Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. /// \file
  9. /// This pass exposes codegen information to IR-level passes. Every
  10. /// transformation that uses codegen information is broken into three parts:
  11. /// 1. The IR-level analysis pass.
  12. /// 2. The IR-level transformation interface which provides the needed
  13. ///    information.
  14. /// 3. Codegen-level implementation which uses target-specific hooks.
  15. ///
  16. /// This file defines #2, which is the interface that IR-level transformations
  17. /// use for querying the codegen.
  18. ///
  19. //===----------------------------------------------------------------------===//
  20.  
  21. #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
  22. #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
  23.  
  24. #include "llvm/ADT/SmallBitVector.h"
  25. #include "llvm/IR/FMF.h"
  26. #include "llvm/IR/InstrTypes.h"
  27. #include "llvm/IR/PassManager.h"
  28. #include "llvm/Pass.h"
  29. #include "llvm/Support/AtomicOrdering.h"
  30. #include "llvm/Support/BranchProbability.h"
  31. #include "llvm/Support/InstructionCost.h"
  32. #include <functional>
  33. #include <optional>
  34. #include <utility>
  35.  
  36. namespace llvm {
  37.  
  38. namespace Intrinsic {
  39. typedef unsigned ID;
  40. }
  41.  
  42. class AssumptionCache;
  43. class BlockFrequencyInfo;
  44. class DominatorTree;
  45. class BranchInst;
  46. class CallBase;
  47. class Function;
  48. class GlobalValue;
  49. class InstCombiner;
  50. class OptimizationRemarkEmitter;
  51. class InterleavedAccessInfo;
  52. class IntrinsicInst;
  53. class LoadInst;
  54. class Loop;
  55. class LoopInfo;
  56. class LoopVectorizationLegality;
  57. class ProfileSummaryInfo;
  58. class RecurrenceDescriptor;
  59. class SCEV;
  60. class ScalarEvolution;
  61. class StoreInst;
  62. class SwitchInst;
  63. class TargetLibraryInfo;
  64. class Type;
  65. class User;
  66. class Value;
  67. class VPIntrinsic;
  68. struct KnownBits;
  69.  
  70. /// Information about a load/store intrinsic defined by the target.
  71. struct MemIntrinsicInfo {
  72.   /// This is the pointer that the intrinsic is loading from or storing to.
  73.   /// If this is non-null, then analysis/optimization passes can assume that
  74.   /// this intrinsic is functionally equivalent to a load/store from this
  75.   /// pointer.
  76.   Value *PtrVal = nullptr;
  77.  
  78.   // Ordering for atomic operations.
  79.   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
  80.  
  81.   // Same Id is set by the target for corresponding load/store intrinsics.
  82.   unsigned short MatchingId = 0;
  83.  
  84.   bool ReadMem = false;
  85.   bool WriteMem = false;
  86.   bool IsVolatile = false;
  87.  
  88.   bool isUnordered() const {
  89.     return (Ordering == AtomicOrdering::NotAtomic ||
  90.             Ordering == AtomicOrdering::Unordered) &&
  91.            !IsVolatile;
  92.   }
  93. };
  94.  
  95. /// Attributes of a target dependent hardware loop.
  96. struct HardwareLoopInfo {
  97.   HardwareLoopInfo() = delete;
  98.   HardwareLoopInfo(Loop *L) : L(L) {}
  99.   Loop *L = nullptr;
  100.   BasicBlock *ExitBlock = nullptr;
  101.   BranchInst *ExitBranch = nullptr;
  102.   const SCEV *ExitCount = nullptr;
  103.   IntegerType *CountType = nullptr;
  104.   Value *LoopDecrement = nullptr; // Decrement the loop counter by this
  105.                                   // value in every iteration.
  106.   bool IsNestingLegal = false;    // Can a hardware loop be a parent to
  107.                                   // another hardware loop?
  108.   bool CounterInReg = false;      // Should loop counter be updated in
  109.                                   // the loop via a phi?
  110.   bool PerformEntryTest = false;  // Generate the intrinsic which also performs
  111.                                   // icmp ne zero on the loop counter value and
  112.                                   // produces an i1 to guard the loop entry.
  113.   bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
  114.                                DominatorTree &DT, bool ForceNestedLoop = false,
  115.                                bool ForceHardwareLoopPHI = false);
  116.   bool canAnalyze(LoopInfo &LI);
  117. };
  118.  
  119. class IntrinsicCostAttributes {
  120.   const IntrinsicInst *II = nullptr;
  121.   Type *RetTy = nullptr;
  122.   Intrinsic::ID IID;
  123.   SmallVector<Type *, 4> ParamTys;
  124.   SmallVector<const Value *, 4> Arguments;
  125.   FastMathFlags FMF;
  126.   // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
  127.   // arguments and the return value will be computed based on types.
  128.   InstructionCost ScalarizationCost = InstructionCost::getInvalid();
  129.  
  130. public:
  131.   IntrinsicCostAttributes(
  132.       Intrinsic::ID Id, const CallBase &CI,
  133.       InstructionCost ScalarCost = InstructionCost::getInvalid(),
  134.       bool TypeBasedOnly = false);
  135.  
  136.   IntrinsicCostAttributes(
  137.       Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
  138.       FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
  139.       InstructionCost ScalarCost = InstructionCost::getInvalid());
  140.  
  141.   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
  142.                           ArrayRef<const Value *> Args);
  143.  
  144.   IntrinsicCostAttributes(
  145.       Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args,
  146.       ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(),
  147.       const IntrinsicInst *I = nullptr,
  148.       InstructionCost ScalarCost = InstructionCost::getInvalid());
  149.  
  150.   Intrinsic::ID getID() const { return IID; }
  151.   const IntrinsicInst *getInst() const { return II; }
  152.   Type *getReturnType() const { return RetTy; }
  153.   FastMathFlags getFlags() const { return FMF; }
  154.   InstructionCost getScalarizationCost() const { return ScalarizationCost; }
  155.   const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
  156.   const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
  157.  
  158.   bool isTypeBasedOnly() const {
  159.     return Arguments.empty();
  160.   }
  161.  
  162.   bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
  163. };
  164.  
  165. enum class PredicationStyle { None, Data, DataAndControlFlow };
  166.  
  167. class TargetTransformInfo;
  168. typedef TargetTransformInfo TTI;
  169.  
  170. /// This pass provides access to the codegen interfaces that are needed
  171. /// for IR-level transformations.
  172. class TargetTransformInfo {
  173. public:
  174.   /// Construct a TTI object using a type implementing the \c Concept
  175.   /// API below.
  176.   ///
  177.   /// This is used by targets to construct a TTI wrapping their target-specific
  178.   /// implementation that encodes appropriate costs for their target.
  179.   template <typename T> TargetTransformInfo(T Impl);
  180.  
  181.   /// Construct a baseline TTI object using a minimal implementation of
  182.   /// the \c Concept API below.
  183.   ///
  184.   /// The TTI implementation will reflect the information in the DataLayout
  185.   /// provided if non-null.
  186.   explicit TargetTransformInfo(const DataLayout &DL);
  187.  
  188.   // Provide move semantics.
  189.   TargetTransformInfo(TargetTransformInfo &&Arg);
  190.   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
  191.  
  192.   // We need to define the destructor out-of-line to define our sub-classes
  193.   // out-of-line.
  194.   ~TargetTransformInfo();
  195.  
  196.   /// Handle the invalidation of this information.
  197.   ///
  198.   /// When used as a result of \c TargetIRAnalysis this method will be called
  199.   /// when the function this was computed for changes. When it returns false,
  200.   /// the information is preserved across those changes.
  201.   bool invalidate(Function &, const PreservedAnalyses &,
  202.                   FunctionAnalysisManager::Invalidator &) {
  203.     // FIXME: We should probably in some way ensure that the subtarget
  204.     // information for a function hasn't changed.
  205.     return false;
  206.   }
  207.  
  208.   /// \name Generic Target Information
  209.   /// @{
  210.  
  211.   /// The kind of cost model.
  212.   ///
  213.   /// There are several different cost models that can be customized by the
  214.   /// target. The normalization of each cost model may be target specific.
  215.   /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
  216.   /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
  217.   enum TargetCostKind {
  218.     TCK_RecipThroughput, ///< Reciprocal throughput.
  219.     TCK_Latency,         ///< The latency of instruction.
  220.     TCK_CodeSize,        ///< Instruction code size.
  221.     TCK_SizeAndLatency   ///< The weighted sum of size and latency.
  222.   };
  223.  
  224.   /// Underlying constants for 'cost' values in this interface.
  225.   ///
  226.   /// Many APIs in this interface return a cost. This enum defines the
  227.   /// fundamental values that should be used to interpret (and produce) those
  228.   /// costs. The costs are returned as an int rather than a member of this
  229.   /// enumeration because it is expected that the cost of one IR instruction
  230.   /// may have a multiplicative factor to it or otherwise won't fit directly
  231.   /// into the enum. Moreover, it is common to sum or average costs which works
  232.   /// better as simple integral values. Thus this enum only provides constants.
  233.   /// Also note that the returned costs are signed integers to make it natural
  234.   /// to add, subtract, and test with zero (a common boundary condition). It is
  235.   /// not expected that 2^32 is a realistic cost to be modeling at any point.
  236.   ///
  237.   /// Note that these costs should usually reflect the intersection of code-size
  238.   /// cost and execution cost. A free instruction is typically one that folds
  239.   /// into another instruction. For example, reg-to-reg moves can often be
  240.   /// skipped by renaming the registers in the CPU, but they still are encoded
  241.   /// and thus wouldn't be considered 'free' here.
  242.   enum TargetCostConstants {
  243.     TCC_Free = 0,     ///< Expected to fold away in lowering.
  244.     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
  245.     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
  246.   };
  247.  
  248.   /// Estimate the cost of a GEP operation when lowered.
  249.   InstructionCost
  250.   getGEPCost(Type *PointeeType, const Value *Ptr,
  251.              ArrayRef<const Value *> Operands,
  252.              TargetCostKind CostKind = TCK_SizeAndLatency) const;
  253.  
  254.   /// \returns A value by which our inlining threshold should be multiplied.
  255.   /// This is primarily used to bump up the inlining threshold wholesale on
  256.   /// targets where calls are unusually expensive.
  257.   ///
  258.   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
  259.   /// individual classes of instructions would be better.
  260.   unsigned getInliningThresholdMultiplier() const;
  261.  
  262.   /// \returns A value to be added to the inlining threshold.
  263.   unsigned adjustInliningThreshold(const CallBase *CB) const;
  264.  
  265.   /// \returns Vector bonus in percent.
  266.   ///
  267.   /// Vector bonuses: We want to more aggressively inline vector-dense kernels
  268.   /// and apply this bonus based on the percentage of vector instructions. A
  269.   /// bonus is applied if the vector instructions exceed 50% and half that
  270.   /// amount is applied if it exceeds 10%. Note that these bonuses are some what
  271.   /// arbitrary and evolved over time by accident as much as because they are
  272.   /// principled bonuses.
  273.   /// FIXME: It would be nice to base the bonus values on something more
  274.   /// scientific. A target may has no bonus on vector instructions.
  275.   int getInlinerVectorBonusPercent() const;
  276.  
  277.   /// \return the expected cost of a memcpy, which could e.g. depend on the
  278.   /// source/destination type and alignment and the number of bytes copied.
  279.   InstructionCost getMemcpyCost(const Instruction *I) const;
  280.  
  281.   /// \return The estimated number of case clusters when lowering \p 'SI'.
  282.   /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
  283.   /// table.
  284.   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
  285.                                             unsigned &JTSize,
  286.                                             ProfileSummaryInfo *PSI,
  287.                                             BlockFrequencyInfo *BFI) const;
  288.  
  289.   /// Estimate the cost of a given IR user when lowered.
  290.   ///
  291.   /// This can estimate the cost of either a ConstantExpr or Instruction when
  292.   /// lowered.
  293.   ///
  294.   /// \p Operands is a list of operands which can be a result of transformations
  295.   /// of the current operands. The number of the operands on the list must equal
  296.   /// to the number of the current operands the IR user has. Their order on the
  297.   /// list must be the same as the order of the current operands the IR user
  298.   /// has.
  299.   ///
  300.   /// The returned cost is defined in terms of \c TargetCostConstants, see its
  301.   /// comments for a detailed explanation of the cost values.
  302.   InstructionCost getInstructionCost(const User *U,
  303.                                      ArrayRef<const Value *> Operands,
  304.                                      TargetCostKind CostKind) const;
  305.  
  306.   /// This is a helper function which calls the three-argument
  307.   /// getInstructionCost with \p Operands which are the current operands U has.
  308.   InstructionCost getInstructionCost(const User *U,
  309.                                      TargetCostKind CostKind) const {
  310.     SmallVector<const Value *, 4> Operands(U->operand_values());
  311.     return getInstructionCost(U, Operands, CostKind);
  312.   }
  313.  
  314.   /// If a branch or a select condition is skewed in one direction by more than
  315.   /// this factor, it is very likely to be predicted correctly.
  316.   BranchProbability getPredictableBranchThreshold() const;
  317.  
  318.   /// Return true if branch divergence exists.
  319.   ///
  320.   /// Branch divergence has a significantly negative impact on GPU performance
  321.   /// when threads in the same wavefront take different paths due to conditional
  322.   /// branches.
  323.   bool hasBranchDivergence() const;
  324.  
  325.   /// Return true if the target prefers to use GPU divergence analysis to
  326.   /// replace the legacy version.
  327.   bool useGPUDivergenceAnalysis() const;
  328.  
  329.   /// Returns whether V is a source of divergence.
  330.   ///
  331.   /// This function provides the target-dependent information for
  332.   /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
  333.   /// first builds the dependency graph, and then runs the reachability
  334.   /// algorithm starting with the sources of divergence.
  335.   bool isSourceOfDivergence(const Value *V) const;
  336.  
  337.   // Returns true for the target specific
  338.   // set of operations which produce uniform result
  339.   // even taking non-uniform arguments
  340.   bool isAlwaysUniform(const Value *V) const;
  341.  
  342.   /// Returns the address space ID for a target's 'flat' address space. Note
  343.   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
  344.   /// refers to as the generic address space. The flat address space is a
  345.   /// generic address space that can be used access multiple segments of memory
  346.   /// with different address spaces. Access of a memory location through a
  347.   /// pointer with this address space is expected to be legal but slower
  348.   /// compared to the same memory location accessed through a pointer with a
  349.   /// different address space.
