary index
  157.     /// into CombinedIndex.
  158.     Error
  159.     readSummary(ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
  160.                 uint64_t ModuleId,
  161.                 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
  162.   };
  163.  
  164.   struct BitcodeFileContents {
  165.     std::vector<BitcodeModule> Mods;
  166.     StringRef Symtab, StrtabForSymtab;
  167.   };
  168.  
  169.   /// Returns the contents of a bitcode file. This includes the raw contents of
  170.   /// the symbol table embedded in the bitcode file. Clients which require a
  171.   /// symbol table should prefer to use irsymtab::read instead of this function
  172.   /// because it creates a reader for the irsymtab and handles upgrading bitcode
  173.   /// files without a symbol table or with an old symbol table.
  174.   Expected<BitcodeFileContents> getBitcodeFileContents(MemoryBufferRef Buffer);
  175.  
  176.   /// Returns a list of modules in the specified bitcode buffer.
  177.   Expected<std::vector<BitcodeModule>>
  178.   getBitcodeModuleList(MemoryBufferRef Buffer);
  179.  
  180.   /// Read the header of the specified bitcode buffer and prepare for lazy
  181.   /// deserialization of function bodies. If ShouldLazyLoadMetadata is true,
  182.   /// lazily load metadata as well. If IsImporting is true, this module is
  183.   /// being parsed for ThinLTO importing into another module.
  184.   Expected<std::unique_ptr<Module>>
  185.   getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
  186.                        bool ShouldLazyLoadMetadata = false,
  187.                        bool IsImporting = false,
  188.                        ParserCallbacks Callbacks = {});
  189.  
  190.   /// Like getLazyBitcodeModule, except that the module takes ownership of
  191.   /// the memory buffer if successful. If successful, this moves Buffer. On
  192.   /// error, this *does not* move Buffer. If IsImporting is true, this module is
  193.   /// being parsed for ThinLTO importing into another module.
  194.   Expected<std::unique_ptr<Module>> getOwningLazyBitcodeModule(
  195.       std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
  196.       bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
  197.       ParserCallbacks Callbacks = {});
  198.  
  199.   /// Read the header of the specified bitcode buffer and extract just the
  200.   /// triple information. If successful, this returns a string. On error, this
  201.   /// returns "".
  202.   Expected<std::string> getBitcodeTargetTriple(MemoryBufferRef Buffer);
  203.  
  204.   /// Return true if \p Buffer contains a bitcode file with ObjC code (category
  205.   /// or class) in it.
  206.   Expected<bool> isBitcodeContainingObjCCategory(MemoryBufferRef Buffer);
  207.  
  208.   /// Read the header of the specified bitcode buffer and extract just the
  209.   /// producer string information. If successful, this returns a string. On
  210.   /// error, this returns "".
  211.   Expected<std::string> getBitcodeProducerString(MemoryBufferRef Buffer);
  212.  
  213.   /// Read the specified bitcode file, returning the module.
  214.   Expected<std::unique_ptr<Module>>
  215.   parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
  216.                    ParserCallbacks Callbacks = {});
  217.  
  218.   /// Returns LTO information for the specified bitcode file.
  219.   Expected<BitcodeLTOInfo> getBitcodeLTOInfo(MemoryBufferRef Buffer);
  220.  
  221.   /// Parse the specified bitcode buffer, returning the module summary index.
  222.   Expected<std::unique_ptr<ModuleSummaryIndex>>
  223.   getModuleSummaryIndex(MemoryBufferRef Buffer);
  224.  
  225.   /// Parse the specified bitcode buffer and merge the index into CombinedIndex.
  226.   Error readModuleSummaryIndex(MemoryBufferRef Buffer,
  227.                                ModuleSummaryIndex &CombinedIndex,
  228.                                uint64_t ModuleId);
  229.  
  230.   /// Parse the module summary index out of an IR file and return the module
  231.   /// summary index object if found, or an empty summary if not. If Path refers
  232.   /// to an empty file and IgnoreEmptyThinLTOIndexFile is true, then
  233.   /// this function will return nullptr.
  234.   Expected<std::unique_ptr<ModuleSummaryIndex>>
  235.   getModuleSummaryIndexForFile(StringRef Path,
  236.                                bool IgnoreEmptyThinLTOIndexFile = false);
  237.  
