//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
/// This pass exposes codegen information to IR-level passes. Every
 
/// transformation that uses codegen information is broken into three parts:
 
/// 1. The IR-level analysis pass.
 
/// 2. The IR-level transformation interface which provides the needed
 
///    information.
 
/// 3. Codegen-level implementation which uses target-specific hooks.
 
///
 
/// This file defines #2, which is the interface that IR-level transformations
 
/// use for querying the codegen.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
 
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
 
 
 
#include "llvm/ADT/SmallBitVector.h"
 
#include "llvm/IR/FMF.h"
 
#include "llvm/IR/InstrTypes.h"
 
#include "llvm/IR/PassManager.h"
 
#include "llvm/Pass.h"
 
#include "llvm/Support/AtomicOrdering.h"
 
#include "llvm/Support/BranchProbability.h"
 
#include "llvm/Support/InstructionCost.h"
 
#include <functional>
 
#include <optional>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
namespace Intrinsic {
 
typedef unsigned ID;
 
}
 
 
 
class AssumptionCache;
 
class BlockFrequencyInfo;
 
class DominatorTree;
 
class BranchInst;
 
class CallBase;
 
class Function;
 
class GlobalValue;
 
class InstCombiner;
 
class OptimizationRemarkEmitter;
 
class InterleavedAccessInfo;
 
class IntrinsicInst;
 
class LoadInst;
 
class Loop;
 
class LoopInfo;
 
class LoopVectorizationLegality;
 
class ProfileSummaryInfo;
 
class RecurrenceDescriptor;
 
class SCEV;
 
class ScalarEvolution;
 
class StoreInst;
 
class SwitchInst;
 
class TargetLibraryInfo;
 
class Type;
 
class User;
 
class Value;
 
class VPIntrinsic;
 
struct KnownBits;
 
 
 
/// Information about a load/store intrinsic defined by the target.
 
struct MemIntrinsicInfo {
 
  /// This is the pointer that the intrinsic is loading from or storing to.
 
  /// If this is non-null, then analysis/optimization passes can assume that
 
  /// this intrinsic is functionally equivalent to a load/store from this
 
  /// pointer.
 
  Value *PtrVal = nullptr;
 
 
 
  // Ordering for atomic operations.
 
  AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
 
 
 
  // Same Id is set by the target for corresponding load/store intrinsics.
 
  unsigned short MatchingId = 0;
 
 
 
  bool ReadMem = false;
 
  bool WriteMem = false;
 
  bool IsVolatile = false;
 
 
 
  bool isUnordered() const {
 
    return (Ordering == AtomicOrdering::NotAtomic ||
 
            Ordering == AtomicOrdering::Unordered) &&
 
           !IsVolatile;
 
  }
 
};
 
 
 
/// Attributes of a target dependent hardware loop.
 
struct HardwareLoopInfo {
 
  HardwareLoopInfo() = delete;
 
  HardwareLoopInfo(Loop *L) : L(L) {}
 
  Loop *L = nullptr;
 
  BasicBlock *ExitBlock = nullptr;
 
  BranchInst *ExitBranch = nullptr;
 
  const SCEV *ExitCount = nullptr;
 
  IntegerType *CountType = nullptr;
 
  Value *LoopDecrement = nullptr; // Decrement the loop counter by this
 
                                  // value in every iteration.
 
  bool IsNestingLegal = false;    // Can a hardware loop be a parent to
 
                                  // another hardware loop?
 
  bool CounterInReg = false;      // Should loop counter be updated in
 
                                  // the loop via a phi?
 
  bool PerformEntryTest = false;  // Generate the intrinsic which also performs
 
                                  // icmp ne zero on the loop counter value and
 
                                  // produces an i1 to guard the loop entry.
 
  bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
 
                               DominatorTree &DT, bool ForceNestedLoop = false,
 
                               bool ForceHardwareLoopPHI = false);
 
  bool canAnalyze(LoopInfo &LI);
 
};
 
 
 
class IntrinsicCostAttributes {
 
  const IntrinsicInst *II = nullptr;
 
  Type *RetTy = nullptr;
 
  Intrinsic::ID IID;
 
  SmallVector<Type *, 4> ParamTys;
 
  SmallVector<const Value *, 4> Arguments;
 
  FastMathFlags FMF;
 
  // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
 
  // arguments and the return value will be computed based on types.
 
  InstructionCost ScalarizationCost = InstructionCost::getInvalid();
 
 
 
public:
 
  IntrinsicCostAttributes(
 
      Intrinsic::ID Id, const CallBase &CI,
 
      InstructionCost ScalarCost = InstructionCost::getInvalid(),
 
      bool TypeBasedOnly = false);
 
 
 
  IntrinsicCostAttributes(
 
      Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
 
      FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
 
      InstructionCost ScalarCost = InstructionCost::getInvalid());
 
 
 
  IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
 
                          ArrayRef<const Value *> Args);
 
 
 
  IntrinsicCostAttributes(
 
      Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args,
 
      ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(),
 
      const IntrinsicInst *I = nullptr,
 
      InstructionCost ScalarCost = InstructionCost::getInvalid());
 
 
 
  Intrinsic::ID getID() const { return IID; }
 
  const IntrinsicInst *getInst() const { return II; }
 
  Type *getReturnType() const { return RetTy; }
 
  FastMathFlags getFlags() const { return FMF; }
 
  InstructionCost getScalarizationCost() const { return ScalarizationCost; }
 
  const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
 
  const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
 
 
 
  bool isTypeBasedOnly() const {
 
    return Arguments.empty();
 
  }
 
 
 
  bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
 
};
 
 
 
enum class PredicationStyle { None, Data, DataAndControlFlow };
 
 
 
class TargetTransformInfo;
 
typedef TargetTransformInfo TTI;
 
 
 
/// This pass provides access to the codegen interfaces that are needed
 
/// for IR-level transformations.
 
class TargetTransformInfo {
 
public:
 
  /// Construct a TTI object using a type implementing the \c Concept
 
  /// API below.
 
  ///
 
  /// This is used by targets to construct a TTI wrapping their target-specific
 
  /// implementation that encodes appropriate costs for their target.
 
  template <typename T> TargetTransformInfo(T Impl);
 
 
 
  /// Construct a baseline TTI object using a minimal implementation of
 
  /// the \c Concept API below.
 