  350.   //
  351.   /// This is for targets with different pointer representations which can
  352.   /// be converted with the addrspacecast instruction. If a pointer is converted
  353.   /// to this address space, optimizations should attempt to replace the access
  354.   /// with the source address space.
  355.   ///
  356.   /// \returns ~0u if the target does not have such a flat address space to
  357.   /// optimize away.
  358.   unsigned getFlatAddressSpace() const;
  359.  
  360.   /// Return any intrinsic address operand indexes which may be rewritten if
  361.   /// they use a flat address space pointer.
  362.   ///
  363.   /// \returns true if the intrinsic was handled.
  364.   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
  365.                                   Intrinsic::ID IID) const;
  366.  
  367.   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
  368.  
  369.   /// Return true if globals in this address space can have initializers other
  370.   /// than `undef`.
  371.   bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const;
  372.  
  373.   unsigned getAssumedAddrSpace(const Value *V) const;
  374.  
  375.   bool isSingleThreaded() const;
  376.  
  377.   std::pair<const Value *, unsigned>
  378.   getPredicatedAddrSpace(const Value *V) const;
  379.  
  380.   /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
  381.   /// NewV, which has a different address space. This should happen for every
  382.   /// operand index that collectFlatAddressOperands returned for the intrinsic.
  383.   /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
  384.   /// new value (which may be the original \p II with modified operands).
  385.   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
  386.                                           Value *NewV) const;
  387.  
  388.   /// Test whether calls to a function lower to actual program function
  389.   /// calls.
  390.   ///
  391.   /// The idea is to test whether the program is likely to require a 'call'
  392.   /// instruction or equivalent in order to call the given function.
  393.   ///
  394.   /// FIXME: It's not clear that this is a good or useful query API. Client's
  395.   /// should probably move to simpler cost metrics using the above.
  396.   /// Alternatively, we could split the cost interface into distinct code-size
  397.   /// and execution-speed costs. This would allow modelling the core of this
  398.   /// query more accurately as a call is a single small instruction, but
  399.   /// incurs significant execution cost.
  400.   bool isLoweredToCall(const Function *F) const;
  401.  
  402.   struct LSRCost {
  403.     /// TODO: Some of these could be merged. Also, a lexical ordering
  404.     /// isn't always optimal.
  405.     unsigned Insns;
  406.     unsigned NumRegs;
  407.     unsigned AddRecCost;
  408.     unsigned NumIVMuls;
  409.     unsigned NumBaseAdds;
  410.     unsigned ImmCost;
  411.     unsigned SetupCost;
  412.     unsigned ScaleCost;
  413.   };
  414.  
  415.   /// Parameters that control the generic loop unrolling transformation.
  416.   struct UnrollingPreferences {
  417.     /// The cost threshold for the unrolled loop. Should be relative to the
  418.     /// getInstructionCost values returned by this API, and the expectation is
  419.     /// that the unrolled loop's instructions when run through that interface
  420.     /// should not exceed this cost. However, this is only an estimate. Also,
  421.     /// specific loops may be unrolled even with a cost above this threshold if
  422.     /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
  423.     /// restriction.
  424.     unsigned Threshold;
  425.     /// If complete unrolling will reduce the cost of the loop, we will boost
  426.     /// the Threshold by a certain percent to allow more aggressive complete
  427.     /// unrolling. This value provides the maximum boost percentage that we
  428.     /// can apply to Threshold (The value should be no less than 100).
  429.     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
  430.     ///                                    MaxPercentThresholdBoost / 100)
  431.     /// E.g. if complete unrolling reduces the loop execution time by 50%
  432.     /// then we boost the threshold by the factor of 2x. If unrolling is not
  433.     /// expected to reduce the running time, then we do not increase the
  434.     /// threshold.
  435.     unsigned MaxPercentThresholdBoost;
  436.     /// The cost threshold for the unrolled loop when optimizing for size (set
  437.     /// to UINT_MAX to disable).
  438.     unsigned OptSizeThreshold;
  439.     /// The cost threshold for the unrolled loop, like Threshold, but used
  440.     /// for partial/runtime unrolling (set to UINT_MAX to disable).
  441.     unsigned PartialThreshold;
  442.     /// The cost threshold for the unrolled loop when optimizing for size, like
  443.     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
  444.     /// UINT_MAX to disable).
  445.     unsigned PartialOptSizeThreshold;
  446.     /// A forced unrolling factor (the number of concatenated bodies of the
  447.     /// original loop in the unrolled loop body). When set to 0, the unrolling
  448.     /// transformation will select an unrolling factor based on the current cost
  449.     /// threshold and other factors.
  450.     unsigned Count;
  451.     /// Default unroll count for loops with run-time trip count.
  452.     unsigned DefaultUnrollRuntimeCount;
  453.     // Set the maximum unrolling factor. The unrolling factor may be selected
  454.     // using the appropriate cost threshold, but may not exceed this number
  455.     // (set to UINT_MAX to disable). This does not apply in cases where the
  456.     // loop is being fully unrolled.
  457.     unsigned MaxCount;
  458.     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
  459.     /// applies even if full unrolling is selected. This allows a target to fall
  460.     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
  461.     unsigned FullUnrollMaxCount;
  462.     // Represents number of instructions optimized when "back edge"
  463.     // becomes "fall through" in unrolled loop.
  464.     // For now we count a conditional branch on a backedge and a comparison
  465.     // feeding it.
  466.     unsigned BEInsns;
  467.     /// Allow partial unrolling (unrolling of loops to expand the size of the
  468.     /// loop body, not only to eliminate small constant-trip-count loops).
  469.     bool Partial;
  470.     /// Allow runtime unrolling (unrolling of loops to expand the size of the
  471.     /// loop body even when the number of loop iterations is not known at
  472.     /// compile time).
  473.     bool Runtime;
  474.     /// Allow generation of a loop remainder (extra iterations after unroll).
  475.     bool AllowRemainder;
  476.     /// Allow emitting expensive instructions (such as divisions) when computing
  477.     /// the trip count of a loop for runtime unrolling.
  478.     bool AllowExpensiveTripCount;
  479.     /// Apply loop unroll on any kind of loop
  480.     /// (mainly to loops that fail runtime unrolling).
  481.     bool Force;
  482.     /// Allow using trip count upper bound to unroll loops.
  483.     bool UpperBound;
  484.     /// Allow unrolling of all the iterations of the runtime loop remainder.
  485.     bool UnrollRemainder;
  486.     /// Allow unroll and jam. Used to enable unroll and jam for the target.
  487.     bool UnrollAndJam;
  488.     /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
  489.     /// value above is used during unroll and jam for the outer loop size.
  490.     /// This value is used in the same manner to limit the size of the inner
  491.     /// loop.
  492.     unsigned UnrollAndJamInnerLoopThreshold;
  493.     /// Don't allow loop unrolling to simulate more than this number of
  494.     /// iterations when checking full unroll profitability
  495.     unsigned MaxIterationsCountToAnalyze;
  496.   };
  497.  
  498.   /// Get target-customized preferences for the generic loop unrolling
  499.   /// transformation. The caller will initialize UP with the current
  500.   /// target-independent defaults.
  501.   void getUnrollingPreferences(Loop *L, ScalarEvolution &,
  502.                                UnrollingPreferences &UP,
  503.                                OptimizationRemarkEmitter *ORE) const;
  504.  
  505.   /// Query the target whether it would be profitable to convert the given loop
  506.   /// into a hardware loop.
  507.   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
  508.                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
  509.                                 HardwareLoopInfo &HWLoopInfo) const;
  510.  
  511.   /// Query the target whether it would be prefered to create a predicated
  512.   /// vector loop, which can avoid the need to emit a scalar epilogue loop.
  513.   bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
  514.                                    AssumptionCache &AC, TargetLibraryInfo *TLI,
  515.                                    DominatorTree *DT,
  516.                                    LoopVectorizationLegality *LVL,
  517.                                    InterleavedAccessInfo *IAI) const;
  518.  
  519.   /// Query the target whether lowering of the llvm.get.active.lane.mask
  520.   /// intrinsic is supported and how the mask should be used. A return value
  521.   /// of PredicationStyle::Data indicates the mask is used as data only,
  522.   /// whereas PredicationStyle::DataAndControlFlow indicates we should also use
  523.   /// the mask for control flow in the loop. If unsupported the return value is
  524.   /// PredicationStyle::None.
  525.   PredicationStyle emitGetActiveLaneMask() const;
  526.  
  527.   // Parameters that control the loop peeling transformation
  528.   struct PeelingPreferences {
  529.     /// A forced peeling factor (the number of bodied of the original loop
  530.     /// that should be peeled off before the loop body). When set to 0, the
  531.     /// a peeling factor based on profile information and other factors.
  532.     unsigned PeelCount;
  533.     /// Allow peeling off loop iterations.
  534.     bool AllowPeeling;
  535.     /// Allow peeling off loop iterations for loop nests.
  536.     bool AllowLoopNestsPeeling;
  537.     /// Allow peeling basing on profile. Uses to enable peeling off all
  538.     /// iterations basing on provided profile.
  539.     /// If the value is true the peeling cost model can decide to peel only
  540.     /// some iterations and in this case it will set this to false.
  541.     bool PeelProfiledIterations;
  542.   };
  543.  
  544.   /// Get target-customized preferences for the generic loop peeling
  545.   /// transformation. The caller will initialize \p PP with the current
  546.   /// target-independent defaults with information from \p L and \p SE.
  547.   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
  548.                              PeelingPreferences &PP) const;
  549.  
  550.   /// Targets can implement their own combinations for target-specific
  551.   /// intrinsics. This function will be called from the InstCombine pass every
  552.   /// time a target-specific intrinsic is encountered.
  553.   ///
  554.   /// \returns std::nullopt to not do anything target specific or a value that
  555.   /// will be returned from the InstCombiner. It is possible to return null and
  556.   /// stop further processing of the intrinsic by returning nullptr.
  557.   std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
  558.                                                     IntrinsicInst & II) const;
  559.   /// Can be used to implement target-specific instruction combining.
  560.   /// \see instCombineIntrinsic
  561.   std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
  562.       InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
  563.       KnownBits & Known, bool &KnownBitsComputed) const;
  564.   /// Can be used to implement target-specific instruction combining.
  565.   /// \see instCombineIntrinsic
  566.   std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
  567.       InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
  568.       APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
  569.       std::function<void(Instruction *, unsigned, APInt, APInt &)>
  570.           SimplifyAndSetOp) const;
  571.   /// @}
  572.  
  573.   /// \name Scalar Target Information
  574.   /// @{
  575.  
  576.   /// Flags indicating the kind of support for population count.
  577.   ///
  578.   /// Compared to the SW implementation, HW support is supposed to
  579.   /// significantly boost the performance when the population is dense, and it
  580.   /// may or may not degrade performance if the population is sparse. A HW
  581.   /// support is considered as "Fast" if it can outperform, or is on a par
  582.   /// with, SW implementation when the population is sparse; otherwise, it is
  583.   /// considered as "Slow".
  584.   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
  585.  
  586.   /// Return true if the specified immediate is legal add immediate, that
  587.   /// is the target has add instructions which can add a register with the
  588.   /// immediate without having to materialize the immediate into a register.
  589.   bool isLegalAddImmediate(int64_t Imm) const;
  590.  
  591.   /// Return true if the specified immediate is legal icmp immediate,
  592.   /// that is the target has icmp instructions which can compare a register
  593.   /// against the immediate without having to materialize the immediate into a
  594.   /// register.
  595.   bool isLegalICmpImmediate(int64_t Imm) const;
  596.  
  597.   /// Return true if the addressing mode represented by AM is legal for
  598.   /// this target, for a load/store of the specified type.
  599.   /// The type may be VoidTy, in which case only return true if the addressing
  600.   /// mode is legal for a load/store of any legal type.
  601.   /// If target returns true in LSRWithInstrQueries(), I may be valid.
  602.   /// TODO: Handle pre/postinc as well.
  603.   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
  604.                              bool HasBaseReg, int64_t Scale,
  605.                              unsigned AddrSpace = 0,
  606.                              Instruction *I = nullptr) const;
  607.  
  608.   /// Return true if LSR cost of C1 is lower than C2.
  609.   bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
  610.                      const TargetTransformInfo::LSRCost &C2) const;
  611.  
  612.   /// Return true if LSR major cost is number of registers. Targets which
  613.   /// implement their own isLSRCostLess and unset number of registers as major
  614.   /// cost should return false, otherwise return true.
  615.   bool isNumRegsMajorCostOfLSR() const;
  616.  
  617.   /// \returns true if LSR should not optimize a chain that includes \p I.
  618.   bool isProfitableLSRChainElement(Instruction *I) const;
  619.  
  620.   /// Return true if the target can fuse a compare and branch.
  621.   /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
  622.   /// calculation for the instructions in a loop.
  623.   bool canMacroFuseCmp() const;
  624.  
  625.   /// Return true if the target can save a compare for loop count, for example
  626.   /// hardware loop saves a compare.
  627.   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
  628.                   DominatorTree *DT, AssumptionCache *AC,
  629.                   TargetLibraryInfo *LibInfo) const;
  630.  
  631.   enum AddressingModeKind {
  632.     AMK_PreIndexed,
  633.     AMK_PostIndexed,
  634.     AMK_None
  635.   };
  636.  
  637.   /// Return the preferred addressing mode LSR should make efforts to generate.
  638.   AddressingModeKind getPreferredAddressingMode(const Loop *L,
  639.                                                 ScalarEvolution *SE) const;
  640.  
  641.   /// Return true if the target supports masked store.
  642.   bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
  643.   /// Return true if the target supports masked load.
  644.   bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
  645.  
  646.   /// Return true if the target supports nontemporal store.
  647.   bool isLegalNTStore(Type *DataType, Align Alignment) const;
  648.   /// Return true if the target supports nontemporal load.
  649.   bool isLegalNTLoad(Type *DataType, Align Alignment) const;
  650.  
  651.   /// \Returns true if the target supports broadcasting a load to a vector of
  652.   /// type <NumElements x ElementTy>.
  653.   bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
  654.  
  655.   /// Return true if the target supports masked scatter.
  656.   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
  657.   /// Return true if the target supports masked gather.
  658.   bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
  659.   /// Return true if the target forces scalarizing of llvm.masked.gather
  660.   /// intrinsics.
  661.   bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
  662.   /// Return true if the target forces scalarizing of llvm.masked.scatter
  663.   /// intrinsics.
  664.   bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
  665.  
  666.   /// Return true if the target supports masked compress store.
  667.   bool isLegalMaskedCompressStore(Type *DataType) const;
  668.   /// Return true if the target supports masked expand load.