  238.   /// isBitcodeWrapper - Return true if the given bytes are the magic bytes
  239.   /// for an LLVM IR bitcode wrapper.
  240.   inline bool isBitcodeWrapper(const unsigned char *BufPtr,
  241.                                const unsigned char *BufEnd) {
  242.     // See if you can find the hidden message in the magic bytes :-).
  243.     // (Hint: it's a little-endian encoding.)
  244.     return BufPtr != BufEnd &&
  245.            BufPtr[0] == 0xDE &&
  246.            BufPtr[1] == 0xC0 &&
  247.            BufPtr[2] == 0x17 &&
  248.            BufPtr[3] == 0x0B;
  249.   }
  250.  
  251.   /// isRawBitcode - Return true if the given bytes are the magic bytes for
  252.   /// raw LLVM IR bitcode (without a wrapper).
  253.   inline bool isRawBitcode(const unsigned char *BufPtr,
  254.                            const unsigned char *BufEnd) {
  255.     // These bytes sort of have a hidden message, but it's not in
  256.     // little-endian this time, and it's a little redundant.
  257.     return BufPtr != BufEnd &&
  258.            BufPtr[0] == 'B' &&
  259.            BufPtr[1] == 'C' &&
  260.            BufPtr[2] == 0xc0 &&
  261.            BufPtr[3] == 0xde;
  262.   }
  263.  
  264.   /// isBitcode - Return true if the given bytes are the magic bytes for
  265.   /// LLVM IR bitcode, either with or without a wrapper.
  266.   inline bool isBitcode(const unsigned char *BufPtr,
  267.                         const unsigned char *BufEnd) {
  268.     return isBitcodeWrapper(BufPtr, BufEnd) ||
  269.            isRawBitcode(BufPtr, BufEnd);
  270.   }
  271.  
  272.   /// SkipBitcodeWrapperHeader - Some systems wrap bc files with a special
  273.   /// header for padding or other reasons.  The format of this header is:
  274.   ///
  275.   /// struct bc_header {
  276.   ///   uint32_t Magic;         // 0x0B17C0DE
  277.   ///   uint32_t Version;       // Version, currently always 0.
  278.   ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  279.   ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
  280.   ///   ... potentially other gunk ...
  281.   /// };
  282.   ///
  283.   /// This function is called when we find a file with a matching magic number.
  284.   /// In this case, skip down to the subsection of the file that is actually a
  285.   /// BC file.
  286.   /// If 'VerifyBufferSize' is true, check that the buffer is large enough to
  287.   /// contain the whole bitcode file.
  288.   inline bool SkipBitcodeWrapperHeader(const unsigned char *&BufPtr,
  289.                                        const unsigned char *&BufEnd,
  290.                                        bool VerifyBufferSize) {
  291.     // Must contain the offset and size field!
  292.     if (unsigned(BufEnd - BufPtr) < BWH_SizeField + 4)
  293.       return true;
  294.  
  295.     unsigned Offset = support::endian::read32le(&BufPtr[BWH_OffsetField]);
  296.     unsigned Size = support::endian::read32le(&BufPtr[BWH_SizeField]);
  297.     uint64_t BitcodeOffsetEnd = (uint64_t)Offset + (uint64_t)Size;
  298.  
  299.     // Verify that Offset+Size fits in the file.
  300.     if (VerifyBufferSize && BitcodeOffsetEnd > uint64_t(BufEnd-BufPtr))
  301.       return true;
  302.     BufPtr += Offset;
  303.     BufEnd = BufPtr+Size;
  304.     return false;
  305.   }
  306.  
  307.   APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits);
  308.  
  309.   const std::error_category &BitcodeErrorCategory();
  310.   enum class BitcodeError { CorruptedBitcode = 1 };
  311.   inline std::error_code make_error_code(BitcodeError E) {
  312.     return std::error_code(static_cast<int>(E), BitcodeErrorCategory());
  313.   }
  314.  
  315. } // end namespace llvm
  316.  
  317. namespace std {
  318.  
  319. template <> struct is_error_code_enum<llvm::BitcodeError> : std::true_type {};
  320.  
  321. } // end namespace std
  322.  
  323. #endif // LLVM_BITCODE_BITCODEREADER_H
  324.