  ///
 
  /// The TTI implementation will reflect the information in the DataLayout
 
  /// provided if non-null.
 
  explicit TargetTransformInfo(const DataLayout &DL);
 
 
 
  // Provide move semantics.
 
  TargetTransformInfo(TargetTransformInfo &&Arg);
 
  TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
 
 
 
  // We need to define the destructor out-of-line to define our sub-classes
 
  // out-of-line.
 
  ~TargetTransformInfo();
 
 
 
  /// Handle the invalidation of this information.
 
  ///
 
  /// When used as a result of \c TargetIRAnalysis this method will be called
 
  /// when the function this was computed for changes. When it returns false,
 
  /// the information is preserved across those changes.
 
  bool invalidate(Function &, const PreservedAnalyses &,
 
                  FunctionAnalysisManager::Invalidator &) {
 
    // FIXME: We should probably in some way ensure that the subtarget
 
    // information for a function hasn't changed.
 
    return false;
 
  }
 
 
 
  /// \name Generic Target Information
 
  /// @{
 
 
 
  /// The kind of cost model.
 
  ///
 
  /// There are several different cost models that can be customized by the
 
  /// target. The normalization of each cost model may be target specific.
 
  /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
 
  /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
 
  enum TargetCostKind {
 
    TCK_RecipThroughput, ///< Reciprocal throughput.
 
    TCK_Latency,         ///< The latency of instruction.
 
    TCK_CodeSize,        ///< Instruction code size.
 
    TCK_SizeAndLatency   ///< The weighted sum of size and latency.
 
  };
 
 
 
  /// Underlying constants for 'cost' values in this interface.
 
  ///
 
  /// Many APIs in this interface return a cost. This enum defines the
 
  /// fundamental values that should be used to interpret (and produce) those
 
  /// costs. The costs are returned as an int rather than a member of this
 
  /// enumeration because it is expected that the cost of one IR instruction
 
  /// may have a multiplicative factor to it or otherwise won't fit directly
 
  /// into the enum. Moreover, it is common to sum or average costs which works
 
  /// better as simple integral values. Thus this enum only provides constants.
 
  /// Also note that the returned costs are signed integers to make it natural
 
  /// to add, subtract, and test with zero (a common boundary condition). It is
 
  /// not expected that 2^32 is a realistic cost to be modeling at any point.
 
  ///
 
  /// Note that these costs should usually reflect the intersection of code-size
 
  /// cost and execution cost. A free instruction is typically one that folds
 
  /// into another instruction. For example, reg-to-reg moves can often be
 
  /// skipped by renaming the registers in the CPU, but they still are encoded
 
  /// and thus wouldn't be considered 'free' here.
 
  enum TargetCostConstants {
 
    TCC_Free = 0,     ///< Expected to fold away in lowering.
 
    TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
 
    TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
 
  };
 
 
 
  /// Estimate the cost of a GEP operation when lowered.
 
  InstructionCost
 
  getGEPCost(Type *PointeeType, const Value *Ptr,
 
             ArrayRef<const Value *> Operands,
 
             TargetCostKind CostKind = TCK_SizeAndLatency) const;
 
 
 
  /// \returns A value by which our inlining threshold should be multiplied.
 
  /// This is primarily used to bump up the inlining threshold wholesale on
 
  /// targets where calls are unusually expensive.
 
  ///
 
  /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
 
  /// individual classes of instructions would be better.
 
  unsigned getInliningThresholdMultiplier() const;
 
 
 
  /// \returns A value to be added to the inlining threshold.
 
  unsigned adjustInliningThreshold(const CallBase *CB) const;
 
 
 
  /// \returns Vector bonus in percent.
 
  ///
 
  /// Vector bonuses: We want to more aggressively inline vector-dense kernels
 
  /// and apply this bonus based on the percentage of vector instructions. A
 
  /// bonus is applied if the vector instructions exceed 50% and half that
 
  /// amount is applied if it exceeds 10%. Note that these bonuses are some what
 
  /// arbitrary and evolved over time by accident as much as because they are
 
  /// principled bonuses.
 
  /// FIXME: It would be nice to base the bonus values on something more
 
  /// scientific. A target may has no bonus on vector instructions.
 
  int getInlinerVectorBonusPercent() const;
 
 
 
  /// \return the expected cost of a memcpy, which could e.g. depend on the
 
  /// source/destination type and alignment and the number of bytes copied.
 
  InstructionCost getMemcpyCost(const Instruction *I) const;
 
 
 
  /// \return The estimated number of case clusters when lowering \p 'SI'.
 
  /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
 
  /// table.
 
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
 
                                            unsigned &JTSize,
 
                                            ProfileSummaryInfo *PSI,
 
                                            BlockFrequencyInfo *BFI) const;
 
 
 
  /// Estimate the cost of a given IR user when lowered.
 
  ///
 
  /// This can estimate the cost of either a ConstantExpr or Instruction when
 
  /// lowered.
 
  ///
 
  /// \p Operands is a list of operands which can be a result of transformations
 
  /// of the current operands. The number of the operands on the list must equal
 
  /// to the number of the current operands the IR user has. Their order on the
 
  /// list must be the same as the order of the current operands the IR user
 
  /// has.
 
  ///
 
  /// The returned cost is defined in terms of \c TargetCostConstants, see its
 
  /// comments for a detailed explanation of the cost values.
 
  InstructionCost getInstructionCost(const User *U,
 
                                     ArrayRef<const Value *> Operands,
 
                                     TargetCostKind CostKind) const;
 
 
 
  /// This is a helper function which calls the three-argument
 
  /// getInstructionCost with \p Operands which are the current operands U has.
 
  InstructionCost getInstructionCost(const User *U,
 
                                     TargetCostKind CostKind) const {
 
    SmallVector<const Value *, 4> Operands(U->operand_values());
 
    return getInstructionCost(U, Operands, CostKind);
 
  }
 
 
 
  /// If a branch or a select condition is skewed in one direction by more than
 
  /// this factor, it is very likely to be predicted correctly.
 
  BranchProbability getPredictableBranchThreshold() const;
 
 
 
  /// Return true if branch divergence exists.
 
  ///
 
  /// Branch divergence has a significantly negative impact on GPU performance
 
  /// when threads in the same wavefront take different paths due to conditional
 
  /// branches.
 
  bool hasBranchDivergence() const;
 
 
 
  /// Return true if the target prefers to use GPU divergence analysis to
 
  /// replace the legacy version.
 
  bool useGPUDivergenceAnalysis() const;
 
 
 
  /// Returns whether V is a source of divergence.
 