  669.   bool isLegalMaskedExpandLoad(Type *DataType) const;
  670.  
  671.   /// Return true if this is an alternating opcode pattern that can be lowered
  672.   /// to a single instruction on the target. In X86 this is for the addsub
  673.   /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
  674.   /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
  675.   /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
  676.   /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
  677.   /// \p VecTy is the vector type of the instruction to be generated.
  678.   bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
  679.                        const SmallBitVector &OpcodeMask) const;
  680.  
  681.   /// Return true if we should be enabling ordered reductions for the target.
  682.   bool enableOrderedReductions() const;
  683.  
  684.   /// Return true if the target has a unified operation to calculate division
  685.   /// and remainder. If so, the additional implicit multiplication and
  686.   /// subtraction required to calculate a remainder from division are free. This
  687.   /// can enable more aggressive transformations for division and remainder than
  688.   /// would typically be allowed using throughput or size cost models.
  689.   bool hasDivRemOp(Type *DataType, bool IsSigned) const;
  690.  
  691.   /// Return true if the given instruction (assumed to be a memory access
  692.   /// instruction) has a volatile variant. If that's the case then we can avoid
  693.   /// addrspacecast to generic AS for volatile loads/stores. Default
  694.   /// implementation returns false, which prevents address space inference for
  695.   /// volatile loads/stores.
  696.   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
  697.  
  698.   /// Return true if target doesn't mind addresses in vectors.
  699.   bool prefersVectorizedAddressing() const;
  700.  
  701.   /// Return the cost of the scaling factor used in the addressing
  702.   /// mode represented by AM for this target, for a load/store
  703.   /// of the specified type.
  704.   /// If the AM is supported, the return value must be >= 0.
  705.   /// If the AM is not supported, it returns a negative value.
  706.   /// TODO: Handle pre/postinc as well.
  707.   InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
  708.                                        int64_t BaseOffset, bool HasBaseReg,
  709.                                        int64_t Scale,
  710.                                        unsigned AddrSpace = 0) const;
  711.  
  712.   /// Return true if the loop strength reduce pass should make
  713.   /// Instruction* based TTI queries to isLegalAddressingMode(). This is
  714.   /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
  715.   /// immediate offset and no index register.
  716.   bool LSRWithInstrQueries() const;
  717.  
  718.   /// Return true if it's free to truncate a value of type Ty1 to type
  719.   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
  720.   /// by referencing its sub-register AX.
  721.   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
  722.  
  723.   /// Return true if it is profitable to hoist instruction in the
  724.   /// then/else to before if.
  725.   bool isProfitableToHoist(Instruction *I) const;
  726.  
  727.   bool useAA() const;
  728.  
  729.   /// Return true if this type is legal.
  730.   bool isTypeLegal(Type *Ty) const;
  731.  
  732.   /// Returns the estimated number of registers required to represent \p Ty.
  733.   unsigned getRegUsageForType(Type *Ty) const;
  734.  
  735.   /// Return true if switches should be turned into lookup tables for the
  736.   /// target.
  737.   bool shouldBuildLookupTables() const;
  738.  
  739.   /// Return true if switches should be turned into lookup tables
  740.   /// containing this constant value for the target.
  741.   bool shouldBuildLookupTablesForConstant(Constant *C) const;
  742.  
  743.   /// Return true if lookup tables should be turned into relative lookup tables.
  744.   bool shouldBuildRelLookupTables() const;
  745.  
  746.   /// Return true if the input function which is cold at all call sites,
  747.   ///  should use coldcc calling convention.
  748.   bool useColdCCForColdCall(Function &F) const;
  749.  
  750.   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
  751.   /// are set if the demanded result elements need to be inserted and/or
  752.   /// extracted from vectors.
  753.   InstructionCost getScalarizationOverhead(VectorType *Ty,
  754.                                            const APInt &DemandedElts,
  755.                                            bool Insert, bool Extract,
  756.                                            TTI::TargetCostKind CostKind) const;
  757.  
  758.   /// Estimate the overhead of scalarizing an instructions unique
  759.   /// non-constant operands. The (potentially vector) types to use for each of
  760.   /// argument are passes via Tys.
  761.   InstructionCost
  762.   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
  763.                                    ArrayRef<Type *> Tys,
  764.                                    TTI::TargetCostKind CostKind) const;
  765.  
  766.   /// If target has efficient vector element load/store instructions, it can
  767.   /// return true here so that insertion/extraction costs are not added to
  768.   /// the scalarization cost of a load/store.
  769.   bool supportsEfficientVectorElementLoadStore() const;
  770.  
  771.   /// If the target supports tail calls.
  772.   bool supportsTailCalls() const;
  773.  
  774.   /// If target supports tail call on \p CB
  775.   bool supportsTailCallFor(const CallBase *CB) const;
  776.  
  777.   /// Don't restrict interleaved unrolling to small loops.
  778.   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
  779.  
  780.   /// Returns options for expansion of memcmp. IsZeroCmp is
  781.   // true if this is the expansion of memcmp(p1, p2, s) == 0.
  782.   struct MemCmpExpansionOptions {
  783.     // Return true if memcmp expansion is enabled.
  784.     operator bool() const { return MaxNumLoads > 0; }
  785.  
  786.     // Maximum number of load operations.
  787.     unsigned MaxNumLoads = 0;
  788.  
  789.     // The list of available load sizes (in bytes), sorted in decreasing order.
  790.     SmallVector<unsigned, 8> LoadSizes;
  791.  
  792.     // For memcmp expansion when the memcmp result is only compared equal or
  793.     // not-equal to 0, allow up to this number of load pairs per block. As an
  794.     // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
  795.     //   a0 = load2bytes &a[0]
  796.     //   b0 = load2bytes &b[0]
  797.     //   a2 = load1byte  &a[2]
  798.     //   b2 = load1byte  &b[2]
  799.     //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
  800.     unsigned NumLoadsPerBlock = 1;
  801.  
  802.     // Set to true to allow overlapping loads. For example, 7-byte compares can
  803.     // be done with two 4-byte compares instead of 4+2+1-byte compares. This
  804.     // requires all loads in LoadSizes to be doable in an unaligned way.
  805.     bool AllowOverlappingLoads = false;
  806.   };
  807.   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
  808.                                                bool IsZeroCmp) const;
  809.  
  810.   /// Should the Select Optimization pass be enabled and ran.
  811.   bool enableSelectOptimize() const;
  812.  
  813.   /// Enable matching of interleaved access groups.
  814.   bool enableInterleavedAccessVectorization() const;
  815.  
  816.   /// Enable matching of interleaved access groups that contain predicated
  817.   /// accesses or gaps and therefore vectorized using masked
  818.   /// vector loads/stores.
  819.   bool enableMaskedInterleavedAccessVectorization() const;
  820.  
  821.   /// Indicate that it is potentially unsafe to automatically vectorize
  822.   /// floating-point operations because the semantics of vector and scalar
  823.   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
  824.   /// does not support IEEE-754 denormal numbers, while depending on the
  825.   /// platform, scalar floating-point math does.
  826.   /// This applies to floating-point math operations and calls, not memory
  827.   /// operations, shuffles, or casts.
  828.   bool isFPVectorizationPotentiallyUnsafe() const;
  829.  
  830.   /// Determine if the target supports unaligned memory accesses.
  831.   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
  832.                                       unsigned AddressSpace = 0,
  833.                                       Align Alignment = Align(1),
  834.                                       unsigned *Fast = nullptr) const;
  835.  
  836.   /// Return hardware support for population count.
  837.   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
  838.  
  839.   /// Return true if the hardware has a fast square-root instruction.
  840.   bool haveFastSqrt(Type *Ty) const;
  841.  
  842.   /// Return true if the cost of the instruction is too high to speculatively
  843.   /// execute and should be kept behind a branch.
  844.   /// This normally just wraps around a getInstructionCost() call, but some
  845.   /// targets might report a low TCK_SizeAndLatency value that is incompatible
  846.   /// with the fixed TCC_Expensive value.
  847.   /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
  848.   bool isExpensiveToSpeculativelyExecute(const Instruction *I) const;
  849.  
  850.   /// Return true if it is faster to check if a floating-point value is NaN
  851.   /// (or not-NaN) versus a comparison against a constant FP zero value.
  852.   /// Targets should override this if materializing a 0.0 for comparison is
  853.   /// generally as cheap as checking for ordered/unordered.
  854.   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
  855.  
  856.   /// Return the expected cost of supporting the floating point operation
  857.   /// of the specified type.
  858.   InstructionCost getFPOpCost(Type *Ty) const;
  859.  
  860.   /// Return the expected cost of materializing for the given integer
  861.   /// immediate of the specified type.
  862.   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
  863.                                 TargetCostKind CostKind) const;
  864.  
  865.   /// Return the expected cost of materialization for the given integer
  866.   /// immediate of the specified type for a given instruction. The cost can be
  867.   /// zero if the immediate can be folded into the specified instruction.
  868.   InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
  869.                                     const APInt &Imm, Type *Ty,
  870.                                     TargetCostKind CostKind,
  871.                                     Instruction *Inst = nullptr) const;
  872.   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
  873.                                       const APInt &Imm, Type *Ty,
  874.                                       TargetCostKind CostKind) const;
  875.  
  876.   /// Return the expected cost for the given integer when optimising
  877.   /// for size. This is different than the other integer immediate cost
  878.   /// functions in that it is subtarget agnostic. This is useful when you e.g.
  879.   /// target one ISA such as Aarch32 but smaller encodings could be possible
  880.   /// with another such as Thumb. This return value is used as a penalty when
  881.   /// the total costs for a constant is calculated (the bigger the cost, the
  882.   /// more beneficial constant hoisting is).
  883.   InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
  884.                                         const APInt &Imm, Type *Ty) const;
  885.   /// @}
  886.  
  887.   /// \name Vector Target Information
  888.   /// @{
  889.  
  890.   /// The various kinds of shuffle patterns for vector queries.
  891.   enum ShuffleKind {
  892.     SK_Broadcast,        ///< Broadcast element 0 to all other elements.
  893.     SK_Reverse,          ///< Reverse the order of the vector.
  894.     SK_Select,           ///< Selects elements from the corresponding lane of
  895.                          ///< either source operand. This is equivalent to a
  896.                          ///< vector select with a constant condition operand.
  897.     SK_Transpose,        ///< Transpose two vectors.
  898.     SK_InsertSubvector,  ///< InsertSubvector. Index indicates start offset.
  899.     SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
  900.     SK_PermuteTwoSrc,    ///< Merge elements from two source vectors into one
  901.                          ///< with any shuffle mask.
  902.     SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
  903.                          ///< shuffle mask.
  904.     SK_Splice            ///< Concatenates elements from the first input vector
  905.                          ///< with elements of the second input vector. Returning
  906.                          ///< a vector of the same type as the input vectors.
  907.                          ///< Index indicates start offset in first input vector.
  908.   };
  909.  
  910.   /// Additional information about an operand's possible values.
  911.   enum OperandValueKind {
  912.     OK_AnyValue,               // Operand can have any value.
  913.     OK_UniformValue,           // Operand is uniform (splat of a value).
  914.     OK_UniformConstantValue,   // Operand is uniform constant.
  915.     OK_NonUniformConstantValue // Operand is a non uniform constant value.
  916.   };
  917.  
  918.   /// Additional properties of an operand's values.
  919.   enum OperandValueProperties {
  920.     OP_None = 0,
  921.     OP_PowerOf2 = 1,
  922.     OP_NegatedPowerOf2 = 2,
  923.   };
  924.  
  925.   // Describe the values an operand can take.  We're in the process
  926.   // of migrating uses of OperandValueKind and OperandValueProperties
  927.   // to use this class, and then will change the internal representation.
  928.   struct OperandValueInfo {
  929.     OperandValueKind Kind = OK_AnyValue;
  930.     OperandValueProperties Properties = OP_None;
  931.  
  932.     bool isConstant() const {
  933.       return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue;
  934.     }
  935.     bool isUniform() const {
  936.       return Kind == OK_UniformConstantValue || Kind == OK_UniformValue;
  937.     }
  938.     bool isPowerOf2() const {
  939.       return Properties == OP_PowerOf2;
  940.     }
  941.     bool isNegatedPowerOf2() const {
  942.       return Properties == OP_NegatedPowerOf2;
  943.     }
  944.  
  945.     OperandValueInfo getNoProps() const {
  946.       return {Kind, OP_None};
  947.     }
  948.   };
  949.  
  950.   /// \return the number of registers in the target-provided register class.
  951.   unsigned getNumberOfRegisters(unsigned ClassID) const;
  952.  
  953.   /// \return the target-provided register class ID for the provided type,
  954.   /// accounting for type promotion and other type-legalization techniques that
  955.   /// the target might apply. However, it specifically does not account for the
  956.   /// scalarization or splitting of vector types. Should a vector type require
  957.   /// scalarization or splitting into multiple underlying vector registers, that
  958.   /// type should be mapped to a register class containing no registers.
  959.   /// Specifically, this is designed to provide a simple, high-level view of the
  960.   /// register allocation later performed by the backend. These register classes
  961.   /// don't necessarily map onto the register classes used by the backend.
  962.   /// FIXME: It's not currently possible to determine how many registers
  963.   /// are used by the provided type.
  964.   unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
  965.  
  966.   /// \return the target-provided register class name
  967.   const char *getRegisterClassName(unsigned ClassID) const;
  968.  
  969.   enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector };
  970.  
  971.   /// \return The width of the largest scalar or vector register type.
  972.   TypeSize getRegisterBitWidth(RegisterKind K) const;
  973.  
  974.   /// \return The width of the smallest vector register type.
  975.   unsigned getMinVectorRegisterBitWidth() const;
  976.  
  977.   /// \return The maximum value of vscale if the target specifies an
  978.   ///  architectural maximum vector length, and std::nullopt otherwise.
  979.   std::optional<unsigned> getMaxVScale() const;
  980.  
  981.   /// \return the value of vscale to tune the cost model for.
  982.   std::optional<unsigned> getVScaleForTuning() const;
  983.  
  984.   /// \return True if the vectorization factor should be chosen to
  985.   /// make the vector of the smallest element type match the size of a
  986.   /// vector register. For wider element types, this could result in
  987.   /// creating vectors that span multiple vector registers.
  988.   /// If false, the vectorization factor will be chosen based on the
  989.   /// size of the widest element type.
  990.   /// \p K Register Kind for vectorization.
  991.   bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
  992.  
