Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- TrainingLogger.h - mlgo feature/reward logging  ----------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // The design goals of the logger are:
  10. // - no dependencies that llvm doesn't already have.
  11. // - support streaming, so that we don't need to buffer data during compilation
  12. // - 0-decoding tensor values. Tensor values are potentially very large buffers
  13. // of scalars. Because of their potentially large size, avoiding
  14. // serialization/deserialization overhead is preferred.
  15. //
  16. // The simple logger produces an output of the form (each line item on its line)
  17. // - header: a json object describing the data that will follow.
  18. // - context: e.g. function name, for regalloc, or "default" for module-wide
  19. // optimizations like the inliner. This is the context to which the subsequent
  20. // data corresponds.
  21. // - observation number.
  22. // - tensor values - raw bytes of the tensors, in the order given in the header.
  23. // The values are in succession, i.e. no separator is found between successive
  24. // tensor values. At the end, there is a new line character.
  25. // - [score] - this is optional, and is present if it was present in the header.
  26. // Currently, for final rewards, we output "0" scores after each observation,
  27. // except for the last one.
  28. // <repeat>
  29. // The file should be read as binary, but the reason we use newlines is mostly
  30. // ease of debugging: the log can be opened in a text editor and, while tensor
  31. // values are inscrutable, at least the sequence of data can be easily observed.
  32. // Of course, the buffer of tensor values could contain '\n' bytes. A reader
  33. // should use the header information to know how much data to read for the
  34. // tensor values, and not use line information for that.
  35. //
  36. // An example reader, used for test, is available at
  37. // Analysis/models/log_reader.py
  38. //
  39. // Example:
  40. // {"features":[list of TensorSpecs], "score":<a tensor spec>}
  41. // {"context": "aFunction"}
  42. // {"observation": 0}
  43. // <bytes>
  44. // {"outcome": 0}
  45. // <bytes for the tensor corresponding to the "score" spec in the header>
  46. // {"observation": 1}
  47. // ...
  48. // {"context": "anotherFunction"}
  49. // {"observation": 0}
  50. // ...
  51. //
  52.  
  53. #ifndef LLVM_ANALYSIS_UTILS_TRAININGLOGGER_H
  54. #define LLVM_ANALYSIS_UTILS_TRAININGLOGGER_H
  55.  
  56. #include "llvm/Config/llvm-config.h"
  57.  
  58. #include "llvm/ADT/StringMap.h"
  59. #include "llvm/Analysis/TensorSpec.h"
  60. #include "llvm/IR/LLVMContext.h"
  61. #include "llvm/Support/JSON.h"
  62.  
  63. #include <memory>
  64. #include <optional>
  65. #include <vector>
  66.  
  67. namespace llvm {
  68.  
  69. /// Logging utility - given an ordered specification of features, and assuming
  70. /// a scalar reward, allow logging feature values and rewards.
  71. /// The assumption is that, for an event to be logged (i.e. a set of feature
  72. /// values and a reward), the user calls the log* API for each feature exactly
  73. /// once, providing the index matching the position in the feature spec list
  74. /// provided at construction. The example assumes the first feature's element
  75. /// type is float, the second is int64, and the reward is float:
  76. ///
  77. /// event 0:
  78. ///   logFloatValue(0, ...)
  79. ///   logInt64Value(1, ...)
  80. ///   ...
  81. ///   logFloatReward(...)
  82. /// event 1:
  83. ///   logFloatValue(0, ...)
  84. ///   logInt64Value(1, ...)
  85. ///   ...
  86. ///   logFloatReward(...)
  87. ///
  88. /// At the end, call print to generate the log.
  89. /// Alternatively, don't call logReward at the end of each event, just
  90. /// log{Float|Int32|Int64}FinalReward at the end.
  91. class Logger final {
  92.   std::unique_ptr<raw_ostream> OS;
  93.   const std::vector<TensorSpec> FeatureSpecs;
  94.   const TensorSpec RewardSpec;
  95.   const bool IncludeReward;
  96.   StringMap<size_t> ObservationIDs;
  97.   std::string CurrentContext;
  98.  
  99.   void writeHeader();
  100.   void writeTensor(const TensorSpec &Spec, const char *RawData) {
  101.     OS->write(RawData, Spec.getTotalTensorBufferSize());
  102.   }
  103.   void logRewardImpl(const char *RawData);
  104.  
  105. public:
  106.   /// Construct a Logger. If IncludeReward is false, then logReward or
  107.   /// logFinalReward shouldn't be called, and the reward feature won't be
  108.   /// printed out.
  109.   /// NOTE: the FeatureSpecs are expected to be in the same order (i.e. have
  110.   /// corresponding indices) with any MLModelRunner implementations
  111.   /// corresponding to the model being trained/logged.
  112.   Logger(std::unique_ptr<raw_ostream> OS,
  113.          const std::vector<TensorSpec> &FeatureSpecs,
  114.          const TensorSpec &RewardSpec, bool IncludeReward);
  115.  
  116.   void switchContext(StringRef Name);
  117.   void startObservation();
  118.   void endObservation();
  119.  
  120.   const std::string &currentContext() const { return CurrentContext; }
  121.  
  122.   bool hasObservationInProgress() const {
  123.     return ObservationIDs.find(CurrentContext) != ObservationIDs.end();
  124.   }
  125.  
  126.   template <typename T> void logReward(T Value) {
  127.     logRewardImpl(reinterpret_cast<const char *>(&Value));
  128.   }
  129.  
  130.   void logTensorValue(size_t FeatureID, const char *RawData) {
  131.     writeTensor(FeatureSpecs[FeatureID], RawData);
  132.   }
  133. };
  134.  
  135. } // namespace llvm
  136. #endif // LLVM_ANALYSIS_UTILS_TRAININGLOGGER_H
  137.