  ///
 
  /// This function provides the target-dependent information for
 
  /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
 
  /// first builds the dependency graph, and then runs the reachability
 
  /// algorithm starting with the sources of divergence.
 
  bool isSourceOfDivergence(const Value *V) const;
 
 
 
  // Returns true for the target specific
 
  // set of operations which produce uniform result
 
  // even taking non-uniform arguments
 
  bool isAlwaysUniform(const Value *V) const;
 
 
 
  /// Returns the address space ID for a target's 'flat' address space. Note
 
  /// this is not necessarily the same as addrspace(0), which LLVM sometimes
 
  /// refers to as the generic address space. The flat address space is a
 
  /// generic address space that can be used access multiple segments of memory
 
  /// with different address spaces. Access of a memory location through a
 
  /// pointer with this address space is expected to be legal but slower
 
  /// compared to the same memory location accessed through a pointer with a
 
  /// different address space.
 
  //
 
  /// This is for targets with different pointer representations which can
 
  /// be converted with the addrspacecast instruction. If a pointer is converted
 
  /// to this address space, optimizations should attempt to replace the access
 
  /// with the source address space.
 
  ///
 
  /// \returns ~0u if the target does not have such a flat address space to
 
  /// optimize away.
 
  unsigned getFlatAddressSpace() const;
 
 
 
  /// Return any intrinsic address operand indexes which may be rewritten if
 
  /// they use a flat address space pointer.
 
  ///
 
  /// \returns true if the intrinsic was handled.
 
  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
 
                                  Intrinsic::ID IID) const;
 
 
 
  bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
 
 
 
  /// Return true if globals in this address space can have initializers other
 
  /// than `undef`.
 
  bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const;
 
 
 
  unsigned getAssumedAddrSpace(const Value *V) const;
 
 
 
  bool isSingleThreaded() const;
 
 
 
  std::pair<const Value *, unsigned>
 
  getPredicatedAddrSpace(const Value *V) const;
 
 
 
  /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
 
  /// NewV, which has a different address space. This should happen for every
 
  /// operand index that collectFlatAddressOperands returned for the intrinsic.
 
  /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
 
  /// new value (which may be the original \p II with modified operands).
 
  Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
 
                                          Value *NewV) const;
 
 
 
  /// Test whether calls to a function lower to actual program function
 
  /// calls.
 
  ///
 
  /// The idea is to test whether the program is likely to require a 'call'
 
  /// instruction or equivalent in order to call the given function.
 
  ///
 
  /// FIXME: It's not clear that this is a good or useful query API. Client's
 
  /// should probably move to simpler cost metrics using the above.
 
  /// Alternatively, we could split the cost interface into distinct code-size
 
  /// and execution-speed costs. This would allow modelling the core of this
 
  /// query more accurately as a call is a single small instruction, but
 
  /// incurs significant execution cost.
 
  bool isLoweredToCall(const Function *F) const;
 
 
 
  struct LSRCost {
 
    /// TODO: Some of these could be merged. Also, a lexical ordering
 
    /// isn't always optimal.
 
    unsigned Insns;
 
    unsigned NumRegs;
 
    unsigned AddRecCost;
 
    unsigned NumIVMuls;
 
    unsigned NumBaseAdds;
 
    unsigned ImmCost;
 
    unsigned SetupCost;
 
    unsigned ScaleCost;
 
  };
 
 
 
  /// Parameters that control the generic loop unrolling transformation.
 
  struct UnrollingPreferences {
 
    /// The cost threshold for the unrolled loop. Should be relative to the
 
    /// getInstructionCost values returned by this API, and the expectation is
 
    /// that the unrolled loop's instructions when run through that interface
 
    /// should not exceed this cost. However, this is only an estimate. Also,
 
    /// specific loops may be unrolled even with a cost above this threshold if
 
    /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
 
    /// restriction.
 
    unsigned Threshold;
 
    /// If complete unrolling will reduce the cost of the loop, we will boost
 
    /// the Threshold by a certain percent to allow more aggressive complete
 
    /// unrolling. This value provides the maximum boost percentage that we
 
    /// can apply to Threshold (The value should be no less than 100).
 
    /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
 
    ///                                    MaxPercentThresholdBoost / 100)
 
    /// E.g. if complete unrolling reduces the loop execution time by 50%
 
    /// then we boost the threshold by the factor of 2x. If unrolling is not
 
    /// expected to reduce the running time, then we do not increase the
 
    /// threshold.
 
    unsigned MaxPercentThresholdBoost;
 
    /// The cost threshold for the unrolled loop when optimizing for size (set
 
    /// to UINT_MAX to disable).
 
    unsigned OptSizeThreshold;
 
    /// The cost threshold for the unrolled loop, like Threshold, but used
 
    /// for partial/runtime unrolling (set to UINT_MAX to disable).
 
    unsigned PartialThreshold;
 
    /// The cost threshold for the unrolled loop when optimizing for size, like
 
    /// OptSizeThreshold, but used for partial/runtime unrolling (set to
 
    /// UINT_MAX to disable).
 
    unsigned PartialOptSizeThreshold;
 
    /// A forced unrolling factor (the number of concatenated bodies of the
 
    /// original loop in the unrolled loop body). When set to 0, the unrolling
 
    /// transformation will select an unrolling factor based on the current cost
 
    /// threshold and other factors.
 
    unsigned Count;
 
    /// Default unroll count for loops with run-time trip count.
 
    unsigned DefaultUnrollRuntimeCount;
 
    // Set the maximum unrolling factor. The unrolling factor may be selected
 
    // using the appropriate cost threshold, but may not exceed this number
 
    // (set to UINT_MAX to disable). This does not apply in cases where the
 
    // loop is being fully unrolled.
 
    unsigned MaxCount;
 
    /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
 
    /// applies even if full unrolling is selected. This allows a target to fall
 
    /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
 
    unsigned FullUnrollMaxCount;
 
    // Represents number of instructions optimized when "back edge"
 
    // becomes "fall through" in unrolled loop.
 