  993.   /// \return The minimum vectorization factor for types of given element
  994.   /// bit width, or 0 if there is no minimum VF. The returned value only
  995.   /// applies when shouldMaximizeVectorBandwidth returns true.
  996.   /// If IsScalable is true, the returned ElementCount must be a scalable VF.
  997.   ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
  998.  
  999.   /// \return The maximum vectorization factor for types of given element
  1000.   /// bit width and opcode, or 0 if there is no maximum VF.
  1001.   /// Currently only used by the SLP vectorizer.
  1002.   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
  1003.  
  1004.   /// \return The minimum vectorization factor for the store instruction. Given
  1005.   /// the initial estimation of the minimum vector factor and store value type,
  1006.   /// it tries to find possible lowest VF, which still might be profitable for
  1007.   /// the vectorization.
  1008.   /// \param VF Initial estimation of the minimum vector factor.
  1009.   /// \param ScalarMemTy Scalar memory type of the store operation.
  1010.   /// \param ScalarValTy Scalar type of the stored value.
  1011.   /// Currently only used by the SLP vectorizer.
  1012.   unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
  1013.                              Type *ScalarValTy) const;
  1014.  
  1015.   /// \return True if it should be considered for address type promotion.
  1016.   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
  1017.   /// profitable without finding other extensions fed by the same input.
  1018.   bool shouldConsiderAddressTypePromotion(
  1019.       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
  1020.  
  1021.   /// \return The size of a cache line in bytes.
  1022.   unsigned getCacheLineSize() const;
  1023.  
  1024.   /// The possible cache levels
  1025.   enum class CacheLevel {
  1026.     L1D, // The L1 data cache
  1027.     L2D, // The L2 data cache
  1028.  
  1029.     // We currently do not model L3 caches, as their sizes differ widely between
  1030.     // microarchitectures. Also, we currently do not have a use for L3 cache
  1031.     // size modeling yet.
  1032.   };
  1033.  
  1034.   /// \return The size of the cache level in bytes, if available.
  1035.   std::optional<unsigned> getCacheSize(CacheLevel Level) const;
  1036.  
  1037.   /// \return The associativity of the cache level, if available.
  1038.   std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
  1039.  
  1040.   /// \return How much before a load we should place the prefetch
  1041.   /// instruction.  This is currently measured in number of
  1042.   /// instructions.
  1043.   unsigned getPrefetchDistance() const;
  1044.  
  1045.   /// Some HW prefetchers can handle accesses up to a certain constant stride.
  1046.   /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
  1047.   /// and the arguments provided are meant to serve as a basis for deciding this
  1048.   /// for a particular loop.
  1049.   ///
  1050.   /// \param NumMemAccesses        Number of memory accesses in the loop.
  1051.   /// \param NumStridedMemAccesses Number of the memory accesses that
  1052.   ///                              ScalarEvolution could find a known stride
  1053.   ///                              for.
  1054.   /// \param NumPrefetches         Number of software prefetches that will be
  1055.   ///                              emitted as determined by the addresses
  1056.   ///                              involved and the cache line size.
  1057.   /// \param HasCall               True if the loop contains a call.
  1058.   ///
  1059.   /// \return This is the minimum stride in bytes where it makes sense to start
  1060.   ///         adding SW prefetches. The default is 1, i.e. prefetch with any
  1061.   ///         stride.
  1062.   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
  1063.                                 unsigned NumStridedMemAccesses,
  1064.                                 unsigned NumPrefetches, bool HasCall) const;
  1065.  
  1066.   /// \return The maximum number of iterations to prefetch ahead.  If
  1067.   /// the required number of iterations is more than this number, no
  1068.   /// prefetching is performed.
  1069.   unsigned getMaxPrefetchIterationsAhead() const;
  1070.  
  1071.   /// \return True if prefetching should also be done for writes.
  1072.   bool enableWritePrefetching() const;
  1073.  
  1074.   /// \return if target want to issue a prefetch in address space \p AS.
  1075.   bool shouldPrefetchAddressSpace(unsigned AS) const;
  1076.  
  1077.   /// \return The maximum interleave factor that any transform should try to
  1078.   /// perform for this target. This number depends on the level of parallelism
  1079.   /// and the number of execution units in the CPU.
  1080.   unsigned getMaxInterleaveFactor(unsigned VF) const;
  1081.  
  1082.   /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
  1083.   static OperandValueInfo getOperandInfo(const Value *V);
  1084.  
  1085.   /// This is an approximation of reciprocal throughput of a math/logic op.
  1086.   /// A higher cost indicates less expected throughput.
  1087.   /// From Agner Fog's guides, reciprocal throughput is "the average number of
  1088.   /// clock cycles per instruction when the instructions are not part of a
  1089.   /// limiting dependency chain."
  1090.   /// Therefore, costs should be scaled to account for multiple execution units
  1091.   /// on the target that can process this type of instruction. For example, if
  1092.   /// there are 5 scalar integer units and 2 vector integer units that can
  1093.   /// calculate an 'add' in a single cycle, this model should indicate that the
  1094.   /// cost of the vector add instruction is 2.5 times the cost of the scalar
  1095.   /// add instruction.
  1096.   /// \p Args is an optional argument which holds the instruction operands
  1097.   /// values so the TTI can analyze those values searching for special
  1098.   /// cases or optimizations based on those values.
  1099.   /// \p CxtI is the optional original context instruction, if one exists, to
  1100.   /// provide even more information.
  1101.   InstructionCost getArithmeticInstrCost(
  1102.       unsigned Opcode, Type *Ty,
  1103.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
  1104.       TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
  1105.       TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
  1106.       ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
  1107.       const Instruction *CxtI = nullptr) const;
  1108.  
  1109.   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
  1110.   /// The exact mask may be passed as Mask, or else the array will be empty.
  1111.   /// The index and subtype parameters are used by the subvector insertion and
  1112.   /// extraction shuffle kinds to show the insert/extract point and the type of
  1113.   /// the subvector being inserted/extracted. The operands of the shuffle can be
  1114.   /// passed through \p Args, which helps improve the cost estimation in some
  1115.   /// cases, like in broadcast loads.
  1116.   /// NOTE: For subvector extractions Tp represents the source type.
  1117.   InstructionCost
  1118.   getShuffleCost(ShuffleKind Kind, VectorType *Tp,
  1119.                  ArrayRef<int> Mask = std::nullopt,
  1120.                  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
  1121.                  int Index = 0, VectorType *SubTp = nullptr,
  1122.                  ArrayRef<const Value *> Args = std::nullopt) const;
  1123.  
  1124.   /// Represents a hint about the context in which a cast is used.
  1125.   ///
  1126.   /// For zext/sext, the context of the cast is the operand, which must be a
  1127.   /// load of some kind. For trunc, the context is of the cast is the single
  1128.   /// user of the instruction, which must be a store of some kind.
  1129.   ///
  1130.   /// This enum allows the vectorizer to give getCastInstrCost an idea of the
  1131.   /// type of cast it's dealing with, as not every cast is equal. For instance,
  1132.   /// the zext of a load may be free, but the zext of an interleaving load can
  1133.   //// be (very) expensive!
  1134.   ///
  1135.   /// See \c getCastContextHint to compute a CastContextHint from a cast
  1136.   /// Instruction*. Callers can use it if they don't need to override the
  1137.   /// context and just want it to be calculated from the instruction.
  1138.   ///
  1139.   /// FIXME: This handles the types of load/store that the vectorizer can
  1140.   /// produce, which are the cases where the context instruction is most
  1141.   /// likely to be incorrect. There are other situations where that can happen
  1142.   /// too, which might be handled here but in the long run a more general
  1143.   /// solution of costing multiple instructions at the same times may be better.
  1144.   enum class CastContextHint : uint8_t {
  1145.     None,          ///< The cast is not used with a load/store of any kind.
  1146.     Normal,        ///< The cast is used with a normal load/store.
  1147.     Masked,        ///< The cast is used with a masked load/store.
  1148.     GatherScatter, ///< The cast is used with a gather/scatter.
  1149.     Interleave,    ///< The cast is used with an interleaved load/store.
  1150.     Reversed,      ///< The cast is used with a reversed load/store.
  1151.   };
  1152.  
  1153.   /// Calculates a CastContextHint from \p I.
  1154.   /// This should be used by callers of getCastInstrCost if they wish to
  1155.   /// determine the context from some instruction.
  1156.   /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
  1157.   /// or if it's another type of cast.
  1158.   static CastContextHint getCastContextHint(const Instruction *I);
  1159.  
  1160.   /// \return The expected cost of cast instructions, such as bitcast, trunc,
  1161.   /// zext, etc. If there is an existing instruction that holds Opcode, it
  1162.   /// may be passed in the 'I' parameter.
  1163.   InstructionCost
  1164.   getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
  1165.                    TTI::CastContextHint CCH,
  1166.                    TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
  1167.                    const Instruction *I = nullptr) const;
  1168.  
  1169.   /// \return The expected cost of a sign- or zero-extended vector extract. Use
  1170.   /// Index = -1 to indicate that there is no information about the index value.
  1171.   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
  1172.                                            VectorType *VecTy,
  1173.                                            unsigned Index) const;
  1174.  
  1175.   /// \return The expected cost of control-flow related instructions such as
  1176.   /// Phi, Ret, Br, Switch.
  1177.   InstructionCost
  1178.   getCFInstrCost(unsigned Opcode,
  1179.                  TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
  1180.                  const Instruction *I = nullptr) const;
  1181.  
  1182.   /// \returns The expected cost of compare and select instructions. If there
  1183.   /// is an existing instruction that holds Opcode, it may be passed in the
  1184.   /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
  1185.   /// is using a compare with the specified predicate as condition. When vector
  1186.   /// types are passed, \p VecPred must be used for all lanes.
  1187.   InstructionCost
  1188.   getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
  1189.                      CmpInst::Predicate VecPred,
  1190.                      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
  1191.                      const Instruction *I = nullptr) const;
  1192.  
  1193.   /// \return The expected cost of vector Insert and Extract.
  1194.   /// Use -1 to indicate that there is no information on the index value.
  1195.   /// This is used when the instruction is not available; a typical use
  1196.   /// case is to provision the cost of vectorization/scalarization in
  1197.   /// vectorizer passes.
  1198.   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
  1199.                                      TTI::TargetCostKind CostKind,
  1200.                                      unsigned Index = -1, Value *Op0 = nullptr,
  1201.                                      Value *Op1 = nullptr) const;
  1202.  
  1203.   /// \return The expected cost of vector Insert and Extract.
  1204.   /// This is used when instruction is available, and implementation
  1205.   /// asserts 'I' is not nullptr.
  1206.   ///
  1207.   /// A typical suitable use case is cost estimation when vector instruction
  1208.   /// exists (e.g., from basic blocks during transformation).
  1209.   InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
  1210.                                      TTI::TargetCostKind CostKind,
  1211.                                      unsigned Index = -1) const;
  1212.  
  1213.   /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
  1214.   /// \p ReplicationFactor times.
  1215.   ///
  1216.   /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
  1217.   ///   <0,0,0,1,1,1,2,2,2,3,3,3>
  1218.   InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
  1219.                                             int VF,
  1220.                                             const APInt &DemandedDstElts,
  1221.                                             TTI::TargetCostKind CostKind);
  1222.  
  1223.   /// \return The cost of Load and Store instructions.
  1224.   InstructionCost
  1225.   getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
  1226.                   unsigned AddressSpace,
  1227.                   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
  1228.                   OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
  1229.                   const Instruction *I = nullptr) const;
  1230.  
  1231.   /// \return The cost of VP Load and Store instructions.
  1232.   InstructionCost
  1233.   getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
  1234.                     unsigned AddressSpace,
  1235.                     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
  1236.                     const Instruction *I = nullptr) const;
  1237.  
  1238.   /// \return The cost of masked Load and Store instructions.
  1239.   InstructionCost getMaskedMemoryOpCost(
  1240.       unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
  1241.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
  1242.  
  1243.   /// \return The cost of Gather or Scatter operation
  1244.   /// \p Opcode - is a type of memory access Load or Store
  1245.   /// \p DataTy - a vector type of the data to be loaded or stored
  1246.   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
  1247.   /// \p VariableMask - true when the memory access is predicated with a mask
  1248.   ///                   that is not a compile-time constant
  1249.   /// \p Alignment - alignment of single element
  1250.   /// \p I - the optional original context instruction, if one exists, e.g. the
  1251.   ///        load/store to transform or the call to the gather/scatter intrinsic
  1252.   InstructionCost getGatherScatterOpCost(
  1253.       unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
  1254.       Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
  1255.       const Instruction *I = nullptr) const;
  1256.  
  1257.   /// \return The cost of the interleaved memory operation.
  1258.   /// \p Opcode is the memory operation code
  1259.   /// \p VecTy is the vector type of the interleaved access.
  1260.   /// \p Factor is the interleave factor
  1261.   /// \p Indices is the indices for interleaved load members (as interleaved
  1262.   ///    load allows gaps)
  1263.   /// \p Alignment is the alignment of the memory operation
  1264.   /// \p AddressSpace is address space of the pointer.
  1265.   /// \p UseMaskForCond indicates if the memory access is predicated.
  1266.   /// \p UseMaskForGaps indicates if gaps should be masked.
  1267.   InstructionCost getInterleavedMemoryOpCost(
  1268.       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
  1269.       Align Alignment, unsigned AddressSpace,
  1270.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
  1271.       bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
  1272.  
  1273.   /// A helper function to determine the type of reduction algorithm used
  1274.   /// for a given \p Opcode and set of FastMathFlags \p FMF.
  1275.   static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
  1276.     return FMF && !(*FMF).allowReassoc();
  1277.   }
  1278.  
  1279.   /// Calculate the cost of vector reduction intrinsics.
  1280.   ///
  1281.   /// This is the cost of reducing the vector value of type \p Ty to a scalar
  1282.   /// value using the operation denoted by \p Opcode. The FastMathFlags
  1283.   /// parameter \p FMF indicates what type of reduction we are performing:
  1284.   ///   1. Tree-wise. This is the typical 'fast' reduction performed that
  1285.   ///   involves successively splitting a vector into half and doing the
  1286.   ///   operation on the pair of halves until you have a scalar value. For
  1287.   ///   example:
  1288.   ///     (v0, v1, v2, v3)
  1289.   ///     ((v0+v2), (v1+v3), undef, undef)
  1290.   ///     ((v0+v2+v1+v3), undef, undef, undef)
  1291.   ///   This is the default behaviour for integer operations, whereas for
  1292.   ///   floating point we only do this if \p FMF indicates that
  1293.   ///   reassociation is allowed.
  1294.   ///   2. Ordered. For a vector with N elements this involves performing N
  1295.   ///   operations in lane order, starting with an initial scalar value, i.e.
  1296.   ///     result = InitVal + v0
  1297.   ///     result = result + v1
  1298.   ///     result = result + v2
  1299.   ///     result = result + v3
  1300.   ///   This is only the case for FP operations and when reassociation is not
  1301.   ///   allowed.
  1302.   ///
  1303.   InstructionCost getArithmeticReductionCost(
  1304.       unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
  1305.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
  1306.  
  1307.   InstructionCost getMinMaxReductionCost(
  1308.       VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
  1309.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
  1310.  
  1311.   /// Calculate the cost of an extended reduction pattern, similar to
  1312.   /// getArithmeticReductionCost of an Add reduction with multiply and optional
  1313.   /// extensions. This is the cost of as:
  1314.   /// ResTy vecreduce.add(mul (A, B)).
  1315.   /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
  1316.   InstructionCost getMulAccReductionCost(
  1317.       bool IsUnsigned, Type *ResTy, VectorType *Ty,
  1318.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
  1319.  
  1320.   /// Calculate the cost of an extended reduction pattern, similar to
  1321.   /// getArithmeticReductionCost of a reduction with an extension.
  1322.   /// This is the cost of as:
  1323.   /// ResTy vecreduce.opcode(ext(Ty A)).
  1324.   InstructionCost getExtendedReductionCost(
  1325.       unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
  1326.       std::optional<FastMathFlags> FMF,
  1327.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
  1328.  
  1329.   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
  1330.   /// Three cases are handled: 1. scalar instruction 2. vector instruction
  1331.   /// 3. scalar instruction which is to be vectorized.
  1332.   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
  1333.                                         TTI::TargetCostKind CostKind) const;
  1334.  
  1335.   /// \returns The cost of Call instructions.
  1336.   InstructionCost getCallInstrCost(
  1337.       Function *F, Type *RetTy, ArrayRef<Type *> Tys,
  1338.       TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
  1339.  
  1340.   /// \returns The number of pieces into which the provided type must be
  1341.   /// split during legalization. Zero is returned when the answer is unknown.
  1342.   unsigned getNumberOfParts(Type *Tp) const;
  1343.  
  1344.   /// \returns The cost of the address computation. For most targets this can be
  1345.   /// merged into the instruction indexing mode. Some targets might want to
  1346.   /// distinguish between address computation for memory operations on vector
  1347.   /// types and scalar types. Such targets should override this function.
  1348.   /// The 'SE' parameter holds pointer for the scalar evolution object which
  1349.   /// is used in order to get the Ptr step value in case of constant stride.
  1350.   /// The 'Ptr' parameter holds SCEV of the access pointer.
  1351.   InstructionCost getAddressComputationCost(Type *Ty,
  1352.                                             ScalarEvolution *SE = nullptr,
  1353.                                             const SCEV *Ptr = nullptr) const;
  1354.  
  1355.   /// \returns The cost, if any, of keeping values of the given types alive
  1356.   /// over a callsite.
  1357.   ///
  1358.   /// Some types may require the use of register classes that do not have
  1359.   /// any callee-saved registers, so would require a spill and fill.
  1360.   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
  1361.  
  1362.   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
  1363.   /// will contain additional information - whether the intrinsic may write
  1364.   /// or read to memory, volatility and the pointer.  Info is undefined
  1365.   /// if false is returned.
  1366.   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
  1367.  
  1368.   /// \returns The maximum element size, in bytes, for an element
  1369.   /// unordered-atomic memory intrinsic.
  1370.   unsigned getAtomicMemIntrinsicMaxElementSize() const;
  1371.  
  1372.   /// \returns A value which is the result of the given memory intrinsic.  New
  1373.   /// instructions may be created to extract the result from the given intrinsic
  1374.   /// memory operation.  Returns nullptr if the target cannot create a result
  1375.   /// from the given intrinsic.
  1376.   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
  1377.                                            Type *ExpectedType) const;
  1378.  
  1379.   /// \returns The type to use in a loop expansion of a memcpy call.
  1380.   Type *getMemcpyLoopLoweringType(
  1381.       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
  1382.       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
  1383.       std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
  1384.  
  1385.   /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
  1386.   /// \param RemainingBytes The number of bytes to copy.
  1387.   ///
  1388.   /// Calculates the operand types to use when copying \p RemainingBytes of
  1389.   /// memory, where source and destination alignments are \p SrcAlign and
  1390.   /// \p DestAlign respectively.
  1391.   void getMemcpyLoopResidualLoweringType(
  1392.       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
  1393.       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
  1394.       unsigned SrcAlign, unsigned DestAlign,
  1395.       std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
  1396.  
  1397.   /// \returns True if the two functions have compatible attributes for inlining
  1398.   /// purposes.
  1399.   bool areInlineCompatible(const Function *Caller,
  1400.                            const Function *Callee) const;
  1401.  
  1402.   /// \returns True if the caller and callee agree on how \p Types will be
  1403.   /// passed to or returned from the callee.
  1404.   /// to the callee.
  1405.   /// \param Types List of types to check.
  1406.   bool areTypesABICompatible(const Function *Caller, const Function *Callee,
  1407.                              const ArrayRef<Type *> &Types) const;
  1408.  
  1409.   /// The type of load/store indexing.
  1410.   enum MemIndexedMode {
  1411.     MIM_Unindexed, ///< No indexing.
  1412.     MIM_PreInc,    ///< Pre-incrementing.
  1413.     MIM_PreDec,    ///< Pre-decrementing.
  1414.     MIM_PostInc,   ///< Post-incrementing.
  1415.     MIM_PostDec    ///< Post-decrementing.
  1416.   };
  1417.  
  1418.   /// \returns True if the specified indexed load for the given type is legal.
  1419.   bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
  1420.  
  1421.   /// \returns True if the specified indexed store for the given type is legal.
  1422.   bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
  1423.  
  1424.   /// \returns The bitwidth of the largest vector type that should be used to
  1425.   /// load/store in the given address space.
  1426.   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
  1427.  
  1428.   /// \returns True if the load instruction is legal to vectorize.
  1429.   bool isLegalToVectorizeLoad(LoadInst *LI) const;
  1430.  
  1431.   /// \returns True if the store instruction is legal to vectorize.
  1432.   bool isLegalToVectorizeStore(StoreInst *SI) const;
  1433.  
  1434.   /// \returns True if it is legal to vectorize the given load chain.
  1435.   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
  1436.                                    unsigned AddrSpace) const;
  1437.  
  1438.   /// \returns True if it is legal to vectorize the given store chain.
  1439.   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
  1440.                                     unsigned AddrSpace) const;
  1441.  
  1442.   /// \returns True if it is legal to vectorize the given reduction kind.
  1443.   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
  1444.                                    ElementCount VF) const;
  1445.  
  1446.   /// \returns True if the given type is supported for scalable vectors
  1447.   bool isElementTypeLegalForScalableVector(Type *Ty) const;
  1448.  
  1449.   /// \returns The new vector factor value if the target doesn't support \p
  1450.   /// SizeInBytes loads or has a better vector factor.
  1451.   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
  1452.                                unsigned ChainSizeInBytes,
  1453.                                VectorType *VecTy) const;
  1454.  
  1455.   /// \returns The new vector factor value if the target doesn't support \p
  1456.   /// SizeInBytes stores or has a better vector factor.
  1457.   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
  1458.                                 unsigned ChainSizeInBytes,
  1459.                                 VectorType *VecTy) const;
  1460.  
  1461.   /// Flags describing the kind of vector reduction.
  1462.   struct ReductionFlags {
  1463.     ReductionFlags() = default;
  1464.     bool IsMaxOp =
  1465.         false; ///< If the op a min/max kind, true if it's a max operation.
  1466.     bool IsSigned = false; ///< Whether the operation is a signed int reduction.
  1467.     bool NoNaN =
  1468.         false; ///< If op is an fp min/max, whether NaNs may be present.
  1469.   };
  1470.  
  1471.   /// \returns True if the target prefers reductions in loop.
  1472.   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
  1473.                              ReductionFlags Flags) const;
  1474.  
  1475.   /// \returns True if the target prefers reductions select kept in the loop
  1476.   /// when tail folding. i.e.
  1477.   /// loop:
  1478.   ///   p = phi (0, s)
  1479.   ///   a = add (p, x)
  1480.   ///   s = select (mask, a, p)
  1481.   /// vecreduce.add(s)
  1482.   ///
  1483.   /// As opposed to the normal scheme of p = phi (0, a) which allows the select
  1484.   /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
  1485.   /// by the target, this can lead to cleaner code generation.
  1486.   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
  1487.                                        ReductionFlags Flags) const;
  1488.  
  1489.   /// Return true if the loop vectorizer should consider vectorizing an
  1490.   /// otherwise scalar epilogue loop.
  1491.   bool preferEpilogueVectorization() const;
  1492.  
  1493.   /// \returns True if the target wants to expand the given reduction intrinsic
  1494.   /// into a shuffle sequence.
  1495.   bool shouldExpandReduction(const IntrinsicInst *II) const;
  1496.  
  1497.   /// \returns the size cost of rematerializing a GlobalValue address relative
  1498.   /// to a stack reload.
  1499.   unsigned getGISelRematGlobalCost() const;
  1500.  
  1501.   /// \returns the lower bound of a trip count to decide on vectorization
  1502.   /// while tail-folding.
  1503.   unsigned getMinTripCountTailFoldingThreshold() const;
  1504.  
  1505.   /// \returns True if the target supports scalable vectors.
  1506.   bool supportsScalableVectors() const;
  1507.  
  1508.   /// \return true when scalable vectorization is preferred.
  1509.   bool enableScalableVectorization() const;
  1510.  
  1511.   /// \name Vector Predication Information
  1512.   /// @{
  1513.   /// Whether the target supports the %evl parameter of VP intrinsic efficiently
  1514.   /// in hardware, for the given opcode and type/alignment. (see LLVM Language
  1515.   /// Reference - "Vector Predication Intrinsics").
  1516.   /// Use of %evl is discouraged when that is not the case.
  1517.   bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
  1518.                              Align Alignment) const;
  1519.  
  1520.   struct VPLegalization {
  1521.     enum VPTransform {
  1522.       // keep the predicating parameter
  1523.       Legal = 0,
  1524.       // where legal, discard the predicate parameter
  1525.       Discard = 1,
  1526.       // transform into something else that is also predicating
  1527.       Convert = 2
  1528.     };
  1529.  
  1530.     // How to transform the EVL parameter.
  1531.     // Legal:   keep the EVL parameter as it is.
  1532.     // Discard: Ignore the EVL parameter where it is safe to do so.
  1533.     // Convert: Fold the EVL into the mask parameter.
  1534.     VPTransform EVLParamStrategy;
  1535.  
  1536.     // How to transform the operator.
  1537.     // Legal:   The target supports this operator.
  1538.     // Convert: Convert this to a non-VP operation.
  1539.     // The 'Discard' strategy is invalid.
  1540.     VPTransform OpStrategy;
  1541.  
  1542.     bool shouldDoNothing() const {
  1543.       return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
  1544.     }
  1545.     VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)
  1546.         : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {}
  1547.   };
  1548.  
  1549.   /// \returns How the target needs this vector-predicated operation to be
  1550.   /// transformed.
  1551.   VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const;
  1552.   /// @}
  1553.  
  1554.   /// @}
  1555.  
  1556. private:
  1557.   /// The abstract base class used to type erase specific TTI
  1558.   /// implementations.
  1559.   class Concept;
  1560.  
  1561.   /// The template model for the base class which wraps a concrete
  1562.   /// implementation in a type erased interface.
  1563.   template <typename T> class Model;
  1564.  
  1565.   std::unique_ptr<Concept> TTIImpl;
  1566. };
  1567.  