    // For now we count a conditional branch on a backedge and a comparison
 
    // feeding it.
 
    unsigned BEInsns;
 
    /// Allow partial unrolling (unrolling of loops to expand the size of the
 
    /// loop body, not only to eliminate small constant-trip-count loops).
 
    bool Partial;
 
    /// Allow runtime unrolling (unrolling of loops to expand the size of the
 
    /// loop body even when the number of loop iterations is not known at
 
    /// compile time).
 
    bool Runtime;
 
    /// Allow generation of a loop remainder (extra iterations after unroll).
 
    bool AllowRemainder;
 
    /// Allow emitting expensive instructions (such as divisions) when computing
 
    /// the trip count of a loop for runtime unrolling.
 
    bool AllowExpensiveTripCount;
 
    /// Apply loop unroll on any kind of loop
 
    /// (mainly to loops that fail runtime unrolling).
 
    bool Force;
 
    /// Allow using trip count upper bound to unroll loops.
 
    bool UpperBound;
 
    /// Allow unrolling of all the iterations of the runtime loop remainder.
 
    bool UnrollRemainder;
 
    /// Allow unroll and jam. Used to enable unroll and jam for the target.
 
    bool UnrollAndJam;
 
    /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
 
    /// value above is used during unroll and jam for the outer loop size.
 
    /// This value is used in the same manner to limit the size of the inner
 
    /// loop.
 
    unsigned UnrollAndJamInnerLoopThreshold;
 
    /// Don't allow loop unrolling to simulate more than this number of
 
    /// iterations when checking full unroll profitability
 
    unsigned MaxIterationsCountToAnalyze;
 
  };
 
 
 
  /// Get target-customized preferences for the generic loop unrolling
 
  /// transformation. The caller will initialize UP with the current
 
  /// target-independent defaults.
 
  void getUnrollingPreferences(Loop *L, ScalarEvolution &,
 
                               UnrollingPreferences &UP,
 
                               OptimizationRemarkEmitter *ORE) const;
 
 
 
  /// Query the target whether it would be profitable to convert the given loop
 
  /// into a hardware loop.
 
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
 
                                AssumptionCache &AC, TargetLibraryInfo *LibInfo,
 
                                HardwareLoopInfo &HWLoopInfo) const;
 
 
 
  /// Query the target whether it would be prefered to create a predicated
 
  /// vector loop, which can avoid the need to emit a scalar epilogue loop.
 
  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
 
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
 
                                   DominatorTree *DT,
 
                                   LoopVectorizationLegality *LVL,
 
                                   InterleavedAccessInfo *IAI) const;
 
 
 
  /// Query the target whether lowering of the llvm.get.active.lane.mask
 
  /// intrinsic is supported and how the mask should be used. A return value
 
  /// of PredicationStyle::Data indicates the mask is used as data only,
 
  /// whereas PredicationStyle::DataAndControlFlow indicates we should also use
 
  /// the mask for control flow in the loop. If unsupported the return value is
 
  /// PredicationStyle::None.
 
  PredicationStyle emitGetActiveLaneMask() const;
 
 
 
  // Parameters that control the loop peeling transformation
 
  struct PeelingPreferences {
 
    /// A forced peeling factor (the number of bodied of the original loop
 
    /// that should be peeled off before the loop body). When set to 0, the
 
    /// a peeling factor based on profile information and other factors.
 
    unsigned PeelCount;
 
    /// Allow peeling off loop iterations.
 
    bool AllowPeeling;
 
    /// Allow peeling off loop iterations for loop nests.
 
    bool AllowLoopNestsPeeling;
 
    /// Allow peeling basing on profile. Uses to enable peeling off all
 
    /// iterations basing on provided profile.
 
    /// If the value is true the peeling cost model can decide to peel only
 
    /// some iterations and in this case it will set this to false.
 
    bool PeelProfiledIterations;
 
  };
 
 
 
  /// Get target-customized preferences for the generic loop peeling
 
  /// transformation. The caller will initialize \p PP with the current
 
  /// target-independent defaults with information from \p L and \p SE.
 
  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
 
                             PeelingPreferences &PP) const;
 
 
 
  /// Targets can implement their own combinations for target-specific
 
  /// intrinsics. This function will be called from the InstCombine pass every
 
  /// time a target-specific intrinsic is encountered.
 
  ///
 
  /// \returns std::nullopt to not do anything target specific or a value that
 
  /// will be returned from the InstCombiner. It is possible to return null and
 
  /// stop further processing of the intrinsic by returning nullptr.
 
  std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
 
                                                    IntrinsicInst & II) const;
 
  /// Can be used to implement target-specific instruction combining.
 
  /// \see instCombineIntrinsic
 
  std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
 
      InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
 
      KnownBits & Known, bool &KnownBitsComputed) const;
 
  /// Can be used to implement target-specific instruction combining.
 
  /// \see instCombineIntrinsic
 
  std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
 
      InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
 
      APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
 
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
 
          SimplifyAndSetOp) const;
 
  /// @}
 
 
 
  /// \name Scalar Target Information
 
  /// @{
 
 
 
  /// Flags indicating the kind of support for population count.
 
  ///
 
  /// Compared to the SW implementation, HW support is supposed to
 
  /// significantly boost the performance when the population is dense, and it
 
  /// may or may not degrade performance if the population is sparse. A HW
 
  /// support is considered as "Fast" if it can outperform, or is on a par
 
  /// with, SW implementation when the population is sparse; otherwise, it is
 
  /// considered as "Slow".
 
  enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
 
 
 
  /// Return true if the specified immediate is legal add immediate, that
 
  /// is the target has add instructions which can add a register with the
 
  /// immediate without having to materialize the immediate into a register.
 
  bool isLegalAddImmediate(int64_t Imm) const;
 
 
 
  /// Return true if the specified immediate is legal icmp immediate,
 
  /// that is the target has icmp instructions which can compare a register
 
  /// against the immediate without having to materialize the immediate into a
 
  /// register.
 
  bool isLegalICmpImmediate(int64_t Imm) const;
 
 
 
  /// Return true if the addressing mode represented by AM is legal for
 
  /// this target, for a load/store of the specified type.
 
  /// The type may be VoidTy, in which case only return true if the addressing
 
  /// mode is legal for a load/store of any legal type.
 
  /// If target returns true in LSRWithInstrQueries(), I may be valid.
 
  /// TODO: Handle pre/postinc as well.
 