  1568. class TargetTransformInfo::Concept {
  1569. public:
  1570.   virtual ~Concept() = 0;
  1571.   virtual const DataLayout &getDataLayout() const = 0;
  1572.   virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
  1573.                                      ArrayRef<const Value *> Operands,
  1574.                                      TTI::TargetCostKind CostKind) = 0;
  1575.   virtual unsigned getInliningThresholdMultiplier() = 0;
  1576.   virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
  1577.   virtual int getInlinerVectorBonusPercent() = 0;
  1578.   virtual InstructionCost getMemcpyCost(const Instruction *I) = 0;
  1579.   virtual unsigned
  1580.   getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
  1581.                                    ProfileSummaryInfo *PSI,
  1582.                                    BlockFrequencyInfo *BFI) = 0;
  1583.   virtual InstructionCost getInstructionCost(const User *U,
  1584.                                              ArrayRef<const Value *> Operands,
  1585.                                              TargetCostKind CostKind) = 0;
  1586.   virtual BranchProbability getPredictableBranchThreshold() = 0;
  1587.   virtual bool hasBranchDivergence() = 0;
  1588.   virtual bool useGPUDivergenceAnalysis() = 0;
  1589.   virtual bool isSourceOfDivergence(const Value *V) = 0;
  1590.   virtual bool isAlwaysUniform(const Value *V) = 0;
  1591.   virtual unsigned getFlatAddressSpace() = 0;
  1592.   virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
  1593.                                           Intrinsic::ID IID) const = 0;
  1594.   virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
  1595.   virtual bool
  1596.   canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0;
  1597.   virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
  1598.   virtual bool isSingleThreaded() const = 0;
  1599.   virtual std::pair<const Value *, unsigned>
  1600.   getPredicatedAddrSpace(const Value *V) const = 0;
  1601.   virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
  1602.                                                   Value *OldV,
  1603.                                                   Value *NewV) const = 0;
  1604.   virtual bool isLoweredToCall(const Function *F) = 0;
  1605.   virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
  1606.                                        UnrollingPreferences &UP,
  1607.                                        OptimizationRemarkEmitter *ORE) = 0;
  1608.   virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
  1609.                                      PeelingPreferences &PP) = 0;
  1610.   virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
  1611.                                         AssumptionCache &AC,
  1612.                                         TargetLibraryInfo *LibInfo,
  1613.                                         HardwareLoopInfo &HWLoopInfo) = 0;
  1614.   virtual bool
  1615.   preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
  1616.                               AssumptionCache &AC, TargetLibraryInfo *TLI,
  1617.                               DominatorTree *DT, LoopVectorizationLegality *LVL,
  1618.                               InterleavedAccessInfo *IAI) = 0;
  1619.   virtual PredicationStyle emitGetActiveLaneMask() = 0;
  1620.   virtual std::optional<Instruction *> instCombineIntrinsic(
  1621.       InstCombiner &IC, IntrinsicInst &II) = 0;
  1622.   virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
  1623.       InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
  1624.       KnownBits & Known, bool &KnownBitsComputed) = 0;
  1625.   virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
  1626.       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
  1627.       APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
  1628.       std::function<void(Instruction *, unsigned, APInt, APInt &)>
  1629.           SimplifyAndSetOp) = 0;
  1630.   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
  1631.   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
  1632.   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
  1633.                                      int64_t BaseOffset, bool HasBaseReg,
  1634.                                      int64_t Scale, unsigned AddrSpace,
  1635.                                      Instruction *I) = 0;
  1636.   virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
  1637.                              const TargetTransformInfo::LSRCost &C2) = 0;
  1638.   virtual bool isNumRegsMajorCostOfLSR() = 0;
  1639.   virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
  1640.   virtual bool canMacroFuseCmp() = 0;
  1641.   virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
  1642.                           LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
  1643.                           TargetLibraryInfo *LibInfo) = 0;
  1644.   virtual AddressingModeKind
  1645.     getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0;
  1646.   virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
  1647.   virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
  1648.   virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
  1649.   virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
  1650.   virtual bool isLegalBroadcastLoad(Type *ElementTy,
  1651.                                     ElementCount NumElements) const = 0;
  1652.   virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
  1653.   virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
  1654.   virtual bool forceScalarizeMaskedGather(VectorType *DataType,
  1655.                                           Align Alignment) = 0;
  1656.   virtual bool forceScalarizeMaskedScatter(VectorType *DataType,
  1657.                                            Align Alignment) = 0;
  1658.   virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
  1659.   virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
  1660.   virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
  1661.                                unsigned Opcode1,
  1662.                                const SmallBitVector &OpcodeMask) const = 0;
  1663.   virtual bool enableOrderedReductions() = 0;
  1664.   virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
  1665.   virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
  1666.   virtual bool prefersVectorizedAddressing() = 0;
  1667.   virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
  1668.                                                int64_t BaseOffset,
  1669.                                                bool HasBaseReg, int64_t Scale,
  1670.                                                unsigned AddrSpace) = 0;
  1671.   virtual bool LSRWithInstrQueries() = 0;
  1672.   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
  1673.   virtual bool isProfitableToHoist(Instruction *I) = 0;
  1674.   virtual bool useAA() = 0;
  1675.   virtual bool isTypeLegal(Type *Ty) = 0;
  1676.   virtual unsigned getRegUsageForType(Type *Ty) = 0;
  1677.   virtual bool shouldBuildLookupTables() = 0;
  1678.   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
  1679.   virtual bool shouldBuildRelLookupTables() = 0;
  1680.   virtual bool useColdCCForColdCall(Function &F) = 0;
  1681.   virtual InstructionCost getScalarizationOverhead(VectorType *Ty,
  1682.                                                    const APInt &DemandedElts,
  1683.                                                    bool Insert, bool Extract,
  1684.                                                    TargetCostKind CostKind) = 0;
  1685.   virtual InstructionCost
  1686.   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
  1687.                                    ArrayRef<Type *> Tys,
  1688.                                    TargetCostKind CostKind) = 0;
  1689.   virtual bool supportsEfficientVectorElementLoadStore() = 0;
  1690.   virtual bool supportsTailCalls() = 0;
  1691.   virtual bool supportsTailCallFor(const CallBase *CB) = 0;
  1692.   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
  1693.   virtual MemCmpExpansionOptions
  1694.   enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
  1695.   virtual bool enableSelectOptimize() = 0;
  1696.   virtual bool enableInterleavedAccessVectorization() = 0;
  1697.   virtual bool enableMaskedInterleavedAccessVectorization() = 0;
  1698.   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
  1699.   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
  1700.                                               unsigned BitWidth,
  1701.                                               unsigned AddressSpace,
  1702.                                               Align Alignment,
  1703.                                               unsigned *Fast) = 0;
  1704.   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
  1705.   virtual bool haveFastSqrt(Type *Ty) = 0;
  1706.   virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0;
  1707.   virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
  1708.   virtual InstructionCost getFPOpCost(Type *Ty) = 0;
  1709.   virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
  1710.                                                 const APInt &Imm, Type *Ty) = 0;
  1711.   virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
  1712.                                         TargetCostKind CostKind) = 0;
  1713.   virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
  1714.                                             const APInt &Imm, Type *Ty,
  1715.                                             TargetCostKind CostKind,
  1716.                                             Instruction *Inst = nullptr) = 0;
  1717.   virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
  1718.                                               const APInt &Imm, Type *Ty,
  1719.                                               TargetCostKind CostKind) = 0;
  1720.   virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
  1721.   virtual unsigned getRegisterClassForType(bool Vector,
  1722.                                            Type *Ty = nullptr) const = 0;
  1723.   virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
  1724.   virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0;
  1725.   virtual unsigned getMinVectorRegisterBitWidth() const = 0;
  1726.   virtual std::optional<unsigned> getMaxVScale() const = 0;
  1727.   virtual std::optional<unsigned> getVScaleForTuning() const = 0;
  1728.   virtual bool
  1729.   shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0;
  1730.   virtual ElementCount getMinimumVF(unsigned ElemWidth,
  1731.                                     bool IsScalable) const = 0;
  1732.   virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
  1733.   virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
  1734.                                      Type *ScalarValTy) const = 0;
  1735.   virtual bool shouldConsiderAddressTypePromotion(
  1736.       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
  1737.   virtual unsigned getCacheLineSize() const = 0;
  1738.   virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
  1739.   virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
  1740.       const = 0;
  1741.  
  1742.   /// \return How much before a load we should place the prefetch
  1743.   /// instruction.  This is currently measured in number of
  1744.   /// instructions.
  1745.   virtual unsigned getPrefetchDistance() const = 0;
  1746.  
  1747.   /// \return Some HW prefetchers can handle accesses up to a certain
  1748.   /// constant stride.  This is the minimum stride in bytes where it
  1749.   /// makes sense to start adding SW prefetches.  The default is 1,
  1750.   /// i.e. prefetch with any stride.  Sometimes prefetching is beneficial
  1751.   /// even below the HW prefetcher limit, and the arguments provided are
  1752.   /// meant to serve as a basis for deciding this for a particular loop.
  1753.   virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
  1754.                                         unsigned NumStridedMemAccesses,
  1755.                                         unsigned NumPrefetches,
  1756.                                         bool HasCall) const = 0;
  1757.  
  1758.   /// \return The maximum number of iterations to prefetch ahead.  If
  1759.   /// the required number of iterations is more than this number, no
  1760.   /// prefetching is performed.
  1761.   virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
  1762.  
  1763.   /// \return True if prefetching should also be done for writes.
  1764.   virtual bool enableWritePrefetching() const = 0;
  1765.  
  1766.   /// \return if target want to issue a prefetch in address space \p AS.
  1767.   virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
  1768.  
  1769.   virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
  1770.   virtual InstructionCost getArithmeticInstrCost(
  1771.       unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
  1772.       OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
  1773.       ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
  1774.  
  1775.   virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
  1776.                                          ArrayRef<int> Mask,
  1777.                                          TTI::TargetCostKind CostKind,
  1778.                                          int Index, VectorType *SubTp,
  1779.                                          ArrayRef<const Value *> Args) = 0;
  1780.   virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
  1781.                                            Type *Src, CastContextHint CCH,
  1782.                                            TTI::TargetCostKind CostKind,
  1783.                                            const Instruction *I) = 0;
  1784.   virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
  1785.                                                    VectorType *VecTy,
  1786.                                                    unsigned Index) = 0;
  1787.   virtual InstructionCost getCFInstrCost(unsigned Opcode,
  1788.                                          TTI::TargetCostKind CostKind,
  1789.                                          const Instruction *I = nullptr) = 0;
  1790.   virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
  1791.                                              Type *CondTy,
  1792.                                              CmpInst::Predicate VecPred,
  1793.                                              TTI::TargetCostKind CostKind,
  1794.                                              const Instruction *I) = 0;
  1795.   virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
  1796.                                              TTI::TargetCostKind CostKind,
  1797.                                              unsigned Index, Value *Op0,
  1798.                                              Value *Op1) = 0;
  1799.   virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
  1800.                                              TTI::TargetCostKind CostKind,
  1801.                                              unsigned Index) = 0;
  1802.  
  1803.   virtual InstructionCost
  1804.   getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
  1805.                             const APInt &DemandedDstElts,
  1806.                             TTI::TargetCostKind CostKind) = 0;
  1807.  
  1808.   virtual InstructionCost
  1809.   getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
  1810.                   unsigned AddressSpace, TTI::TargetCostKind CostKind,
  1811.                   OperandValueInfo OpInfo, const Instruction *I) = 0;
  1812.   virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
  1813.                                             Align Alignment,
  1814.                                             unsigned AddressSpace,
  1815.                                             TTI::TargetCostKind CostKind,
  1816.                                             const Instruction *I) = 0;
  1817.   virtual InstructionCost
  1818.   getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
  1819.                         unsigned AddressSpace,
  1820.                         TTI::TargetCostKind CostKind) = 0;
  1821.   virtual InstructionCost
  1822.   getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
  1823.                          bool VariableMask, Align Alignment,
  1824.                          TTI::TargetCostKind CostKind,
  1825.                          const Instruction *I = nullptr) = 0;
  1826.  
  1827.   virtual InstructionCost getInterleavedMemoryOpCost(
  1828.       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
  1829.       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
  1830.       bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
  1831.   virtual InstructionCost
  1832.   getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
  1833.                              std::optional<FastMathFlags> FMF,
  1834.                              TTI::TargetCostKind CostKind) = 0;
  1835.   virtual InstructionCost
  1836.   getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
  1837.                          TTI::TargetCostKind CostKind) = 0;
  1838.   virtual InstructionCost getExtendedReductionCost(
  1839.       unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
  1840.       std::optional<FastMathFlags> FMF,
  1841.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
  1842.   virtual InstructionCost getMulAccReductionCost(
  1843.       bool IsUnsigned, Type *ResTy, VectorType *Ty,
  1844.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
  1845.   virtual InstructionCost
  1846.   getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
  1847.                         TTI::TargetCostKind CostKind) = 0;
  1848.   virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy,
  1849.                                            ArrayRef<Type *> Tys,
  1850.                                            TTI::TargetCostKind CostKind) = 0;
  1851.   virtual unsigned getNumberOfParts(Type *Tp) = 0;
  1852.   virtual InstructionCost
  1853.   getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0;
  1854.   virtual InstructionCost
  1855.   getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
  1856.   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
  1857.                                   MemIntrinsicInfo &Info) = 0;
  1858.   virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
  1859.   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
  1860.                                                    Type *ExpectedType) = 0;
  1861.   virtual Type *getMemcpyLoopLoweringType(
  1862.       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
  1863.       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
  1864.       std::optional<uint32_t> AtomicElementSize) const = 0;
  1865.  
  1866.   virtual void getMemcpyLoopResidualLoweringType(
  1867.       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
  1868.       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
  1869.       unsigned SrcAlign, unsigned DestAlign,
  1870.       std::optional<uint32_t> AtomicCpySize) const = 0;
  1871.   virtual bool areInlineCompatible(const Function *Caller,
  1872.                                    const Function *Callee) const = 0;
  1873.   virtual bool areTypesABICompatible(const Function *Caller,
  1874.                                      const Function *Callee,
  1875.                                      const ArrayRef<Type *> &Types) const = 0;
  1876.   virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
  1877.   virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
  1878.   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
  1879.   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
  1880.   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
  1881.   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
  1882.                                            Align Alignment,
  1883.                                            unsigned AddrSpace) const = 0;
  1884.   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
  1885.                                             Align Alignment,
  1886.                                             unsigned AddrSpace) const = 0;
  1887.   virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
  1888.                                            ElementCount VF) const = 0;
  1889.   virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
  1890.   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
  1891.                                        unsigned ChainSizeInBytes,
  1892.                                        VectorType *VecTy) const = 0;
  1893.   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
  1894.                                         unsigned ChainSizeInBytes,
  1895.                                         VectorType *VecTy) const = 0;
  1896.   virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
  1897.                                      ReductionFlags) const = 0;
  1898.   virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
  1899.                                                ReductionFlags) const = 0;
  1900.   virtual bool preferEpilogueVectorization() const = 0;
  1901.  
  1902.   virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
  1903.   virtual unsigned getGISelRematGlobalCost() const = 0;
  1904.   virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
  1905.   virtual bool enableScalableVectorization() const = 0;
  1906.   virtual bool supportsScalableVectors() const = 0;
  1907.   virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
  1908.                                      Align Alignment) const = 0;
  1909.   virtual VPLegalization
  1910.   getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
  1911. };
  1912.  
  1913. template <typename T>
  1914. class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
  1915.   T Impl;
  1916.  
  1917. public:
  1918.   Model(T Impl) : Impl(std::move(Impl)) {}
  1919.   ~Model() override = default;
  1920.  
  1921.   const DataLayout &getDataLayout() const override {
  1922.     return Impl.getDataLayout();
  1923.   }
  1924.  
  1925.   InstructionCost
  1926.   getGEPCost(Type *PointeeType, const Value *Ptr,
  1927.              ArrayRef<const Value *> Operands,
  1928.              TargetTransformInfo::TargetCostKind CostKind) override {
  1929.     return Impl.getGEPCost(PointeeType, Ptr, Operands, CostKind);
  1930.   }
  1931.   unsigned getInliningThresholdMultiplier() override {
  1932.     return Impl.getInliningThresholdMultiplier();
  1933.   }
  1934.   unsigned adjustInliningThreshold(const CallBase *CB) override {
  1935.     return Impl.adjustInliningThreshold(CB);
  1936.   }
  1937.   int getInlinerVectorBonusPercent() override {
  1938.     return Impl.getInlinerVectorBonusPercent();
  1939.   }
  1940.   InstructionCost getMemcpyCost(const Instruction *I) override {
  1941.     return Impl.getMemcpyCost(I);
  1942.   }
  1943.   InstructionCost getInstructionCost(const User *U,
  1944.                                      ArrayRef<const Value *> Operands,
  1945.                                      TargetCostKind CostKind) override {
  1946.     return Impl.getInstructionCost(U, Operands, CostKind);
  1947.   }
  1948.   BranchProbability getPredictableBranchThreshold() override {
  1949.     return Impl.getPredictableBranchThreshold();
  1950.   }
  1951.   bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
  1952.   bool useGPUDivergenceAnalysis() override {
  1953.     return Impl.useGPUDivergenceAnalysis();
  1954.   }
  1955.   bool isSourceOfDivergence(const Value *V) override {
  1956.     return Impl.isSourceOfDivergence(V);
  1957.   }
  1958.  