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
 
                             bool HasBaseReg, int64_t Scale,
 
                             unsigned AddrSpace = 0,
 
                             Instruction *I = nullptr) const;
 
 
 
  /// Return true if LSR cost of C1 is lower than C2.
 
  bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
 
                     const TargetTransformInfo::LSRCost &C2) const;
 
 
 
  /// Return true if LSR major cost is number of registers. Targets which
 
  /// implement their own isLSRCostLess and unset number of registers as major
 
  /// cost should return false, otherwise return true.
 
  bool isNumRegsMajorCostOfLSR() const;
 
 
 
  /// \returns true if LSR should not optimize a chain that includes \p I.
 
  bool isProfitableLSRChainElement(Instruction *I) const;
 
 
 
  /// Return true if the target can fuse a compare and branch.
 
  /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
 
  /// calculation for the instructions in a loop.
 
  bool canMacroFuseCmp() const;
 
 
 
  /// Return true if the target can save a compare for loop count, for example
 
  /// hardware loop saves a compare.
 
  bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
 
                  DominatorTree *DT, AssumptionCache *AC,
 
                  TargetLibraryInfo *LibInfo) const;
 
 
 
  enum AddressingModeKind {
 
    AMK_PreIndexed,
 
    AMK_PostIndexed,
 
    AMK_None
 
  };
 
 
 
  /// Return the preferred addressing mode LSR should make efforts to generate.
 
  AddressingModeKind getPreferredAddressingMode(const Loop *L,
 
                                                ScalarEvolution *SE) const;
 
 
 
  /// Return true if the target supports masked store.
 
  bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
 
  /// Return true if the target supports masked load.
 
  bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
 
 
 
  /// Return true if the target supports nontemporal store.
 
  bool isLegalNTStore(Type *DataType, Align Alignment) const;
 
  /// Return true if the target supports nontemporal load.
 
  bool isLegalNTLoad(Type *DataType, Align Alignment) const;
 
 
 
  /// \Returns true if the target supports broadcasting a load to a vector of
 
  /// type <NumElements x ElementTy>.
 
  bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
 
 
 
  /// Return true if the target supports masked scatter.
 
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
 
  /// Return true if the target supports masked gather.
 
  bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
 
  /// Return true if the target forces scalarizing of llvm.masked.gather
 
  /// intrinsics.
 
  bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
 
  /// Return true if the target forces scalarizing of llvm.masked.scatter
 
  /// intrinsics.
 
  bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
 
 
 
  /// Return true if the target supports masked compress store.
 
  bool isLegalMaskedCompressStore(Type *DataType) const;
 
  /// Return true if the target supports masked expand load.
 
  bool isLegalMaskedExpandLoad(Type *DataType) const;
 
 
 
  /// Return true if this is an alternating opcode pattern that can be lowered
 
  /// to a single instruction on the target. In X86 this is for the addsub
 
  /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
 
  /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
 
  /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
 
  /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
 
  /// \p VecTy is the vector type of the instruction to be generated.
 
  bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
 
                       const SmallBitVector &OpcodeMask) const;
 
 
 
  /// Return true if we should be enabling ordered reductions for the target.
 
  bool enableOrderedReductions() const;
 
 
 
  /// Return true if the target has a unified operation to calculate division
 
  /// and remainder. If so, the additional implicit multiplication and
 
  /// subtraction required to calculate a remainder from division are free. This
 
  /// can enable more aggressive transformations for division and remainder than
 
  /// would typically be allowed using throughput or size cost models.
 
  bool hasDivRemOp(Type *DataType, bool IsSigned) const;
 
 
 
  /// Return true if the given instruction (assumed to be a memory access
 
  /// instruction) has a volatile variant. If that's the case then we can avoid
 
  /// addrspacecast to generic AS for volatile loads/stores. Default
 
  /// implementation returns false, which prevents address space inference for
 
  /// volatile loads/stores.
 
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
 
 
 
  /// Return true if target doesn't mind addresses in vectors.
 
  bool prefersVectorizedAddressing() const;
 
 
 
  /// Return the cost of the scaling factor used in the addressing
 
  /// mode represented by AM for this target, for a load/store
 
  /// of the specified type.
 
  /// If the AM is supported, the return value must be >= 0.
 
  /// If the AM is not supported, it returns a negative value.
 
  /// TODO: Handle pre/postinc as well.
 
  InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 
                                       int64_t BaseOffset, bool HasBaseReg,
 
                                       int64_t Scale,
 
                                       unsigned AddrSpace = 0) const;
 
 
 
  /// Return true if the loop strength reduce pass should make
 
  /// Instruction* based TTI queries to isLegalAddressingMode(). This is
 
  /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
 
  /// immediate offset and no index register.
 
  bool LSRWithInstrQueries() const;
 
 
 
  /// Return true if it's free to truncate a value of type Ty1 to type
 
  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
 
  /// by referencing its sub-register AX.
 
  bool isTruncateFree(Type *Ty1, Type *Ty2) const;
 
 
 
  /// Return true if it is profitable to hoist instruction in the
 
  /// then/else to before if.
 
  bool isProfitableToHoist(Instruction *I) const;
 
 
 
  bool useAA() const;
 
 
 
  /// Return true if this type is legal.
 
  bool isTypeLegal(Type *Ty) const;
 
 
 
  /// Returns the estimated number of registers required to represent \p Ty.
 
  unsigned getRegUsageForType(Type *Ty) const;
 
 
 
  /// Return true if switches should be turned into lookup tables for the
 
  /// target.
 
  bool shouldBuildLookupTables() const;
 
 
 
  /// Return true if switches should be turned into lookup tables
 
  /// containing this constant value for the target.
 
  bool shouldBuildLookupTablesForConstant(Constant *C) const;
 
 
 
  /// Return true if lookup tables should be turned into relative lookup tables.
 
  bool shouldBuildRelLookupTables() const;
 
 
 
  /// Return true if the input function which is cold at all call sites,
 
  ///  should use coldcc calling convention.
 
  bool useColdCCForColdCall(Function &F) const;
 
 
 
  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
 
  /// are set if the demanded result elements need to be inserted and/or
 
  /// extracted from vectors.
 
  InstructionCost getScalarizationOverhead(VectorType *Ty,
 
                                           const APInt &DemandedElts,
 
                                           bool Insert, bool Extract,
 
                                           TTI::TargetCostKind CostKind) const;
 
 
 
  /// Estimate the overhead of scalarizing an instructions unique
 
  /// non-constant operands. The (potentially vector) types to use for each of
 
  /// argument are passes via Tys.
 