  1959.   bool isAlwaysUniform(const Value *V) override {
  1960.     return Impl.isAlwaysUniform(V);
  1961.   }
  1962.  
  1963.   unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
  1964.  
  1965.   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
  1966.                                   Intrinsic::ID IID) const override {
  1967.     return Impl.collectFlatAddressOperands(OpIndexes, IID);
  1968.   }
  1969.  
  1970.   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
  1971.     return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
  1972.   }
  1973.  
  1974.   bool
  1975.   canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
  1976.     return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
  1977.   }
  1978.  
  1979.   unsigned getAssumedAddrSpace(const Value *V) const override {
  1980.     return Impl.getAssumedAddrSpace(V);
  1981.   }
  1982.  
  1983.   bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
  1984.  
  1985.   std::pair<const Value *, unsigned>
  1986.   getPredicatedAddrSpace(const Value *V) const override {
  1987.     return Impl.getPredicatedAddrSpace(V);
  1988.   }
  1989.  
  1990.   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
  1991.                                           Value *NewV) const override {
  1992.     return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
  1993.   }
  1994.  
  1995.   bool isLoweredToCall(const Function *F) override {
  1996.     return Impl.isLoweredToCall(F);
  1997.   }
  1998.   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
  1999.                                UnrollingPreferences &UP,
  2000.                                OptimizationRemarkEmitter *ORE) override {
  2001.     return Impl.getUnrollingPreferences(L, SE, UP, ORE);
  2002.   }
  2003.   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
  2004.                              PeelingPreferences &PP) override {
  2005.     return Impl.getPeelingPreferences(L, SE, PP);
  2006.   }
  2007.   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
  2008.                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
  2009.                                 HardwareLoopInfo &HWLoopInfo) override {
  2010.     return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
  2011.   }
  2012.   bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
  2013.                                    AssumptionCache &AC, TargetLibraryInfo *TLI,
  2014.                                    DominatorTree *DT,
  2015.                                    LoopVectorizationLegality *LVL,
  2016.                                    InterleavedAccessInfo *IAI) override {
  2017.     return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
  2018.   }
  2019.   PredicationStyle emitGetActiveLaneMask() override {
  2020.     return Impl.emitGetActiveLaneMask();
  2021.   }
  2022.   std::optional<Instruction *>
  2023.   instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
  2024.     return Impl.instCombineIntrinsic(IC, II);
  2025.   }
  2026.   std::optional<Value *>
  2027.   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
  2028.                                    APInt DemandedMask, KnownBits &Known,
  2029.                                    bool &KnownBitsComputed) override {
  2030.     return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
  2031.                                                  KnownBitsComputed);
  2032.   }
  2033.   std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
  2034.       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
  2035.       APInt &UndefElts2, APInt &UndefElts3,
  2036.       std::function<void(Instruction *, unsigned, APInt, APInt &)>
  2037.           SimplifyAndSetOp) override {
  2038.     return Impl.simplifyDemandedVectorEltsIntrinsic(
  2039.         IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
  2040.         SimplifyAndSetOp);
  2041.   }
  2042.   bool isLegalAddImmediate(int64_t Imm) override {
  2043.     return Impl.isLegalAddImmediate(Imm);
  2044.   }
  2045.   bool isLegalICmpImmediate(int64_t Imm) override {
  2046.     return Impl.isLegalICmpImmediate(Imm);
  2047.   }
  2048.   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
  2049.                              bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
  2050.                              Instruction *I) override {
  2051.     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
  2052.                                       AddrSpace, I);
  2053.   }
  2054.   bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
  2055.                      const TargetTransformInfo::LSRCost &C2) override {
  2056.     return Impl.isLSRCostLess(C1, C2);
  2057.   }
  2058.   bool isNumRegsMajorCostOfLSR() override {
  2059.     return Impl.isNumRegsMajorCostOfLSR();
  2060.   }
  2061.   bool isProfitableLSRChainElement(Instruction *I) override {
  2062.     return Impl.isProfitableLSRChainElement(I);
  2063.   }
  2064.   bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
  2065.   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
  2066.                   DominatorTree *DT, AssumptionCache *AC,
  2067.                   TargetLibraryInfo *LibInfo) override {
  2068.     return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
  2069.   }
  2070.   AddressingModeKind
  2071.     getPreferredAddressingMode(const Loop *L,
  2072.                                ScalarEvolution *SE) const override {
  2073.     return Impl.getPreferredAddressingMode(L, SE);
  2074.   }
  2075.   bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
  2076.     return Impl.isLegalMaskedStore(DataType, Alignment);
  2077.   }
  2078.   bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
  2079.     return Impl.isLegalMaskedLoad(DataType, Alignment);
  2080.   }
  2081.   bool isLegalNTStore(Type *DataType, Align Alignment) override {
  2082.     return Impl.isLegalNTStore(DataType, Alignment);
  2083.   }
  2084.   bool isLegalNTLoad(Type *DataType, Align Alignment) override {
  2085.     return Impl.isLegalNTLoad(DataType, Alignment);
  2086.   }
  2087.   bool isLegalBroadcastLoad(Type *ElementTy,
  2088.                             ElementCount NumElements) const override {
  2089.     return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
  2090.   }
  2091.   bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
  2092.     return Impl.isLegalMaskedScatter(DataType, Alignment);
  2093.   }
  2094.   bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
  2095.     return Impl.isLegalMaskedGather(DataType, Alignment);
  2096.   }
  2097.   bool forceScalarizeMaskedGather(VectorType *DataType,
  2098.                                   Align Alignment) override {
  2099.     return Impl.forceScalarizeMaskedGather(DataType, Alignment);
  2100.   }
  2101.   bool forceScalarizeMaskedScatter(VectorType *DataType,
  2102.                                    Align Alignment) override {
  2103.     return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
  2104.   }
  2105.   bool isLegalMaskedCompressStore(Type *DataType) override {
  2106.     return Impl.isLegalMaskedCompressStore(DataType);
  2107.   }
  2108.   bool isLegalMaskedExpandLoad(Type *DataType) override {
  2109.     return Impl.isLegalMaskedExpandLoad(DataType);
  2110.   }
  2111.   bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
  2112.                        const SmallBitVector &OpcodeMask) const override {
  2113.     return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
  2114.   }
  2115.   bool enableOrderedReductions() override {
  2116.     return Impl.enableOrderedReductions();
  2117.   }
  2118.   bool hasDivRemOp(Type *DataType, bool IsSigned) override {
  2119.     return Impl.hasDivRemOp(DataType, IsSigned);
  2120.   }
  2121.   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
  2122.     return Impl.hasVolatileVariant(I, AddrSpace);
  2123.   }
  2124.   bool prefersVectorizedAddressing() override {
  2125.     return Impl.prefersVectorizedAddressing();
  2126.   }
  2127.   InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
  2128.                                        int64_t BaseOffset, bool HasBaseReg,
  2129.                                        int64_t Scale,
  2130.                                        unsigned AddrSpace) override {
  2131.     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
  2132.                                      AddrSpace);
  2133.   }
  2134.   bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
  2135.   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
  2136.     return Impl.isTruncateFree(Ty1, Ty2);
  2137.   }
  2138.   bool isProfitableToHoist(Instruction *I) override {
  2139.     return Impl.isProfitableToHoist(I);
  2140.   }
  2141.   bool useAA() override { return Impl.useAA(); }
  2142.   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
  2143.   unsigned getRegUsageForType(Type *Ty) override {
  2144.     return Impl.getRegUsageForType(Ty);
  2145.   }
  2146.   bool shouldBuildLookupTables() override {
  2147.     return Impl.shouldBuildLookupTables();
  2148.   }
  2149.   bool shouldBuildLookupTablesForConstant(Constant *C) override {
  2150.     return Impl.shouldBuildLookupTablesForConstant(C);
  2151.   }
  2152.   bool shouldBuildRelLookupTables() override {
  2153.     return Impl.shouldBuildRelLookupTables();
  2154.   }
  2155.   bool useColdCCForColdCall(Function &F) override {
  2156.     return Impl.useColdCCForColdCall(F);
  2157.   }
  2158.  
  2159.   InstructionCost getScalarizationOverhead(VectorType *Ty,
  2160.                                            const APInt &DemandedElts,
  2161.                                            bool Insert, bool Extract,
  2162.                                            TargetCostKind CostKind) override {
  2163.     return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
  2164.                                          CostKind);
  2165.   }
  2166.   InstructionCost
  2167.   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
  2168.                                    ArrayRef<Type *> Tys,
  2169.                                    TargetCostKind CostKind) override {
  2170.     return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
  2171.   }
  2172.  
  2173.   bool supportsEfficientVectorElementLoadStore() override {
  2174.     return Impl.supportsEfficientVectorElementLoadStore();
  2175.   }
  2176.  
  2177.   bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
  2178.   bool supportsTailCallFor(const CallBase *CB) override {
  2179.     return Impl.supportsTailCallFor(CB);
  2180.   }
  2181.  
  2182.   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
  2183.     return Impl.enableAggressiveInterleaving(LoopHasReductions);
  2184.   }
  2185.   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
  2186.                                                bool IsZeroCmp) const override {
  2187.     return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
  2188.   }
  2189.   bool enableInterleavedAccessVectorization() override {
  2190.     return Impl.enableInterleavedAccessVectorization();
  2191.   }
  2192.   bool enableSelectOptimize() override {
  2193.     return Impl.enableSelectOptimize();
  2194.   }
  2195.   bool enableMaskedInterleavedAccessVectorization() override {
  2196.     return Impl.enableMaskedInterleavedAccessVectorization();
  2197.   }
  2198.   bool isFPVectorizationPotentiallyUnsafe() override {
  2199.     return Impl.isFPVectorizationPotentiallyUnsafe();
  2200.   }
  2201.   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
  2202.                                       unsigned AddressSpace, Align Alignment,
  2203.                                       unsigned *Fast) override {
  2204.     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
  2205.                                                Alignment, Fast);
  2206.   }
  2207.   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
  2208.     return Impl.getPopcntSupport(IntTyWidthInBit);
  2209.   }
  2210.   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
  2211.  
  2212.   bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
  2213.     return Impl.isExpensiveToSpeculativelyExecute(I);
  2214.   }
  2215.  
  2216.   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
  2217.     return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
  2218.   }
  2219.  
  2220.   InstructionCost getFPOpCost(Type *Ty) override {
  2221.     return Impl.getFPOpCost(Ty);
  2222.   }
  2223.  
  2224.   InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
  2225.                                         const APInt &Imm, Type *Ty) override {
  2226.     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
  2227.   }
  2228.   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
  2229.                                 TargetCostKind CostKind) override {
  2230.     return Impl.getIntImmCost(Imm, Ty, CostKind);
  2231.   }
  2232.   InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
  2233.                                     const APInt &Imm, Type *Ty,
  2234.                                     TargetCostKind CostKind,
  2235.                                     Instruction *Inst = nullptr) override {
  2236.     return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
  2237.   }
  2238.   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
  2239.                                       const APInt &Imm, Type *Ty,
  2240.                                       TargetCostKind CostKind) override {
  2241.     return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
  2242.   }
  2243.   unsigned getNumberOfRegisters(unsigned ClassID) const override {
  2244.     return Impl.getNumberOfRegisters(ClassID);
  2245.   }
  2246.   unsigned getRegisterClassForType(bool Vector,
  2247.                                    Type *Ty = nullptr) const override {
  2248.     return Impl.getRegisterClassForType(Vector, Ty);
  2249.   }
  2250.   const char *getRegisterClassName(unsigned ClassID) const override {
  2251.     return Impl.getRegisterClassName(ClassID);
  2252.   }
  2253.   TypeSize getRegisterBitWidth(RegisterKind K) const override {
  2254.     return Impl.getRegisterBitWidth(K);
  2255.   }
  2256.   unsigned getMinVectorRegisterBitWidth() const override {
  2257.     return Impl.getMinVectorRegisterBitWidth();
  2258.   }
  2259.   std::optional<unsigned> getMaxVScale() const override {
  2260.     return Impl.getMaxVScale();
  2261.   }
  2262.   std::optional<unsigned> getVScaleForTuning() const override {
  2263.     return Impl.getVScaleForTuning();
  2264.   }
  2265.   bool shouldMaximizeVectorBandwidth(
  2266.       TargetTransformInfo::RegisterKind K) const override {
  2267.     return Impl.shouldMaximizeVectorBandwidth(K);
  2268.   }
  2269.   ElementCount getMinimumVF(unsigned ElemWidth,
  2270.                             bool IsScalable) const override {
  2271.     return Impl.getMinimumVF(ElemWidth, IsScalable);
  2272.   }
  2273.   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
  2274.     return Impl.getMaximumVF(ElemWidth, Opcode);
  2275.   }
  2276.   unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
  2277.                              Type *ScalarValTy) const override {
  2278.     return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
  2279.   }
  2280.   bool shouldConsiderAddressTypePromotion(
  2281.       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
  2282.     return Impl.shouldConsiderAddressTypePromotion(
  2283.         I, AllowPromotionWithoutCommonHeader);
  2284.   }
  2285.   unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
  2286.   std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
  2287.     return Impl.getCacheSize(Level);
  2288.   }
  2289.   std::optional<unsigned>
  2290.   getCacheAssociativity(CacheLevel Level) const override {
  2291.     return Impl.getCacheAssociativity(Level);
  2292.   }
  2293.  
  2294.   /// Return the preferred prefetch distance in terms of instructions.
  2295.   ///
  2296.   unsigned getPrefetchDistance() const override {
  2297.     return Impl.getPrefetchDistance();
  2298.   }
  2299.  
  2300.   /// Return the minimum stride necessary to trigger software
  2301.   /// prefetching.
  2302.   ///
  2303.   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
  2304.                                 unsigned NumStridedMemAccesses,
  2305.                                 unsigned NumPrefetches,
  2306.                                 bool HasCall) const override {
  2307.     return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
  2308.                                      NumPrefetches, HasCall);
  2309.   }
  2310.  
  2311.   /// Return the maximum prefetch distance in terms of loop
  2312.   /// iterations.