  InstructionCost
 
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
 
                                   ArrayRef<Type *> Tys,
 
                                   TTI::TargetCostKind CostKind) const;
 
 
 
  /// If target has efficient vector element load/store instructions, it can
 
  /// return true here so that insertion/extraction costs are not added to
 
  /// the scalarization cost of a load/store.
 
  bool supportsEfficientVectorElementLoadStore() const;
 
 
 
  /// If the target supports tail calls.
 
  bool supportsTailCalls() const;
 
 
 
  /// If target supports tail call on \p CB
 
  bool supportsTailCallFor(const CallBase *CB) const;
 
 
 
  /// Don't restrict interleaved unrolling to small loops.
 
  bool enableAggressiveInterleaving(bool LoopHasReductions) const;
 
 
 
  /// Returns options for expansion of memcmp. IsZeroCmp is
 
  // true if this is the expansion of memcmp(p1, p2, s) == 0.
 
  struct MemCmpExpansionOptions {
 
    // Return true if memcmp expansion is enabled.
 
    operator bool() const { return MaxNumLoads > 0; }
 
 
 
    // Maximum number of load operations.
 
    unsigned MaxNumLoads = 0;
 
 
 
    // The list of available load sizes (in bytes), sorted in decreasing order.
 
    SmallVector<unsigned, 8> LoadSizes;
 
 
 
    // For memcmp expansion when the memcmp result is only compared equal or
 
    // not-equal to 0, allow up to this number of load pairs per block. As an
 
    // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
 
    //   a0 = load2bytes &a[0]
 
    //   b0 = load2bytes &b[0]
 
    //   a2 = load1byte  &a[2]
 
    //   b2 = load1byte  &b[2]
 
    //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
 
    unsigned NumLoadsPerBlock = 1;
 
 
 
    // Set to true to allow overlapping loads. For example, 7-byte compares can
 
    // be done with two 4-byte compares instead of 4+2+1-byte compares. This
 
    // requires all loads in LoadSizes to be doable in an unaligned way.
 
    bool AllowOverlappingLoads = false;
 
  };
 
  MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
 
                                               bool IsZeroCmp) const;
 
 
 
  /// Should the Select Optimization pass be enabled and ran.
 
  bool enableSelectOptimize() const;
 
 
 
  /// Enable matching of interleaved access groups.
 
  bool enableInterleavedAccessVectorization() const;
 
 
 
  /// Enable matching of interleaved access groups that contain predicated
 
  /// accesses or gaps and therefore vectorized using masked
 
  /// vector loads/stores.
 
  bool enableMaskedInterleavedAccessVectorization() const;
 
 
 
  /// Indicate that it is potentially unsafe to automatically vectorize
 
  /// floating-point operations because the semantics of vector and scalar
 
  /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
 
  /// does not support IEEE-754 denormal numbers, while depending on the
 
  /// platform, scalar floating-point math does.
 
  /// This applies to floating-point math operations and calls, not memory
 
  /// operations, shuffles, or casts.
 
  bool isFPVectorizationPotentiallyUnsafe() const;
 
 
 
  /// Determine if the target supports unaligned memory accesses.
 
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
 
                                      unsigned AddressSpace = 0,
 
                                      Align Alignment = Align(1),
 
                                      unsigned *Fast = nullptr) const;
 
 
 
  /// Return hardware support for population count.
 
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
 
 
 
  /// Return true if the hardware has a fast square-root instruction.
 
  bool haveFastSqrt(Type *Ty) const;
 
 
 
  /// Return true if the cost of the instruction is too high to speculatively
 
  /// execute and should be kept behind a branch.
 
  /// This normally just wraps around a getInstructionCost() call, but some
 
  /// targets might report a low TCK_SizeAndLatency value that is incompatible
 
  /// with the fixed TCC_Expensive value.
 
  /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
 
  bool isExpensiveToSpeculativelyExecute(const Instruction *I) const;
 
 
 
  /// Return true if it is faster to check if a floating-point value is NaN
 
  /// (or not-NaN) versus a comparison against a constant FP zero value.
 
  /// Targets should override this if materializing a 0.0 for comparison is
 
  /// generally as cheap as checking for ordered/unordered.
 
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
 
 
 
  /// Return the expected cost of supporting the floating point operation
 
  /// of the specified type.
 
  InstructionCost getFPOpCost(Type *Ty) const;
 
 
 
  /// Return the expected cost of materializing for the given integer
 
  /// immediate of the specified type.
 
  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
 
                                TargetCostKind CostKind) const;
 
 
 
  /// Return the expected cost of materialization for the given integer
 
  /// immediate of the specified type for a given instruction. The cost can be
 
  /// zero if the immediate can be folded into the specified instruction.
 
  InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
 
                                    const APInt &Imm, Type *Ty,
 
                                    TargetCostKind CostKind,
 
                                    Instruction *Inst = nullptr) const;
 
  InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
 
                                      const APInt &Imm, Type *Ty,
 
                                      TargetCostKind CostKind) const;
 
 
 
  /// Return the expected cost for the given integer when optimising
 
  /// for size. This is different than the other integer immediate cost
 
  /// functions in that it is subtarget agnostic. This is useful when you e.g.
 
  /// target one ISA such as Aarch32 but smaller encodings could be possible
 
  /// with another such as Thumb. This return value is used as a penalty when
 
  /// the total costs for a constant is calculated (the bigger the cost, the
 
  /// more beneficial constant hoisting is).
 
  InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
 
                                        const APInt &Imm, Type *Ty) const;
 
  /// @}
 
 
 
  /// \name Vector Target Information
 
  /// @{
 
 
 
  /// The various kinds of shuffle patterns for vector queries.
 
  enum ShuffleKind {
 
    SK_Broadcast,        ///< Broadcast element 0 to all other elements.
 
    SK_Reverse,          ///< Reverse the order of the vector.
 
    SK_Select,           ///< Selects elements from the corresponding lane of
 
                         ///< either source operand. This is equivalent to a
 
                         ///< vector select with a constant condition operand.
 
    SK_Transpose,        ///< Transpose two vectors.
 
    SK_InsertSubvector,  ///< InsertSubvector. Index indicates start offset.
 
    SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
 
    SK_PermuteTwoSrc,    ///< Merge elements from two source vectors into one
 
                         ///< with any shuffle mask.
 
    SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
 
                         ///< shuffle mask.
 
    SK_Splice            ///< Concatenates elements from the first input vector
 
                         ///< with elements of the second input vector. Returning
 
                         ///< a vector of the same type as the input vectors.
 
                         ///< Index indicates start offset in first input vector.
 