  2313.   ///
  2314.   unsigned getMaxPrefetchIterationsAhead() const override {
  2315.     return Impl.getMaxPrefetchIterationsAhead();
  2316.   }
  2317.  
  2318.   /// \return True if prefetching should also be done for writes.
  2319.   bool enableWritePrefetching() const override {
  2320.     return Impl.enableWritePrefetching();
  2321.   }
  2322.  
  2323.   /// \return if target want to issue a prefetch in address space \p AS.
  2324.   bool shouldPrefetchAddressSpace(unsigned AS) const override {
  2325.     return Impl.shouldPrefetchAddressSpace(AS);
  2326.   }
  2327.  
  2328.   unsigned getMaxInterleaveFactor(unsigned VF) override {
  2329.     return Impl.getMaxInterleaveFactor(VF);
  2330.   }
  2331.   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
  2332.                                             unsigned &JTSize,
  2333.                                             ProfileSummaryInfo *PSI,
  2334.                                             BlockFrequencyInfo *BFI) override {
  2335.     return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
  2336.   }
  2337.   InstructionCost getArithmeticInstrCost(
  2338.       unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
  2339.       OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
  2340.       ArrayRef<const Value *> Args,
  2341.       const Instruction *CxtI = nullptr) override {
  2342.     return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
  2343.                                        Args, CxtI);
  2344.   }
  2345.  
  2346.   InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
  2347.                                  ArrayRef<int> Mask,
  2348.                                  TTI::TargetCostKind CostKind, int Index,
  2349.                                  VectorType *SubTp,
  2350.                                  ArrayRef<const Value *> Args) override {
  2351.     return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args);
  2352.   }
  2353.   InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
  2354.                                    CastContextHint CCH,
  2355.                                    TTI::TargetCostKind CostKind,
  2356.                                    const Instruction *I) override {
  2357.     return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
  2358.   }
  2359.   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
  2360.                                            VectorType *VecTy,
  2361.                                            unsigned Index) override {
  2362.     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
  2363.   }
  2364.   InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
  2365.                                  const Instruction *I = nullptr) override {
  2366.     return Impl.getCFInstrCost(Opcode, CostKind, I);
  2367.   }
  2368.   InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
  2369.                                      CmpInst::Predicate VecPred,
  2370.                                      TTI::TargetCostKind CostKind,
  2371.                                      const Instruction *I) override {
  2372.     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
  2373.   }
  2374.   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
  2375.                                      TTI::TargetCostKind CostKind,
  2376.                                      unsigned Index, Value *Op0,
  2377.                                      Value *Op1) override {
  2378.     return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
  2379.   }
  2380.   InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
  2381.                                      TTI::TargetCostKind CostKind,
  2382.                                      unsigned Index) override {
  2383.     return Impl.getVectorInstrCost(I, Val, CostKind, Index);
  2384.   }
  2385.   InstructionCost
  2386.   getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
  2387.                             const APInt &DemandedDstElts,
  2388.                             TTI::TargetCostKind CostKind) override {
  2389.     return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
  2390.                                           DemandedDstElts, CostKind);
  2391.   }
  2392.   InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
  2393.                                   unsigned AddressSpace,
  2394.                                   TTI::TargetCostKind CostKind,
  2395.                                   OperandValueInfo OpInfo,
  2396.                                   const Instruction *I) override {
  2397.     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
  2398.                                 OpInfo, I);
  2399.   }
  2400.   InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
  2401.                                     unsigned AddressSpace,
  2402.                                     TTI::TargetCostKind CostKind,
  2403.                                     const Instruction *I) override {
  2404.     return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
  2405.                                   CostKind, I);
  2406.   }
  2407.   InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
  2408.                                         Align Alignment, unsigned AddressSpace,
  2409.                                         TTI::TargetCostKind CostKind) override {
  2410.     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
  2411.                                       CostKind);
  2412.   }
  2413.   InstructionCost
  2414.   getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
  2415.                          bool VariableMask, Align Alignment,
  2416.                          TTI::TargetCostKind CostKind,
  2417.                          const Instruction *I = nullptr) override {
  2418.     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
  2419.                                        Alignment, CostKind, I);
  2420.   }
  2421.   InstructionCost getInterleavedMemoryOpCost(
  2422.       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
  2423.       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
  2424.       bool UseMaskForCond, bool UseMaskForGaps) override {
  2425.     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
  2426.                                            Alignment, AddressSpace, CostKind,
  2427.                                            UseMaskForCond, UseMaskForGaps);
  2428.   }
  2429.   InstructionCost
  2430.   getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
  2431.                              std::optional<FastMathFlags> FMF,
  2432.                              TTI::TargetCostKind CostKind) override {
  2433.     return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
  2434.   }
  2435.   InstructionCost
  2436.   getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
  2437.                          TTI::TargetCostKind CostKind) override {
  2438.     return Impl.getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
  2439.   }
  2440.   InstructionCost getExtendedReductionCost(
  2441.       unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
  2442.       std::optional<FastMathFlags> FMF,
  2443.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
  2444.     return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
  2445.                                          CostKind);
  2446.   }
  2447.   InstructionCost getMulAccReductionCost(
  2448.       bool IsUnsigned, Type *ResTy, VectorType *Ty,
  2449.       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
  2450.     return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
  2451.   }
  2452.   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
  2453.                                         TTI::TargetCostKind CostKind) override {
  2454.     return Impl.getIntrinsicInstrCost(ICA, CostKind);
  2455.   }
  2456.   InstructionCost getCallInstrCost(Function *F, Type *RetTy,
  2457.                                    ArrayRef<Type *> Tys,
  2458.                                    TTI::TargetCostKind CostKind) override {
  2459.     return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
  2460.   }
  2461.   unsigned getNumberOfParts(Type *Tp) override {
  2462.     return Impl.getNumberOfParts(Tp);
  2463.   }
  2464.   InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
  2465.                                             const SCEV *Ptr) override {
  2466.     return Impl.getAddressComputationCost(Ty, SE, Ptr);
  2467.   }
  2468.   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
  2469.     return Impl.getCostOfKeepingLiveOverCall(Tys);
  2470.   }
  2471.   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
  2472.                           MemIntrinsicInfo &Info) override {
  2473.     return Impl.getTgtMemIntrinsic(Inst, Info);
  2474.   }
  2475.   unsigned getAtomicMemIntrinsicMaxElementSize() const override {
  2476.     return Impl.getAtomicMemIntrinsicMaxElementSize();
  2477.   }
  2478.   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
  2479.                                            Type *ExpectedType) override {
  2480.     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
  2481.   }
  2482.   Type *getMemcpyLoopLoweringType(
  2483.       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
  2484.       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
  2485.       std::optional<uint32_t> AtomicElementSize) const override {
  2486.     return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
  2487.                                           DestAddrSpace, SrcAlign, DestAlign,
  2488.                                           AtomicElementSize);
  2489.   }
  2490.   void getMemcpyLoopResidualLoweringType(
  2491.       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
  2492.       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
  2493.       unsigned SrcAlign, unsigned DestAlign,
  2494.       std::optional<uint32_t> AtomicCpySize) const override {
  2495.     Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
  2496.                                            SrcAddrSpace, DestAddrSpace,
  2497.                                            SrcAlign, DestAlign, AtomicCpySize);
  2498.   }
  2499.   bool areInlineCompatible(const Function *Caller,
  2500.                            const Function *Callee) const override {
  2501.     return Impl.areInlineCompatible(Caller, Callee);
  2502.   }
  2503.   bool areTypesABICompatible(const Function *Caller, const Function *Callee,
  2504.                              const ArrayRef<Type *> &Types) const override {
  2505.     return Impl.areTypesABICompatible(Caller, Callee, Types);
  2506.   }
  2507.   bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
  2508.     return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
  2509.   }
  2510.   bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
  2511.     return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
  2512.   }
  2513.   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
  2514.     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
  2515.   }
  2516.   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
  2517.     return Impl.isLegalToVectorizeLoad(LI);
  2518.   }
  2519.   bool isLegalToVectorizeStore(StoreInst *SI) const override {
  2520.     return Impl.isLegalToVectorizeStore(SI);
  2521.   }
  2522.   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
  2523.                                    unsigned AddrSpace) const override {
  2524.     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
  2525.                                             AddrSpace);
  2526.   }
  2527.   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
  2528.                                     unsigned AddrSpace) const override {
  2529.     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
  2530.                                              AddrSpace);
  2531.   }
  2532.   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
  2533.                                    ElementCount VF) const override {
  2534.     return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
  2535.   }
  2536.   bool isElementTypeLegalForScalableVector(Type *Ty) const override {
  2537.     return Impl.isElementTypeLegalForScalableVector(Ty);
  2538.   }
  2539.   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
  2540.                                unsigned ChainSizeInBytes,
  2541.                                VectorType *VecTy) const override {
  2542.     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
  2543.   }
  2544.   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
  2545.                                 unsigned ChainSizeInBytes,
  2546.                                 VectorType *VecTy) const override {
  2547.     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
  2548.   }
  2549.   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
  2550.                              ReductionFlags Flags) const override {
  2551.     return Impl.preferInLoopReduction(Opcode, Ty, Flags);
  2552.   }
  2553.   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
  2554.                                        ReductionFlags Flags) const override {
  2555.     return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
  2556.   }
  2557.   bool preferEpilogueVectorization() const override {
  2558.     return Impl.preferEpilogueVectorization();
  2559.   }
  2560.  
  2561.   bool shouldExpandReduction(const IntrinsicInst *II) const override {
  2562.     return Impl.shouldExpandReduction(II);
  2563.   }
  2564.  
  2565.   unsigned getGISelRematGlobalCost() const override {
  2566.     return Impl.getGISelRematGlobalCost();
  2567.   }
  2568.  
  2569.   unsigned getMinTripCountTailFoldingThreshold() const override {
  2570.     return Impl.getMinTripCountTailFoldingThreshold();
  2571.   }
  2572.  
  2573.   bool supportsScalableVectors() const override {
  2574.     return Impl.supportsScalableVectors();
  2575.   }
  2576.  
  2577.   bool enableScalableVectorization() const override {
  2578.     return Impl.enableScalableVectorization();
  2579.   }
  2580.  
  2581.   bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
  2582.                              Align Alignment) const override {
  2583.     return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
  2584.   }
  2585.  
  2586.   VPLegalization
  2587.   getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
  2588.     return Impl.getVPLegalizationStrategy(PI);
  2589.   }
  2590. };
  2591.  
  2592. template <typename T>
  2593. TargetTransformInfo::TargetTransformInfo(T Impl)
  2594.     : TTIImpl(new Model<T>(Impl)) {}
  2595.  
  2596. /// Analysis pass providing the \c TargetTransformInfo.
  2597. ///
  2598. /// The core idea of the TargetIRAnalysis is to expose an interface through
  2599. /// which LLVM targets can analyze and provide information about the middle
  2600. /// end's target-independent IR. This supports use cases such as target-aware
  2601. /// cost modeling of IR constructs.
  2602. ///
  2603. /// This is a function analysis because much of the cost modeling for targets
  2604. /// is done in a subtarget specific way and LLVM supports compiling different
  2605. /// functions targeting different subtargets in order to support runtime
  2606. /// dispatch according to the observed subtarget.
  2607. class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
  2608. public:
  2609.   typedef TargetTransformInfo Result;
  2610.  
  2611.   /// Default construct a target IR analysis.
  2612.   ///
  2613.   /// This will use the module's datalayout to construct a baseline
  2614.   /// conservative TTI result.
  2615.   TargetIRAnalysis();
  2616.  
  2617.   /// Construct an IR analysis pass around a target-provide callback.
  2618.   ///
  2619.   /// The callback will be called with a particular function for which the TTI
  2620.   /// is needed and must return a TTI object for that function.
  2621.   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
  2622.  
  2623.   // Value semantics. We spell out the constructors for MSVC.
  2624.   TargetIRAnalysis(const TargetIRAnalysis &Arg)
  2625.       : TTICallback(Arg.TTICallback) {}
  2626.   TargetIRAnalysis(TargetIRAnalysis &&Arg)
  2627.       : TTICallback(std::move(Arg.TTICallback)) {}
  2628.   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
  2629.     TTICallback = RHS.TTICallback;
  2630.     return *this;
  2631.   }
  2632.   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
  2633.     TTICallback = std::move(RHS.TTICallback);
  2634.     return *this;
  2635.   }
  2636.  
  2637.   Result run(const Function &F, FunctionAnalysisManager &);
  2638.  
  2639. private:
  2640.   friend AnalysisInfoMixin<TargetIRAnalysis>;
  2641.   static AnalysisKey Key;
  2642.  
  2643.   /// The callback used to produce a result.
  2644.   ///
  2645.   /// We use a completely opaque callback so that targets can provide whatever
  2646.   /// mechanism they desire for constructing the TTI for a given function.
  2647.   ///
  2648.   /// FIXME: Should we really use std::function? It's relatively inefficient.
  2649.   /// It might be possible to arrange for even stateful callbacks to outlive
  2650.   /// the analysis and thus use a function_ref which would be lighter weight.
  2651.   /// This may also be less error prone as the callback is likely to reference
  2652.   /// the external TargetMachine, and that reference needs to never dangle.
  2653.   std::function<Result(const Function &)> TTICallback;
  2654.  
  2655.   /// Helper function used as the callback in the default constructor.
  2656.   static Result getDefaultTTI(const Function &F);
  2657. };
  2658.  
  2659. /// Wrapper pass for TargetTransformInfo.
  2660. ///
  2661. /// This pass can be constructed from a TTI object which it stores internally
  2662. /// and is queried by passes.
  2663. class TargetTransformInfoWrapperPass : public ImmutablePass {
  2664.   TargetIRAnalysis TIRA;
  2665.   std::optional<TargetTransformInfo> TTI;
  2666.  
  2667.   virtual void anchor();
  2668.  
  2669. public:
  2670.   static char ID;
  2671.  
  2672.   /// We must provide a default constructor for the pass but it should
  2673.   /// never be used.
  2674.   ///
  2675.   /// Use the constructor below or call one of the creation routines.
  2676.   TargetTransformInfoWrapperPass();
  2677.  
  2678.   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
  2679.  
  2680.   TargetTransformInfo &getTTI(const Function &F);
  2681. };
  2682.  
  2683. /// Create an analysis pass wrapper around a TTI object.
  2684. ///
  2685. /// This analysis pass just holds the TTI instance and makes it available to
  2686. /// clients.
  2687. ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
  2688.  
  2689. } // namespace llvm
  2690.  
  2691. #endif
  2692.