  };
 
 
 
  /// Additional information about an operand's possible values.
 
  enum OperandValueKind {
 
    OK_AnyValue,               // Operand can have any value.
 
    OK_UniformValue,           // Operand is uniform (splat of a value).
 
    OK_UniformConstantValue,   // Operand is uniform constant.
 
    OK_NonUniformConstantValue // Operand is a non uniform constant value.
 
  };
 
 
 
  /// Additional properties of an operand's values.
 
  enum OperandValueProperties {
 
    OP_None = 0,
 
    OP_PowerOf2 = 1,
 
    OP_NegatedPowerOf2 = 2,
 
  };
 
 
 
  // Describe the values an operand can take.  We're in the process
 
  // of migrating uses of OperandValueKind and OperandValueProperties
 
  // to use this class, and then will change the internal representation.
 
  struct OperandValueInfo {
 
    OperandValueKind Kind = OK_AnyValue;
 
    OperandValueProperties Properties = OP_None;
 
 
 
    bool isConstant() const {
 
      return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue;
 
    }
 
    bool isUniform() const {
 
      return Kind == OK_UniformConstantValue || Kind == OK_UniformValue;
 
    }
 
    bool isPowerOf2() const {
 
      return Properties == OP_PowerOf2;
 
    }
 
    bool isNegatedPowerOf2() const {
 
      return Properties == OP_NegatedPowerOf2;
 
    }
 
 
 
    OperandValueInfo getNoProps() const {
 
      return {Kind, OP_None};
 
    }
 
  };
 
 
 
  /// \return the number of registers in the target-provided register class.
 
  unsigned getNumberOfRegisters(unsigned ClassID) const;
 
 
 
  /// \return the target-provided register class ID for the provided type,
 
  /// accounting for type promotion and other type-legalization techniques that
 
  /// the target might apply. However, it specifically does not account for the
 
  /// scalarization or splitting of vector types. Should a vector type require
 
  /// scalarization or splitting into multiple underlying vector registers, that
 
  /// type should be mapped to a register class containing no registers.
 
  /// Specifically, this is designed to provide a simple, high-level view of the
 
  /// register allocation later performed by the backend. These register classes
 
  /// don't necessarily map onto the register classes used by the backend.
 
  /// FIXME: It's not currently possible to determine how many registers
 
  /// are used by the provided type.
 
  unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
 
 
 
  /// \return the target-provided register class name
 
  const char *getRegisterClassName(unsigned ClassID) const;
 
 
 
  enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector };
 
 
 
  /// \return The width of the largest scalar or vector register type.
 
  TypeSize getRegisterBitWidth(RegisterKind K) const;
 
 
 
  /// \return The width of the smallest vector register type.
 
  unsigned getMinVectorRegisterBitWidth() const;
 
 
 
  /// \return The maximum value of vscale if the target specifies an
 
  ///  architectural maximum vector length, and std::nullopt otherwise.
 
  std::optional<unsigned> getMaxVScale() const;
 
 
 
  /// \return the value of vscale to tune the cost model for.
 
  std::optional<unsigned> getVScaleForTuning() const;
 
 
 
  /// \return True if the vectorization factor should be chosen to
 
  /// make the vector of the smallest element type match the size of a
 
  /// vector register. For wider element types, this could result in
 
  /// creating vectors that span multiple vector registers.
 
  /// If false, the vectorization factor will be chosen based on the
 
  /// size of the widest element type.
 
  /// \p K Register Kind for vectorization.
 
  bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
 
 
 
  /// \return The minimum vectorization factor for types of given element
 
  /// bit width, or 0 if there is no minimum VF. The returned value only
 
  /// applies when shouldMaximizeVectorBandwidth returns true.
 
  /// If IsScalable is true, the returned ElementCount must be a scalable VF.
 
  ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
 
 
 
  /// \return The maximum vectorization factor for types of given element
 
  /// bit width and opcode, or 0 if there is no maximum VF.
 
  /// Currently only used by the SLP vectorizer.
 
  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
 
 
 
  /// \return The minimum vectorization factor for the store instruction. Given
 
  /// the initial estimation of the minimum vector factor and store value type,
 
  /// it tries to find possible lowest VF, which still might be profitable for
 
  /// the vectorization.
 
  /// \param VF Initial estimation of the minimum vector factor.
 
  /// \param ScalarMemTy Scalar memory type of the store operation.
 
  /// \param ScalarValTy Scalar type of the stored value.
 
  /// Currently only used by the SLP vectorizer.
 
  unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
 
                             Type *ScalarValTy) const;
 
 
 
  /// \return True if it should be considered for address type promotion.
 
  /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
 
  /// profitable without finding other extensions fed by the same input.
 
  bool shouldConsiderAddressTypePromotion(
 
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
 
 
 
  /// \return The size of a cache line in bytes.
 
  unsigned getCacheLineSize() const;
 
 
 
  /// The possible cache levels
 
  enum class CacheLevel {
 
    L1D, // The L1 data cache
 
    L2D, // The L2 data cache
 
 
 
    // We currently do not model L3 caches, as their sizes differ widely between
 
    // microarchitectures. Also, we currently do not have a use for L3 cache
 
    // size modeling yet.
 
  };
 
 
 
  /// \return The size of the cache level in bytes, if available.
 
  std::optional<unsigned> getCacheSize(CacheLevel Level) const;
 
 
 
  /// \return The associativity of the cache level, if available.
 
  std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
 
 
 
  /// \return How much before a load we should place the prefetch
 
  /// instruction.  This is currently measured in number of
 
  /// instructions.
 
  unsigned getPrefetchDistance() const;
 
 
 
  /// Some HW prefetchers can handle accesses up to a certain constant stride.
 
  /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
 
  /// and the arguments provided are meant to serve as a basis for deciding this
 
  /// for a particular loop.
 
  ///
 
  /// \param NumMemAccesses        Number of memory accesses in the loop.
 
  /// \param NumStridedMemAccesses Number of the memory accesses that
 
  ///                              ScalarEvolution could find a known stride
 
  ///                              for.
 
  /// \param NumPrefetches         Number of software prefetches that will be
 
  ///                              emitted as determined by the addresses
 
  ///                              involved and the cache line size.
 
  /// \param HasCall               True if the loop contains a call.
 
  ///
 
  /// \return This is the minimum stride in bytes where it makes sense to start
 
  ///         adding SW prefetches. The default is 1, i.e. prefetch with any
 
  ///         stride.
 
  unsigned getMinPrefetchStride(unsigned NumMemAccesses,
 
                                unsigned NumStridedMemAccesses,
 
                                unsigned NumPrefetches, bool HasCall) const;
 
 
 
  /// \return The maximum number of iterations to prefetch ahead.  If
 
  /// the required number of iterations is more than this number, no
 
  /// prefetching is performed.
 
  unsigned getMaxPrefetchIterationsAhead() const;
 
 
 
  /// \return True if prefetching should also be done for writes.
 
  bool enableWritePrefetching() const;
 
 
 
  /// \return if target want to issue a prefetch in address space \p AS.
 
  bool shouldPrefetchAddressSpace(unsigned AS) const;
 
 
 
  /// \return The maximum interleave factor that any transform should try to
 
  /// perform for this target. This number depends on the level of parallelism
 
  /// and the number of execution units in the CPU.
 
  unsigned getMaxInterleaveFactor(unsigned VF) const;
 
 
 
  /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
 
  static OperandValueInfo getOperandInfo(const Value *V);
 
 
 
  /// This is an approximation of reciprocal throughput of a math/logic op.
 
  /// A higher cost indicates less expected throughput.
 
  /// From Agner Fog's guides, reciprocal throughput is "the average number of
 
  /// clock cycles per instruction when the instructions are not part of a
 
  /// limiting dependency chain."
 
  /// Therefore, costs should be scaled to account for multiple execution units
 
  /// on the target that can process this type of instruction. For example, if
 
  /// there are 5 scalar integer units and 2 vector integer units that can
 
  /// calculate an 'add' in a single cycle, this model should indicate that the
 
  /// cost of the vector add instruction is 2.5 times the cost of the scalar
 
  /// add instruction.
 
  /// \p Args is an optional argument which holds the instruction operands
 
  /// values so the TTI can analyze those values searching for special
 
  /// cases or optimizations based on those values.
 
  /// \p CxtI is the optional original context instruction, if one exists, to
 
  /// provide even more information.
 
  InstructionCost getArithmeticInstrCost(
 
      unsigned Opcode, Type *Ty,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
 
      TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
 
      TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
 
      ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
 
      const Instruction *CxtI = nullptr) const;
 
 
 
  /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
 
  /// The exact mask may be passed as Mask, or else the array will be empty.
 
  /// The index and subtype parameters are used by the subvector insertion and
 
  /// extraction shuffle kinds to show the insert/extract point and the type of
 
  /// the subvector being inserted/extracted. The operands of the shuffle can be
 
  /// passed through \p Args, which helps improve the cost estimation in some
 
  /// cases, like in broadcast loads.
 
  /// NOTE: For subvector extractions Tp represents the source type.
 
  InstructionCost
 
  getShuffleCost(ShuffleKind Kind, VectorType *Tp,
 
                 ArrayRef<int> Mask = std::nullopt,
 
                 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
 
                 int Index = 0, VectorType *SubTp = nullptr,
 
                 ArrayRef<const Value *> Args = std::nullopt) const;
 
 
 
  /// Represents a hint about the context in which a cast is used.
 
  ///
 
  /// For zext/sext, the context of the cast is the operand, which must be a
 
  /// load of some kind. For trunc, the context is of the cast is the single
 
  /// user of the instruction, which must be a store of some kind.
 
  ///
 
  /// This enum allows the vectorizer to give getCastInstrCost an idea of the
 
  /// type of cast it's dealing with, as not every cast is equal. For instance,
 
  /// the zext of a load may be free, but the zext of an interleaving load can
 
  //// be (very) expensive!
 
  ///
 
  /// See \c getCastContextHint to compute a CastContextHint from a cast
 
  /// Instruction*. Callers can use it if they don't need to override the
 
  /// context and just want it to be calculated from the instruction.
 
  ///
 
  /// FIXME: This handles the types of load/store that the vectorizer can
 
  /// produce, which are the cases where the context instruction is most
 
  /// likely to be incorrect. There are other situations where that can happen
 
  /// too, which might be handled here but in the long run a more general
 
  /// solution of costing multiple instructions at the same times may be better.
 
  enum class CastContextHint : uint8_t {
 
    None,          ///< The cast is not used with a load/store of any kind.
 
    Normal,        ///< The cast is used with a normal load/store.
 
    Masked,        ///< The cast is used with a masked load/store.
 
    GatherScatter, ///< The cast is used with a gather/scatter.
 
    Interleave,    ///< The cast is used with an interleaved load/store.
 
    Reversed,      ///< The cast is used with a reversed load/store.
 
  };
 
 
 
  /// Calculates a CastContextHint from \p I.
 
  /// This should be used by callers of getCastInstrCost if they wish to
 
  /// determine the context from some instruction.
 
  /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
 
  /// or if it's another type of cast.
 
  static CastContextHint getCastContextHint(const Instruction *I);
 
 
 
  /// \return The expected cost of cast instructions, such as bitcast, trunc,
 
  /// zext, etc. If there is an existing instruction that holds Opcode, it
 
  /// may be passed in the 'I' parameter.
 
  InstructionCost
 
  getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
 
                   TTI::CastContextHint CCH,
 
                   TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
 
                   const Instruction *I = nullptr) const;
 
 
 
  /// \return The expected cost of a sign- or zero-extended vector extract. Use
 
  /// Index = -1 to indicate that there is no information about the index value.
 
  InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
 
                                           VectorType *VecTy,
 
                                           unsigned Index) const;
 
 
 
  /// \return The expected cost of control-flow related instructions such as
 
  /// Phi, Ret, Br, Switch.
 
  InstructionCost
 
  getCFInstrCost(unsigned Opcode,
 
                 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
 
                 const Instruction *I = nullptr) const;
 
 
 
  /// \returns The expected cost of compare and select instructions. If there
 
  /// is an existing instruction that holds Opcode, it may be passed in the
 
  /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
 
  /// is using a compare with the specified predicate as condition. When vector
 
  /// types are passed, \p VecPred must be used for all lanes.
 
  InstructionCost
 
  getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
 
                     CmpInst::Predicate VecPred,
 
                     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
 
                     const Instruction *I = nullptr) const;
 
 
 
  /// \return The expected cost of vector Insert and Extract.
 
  /// Use -1 to indicate that there is no information on the index value.
 
  /// This is used when the instruction is not available; a typical use
 
  /// case is to provision the cost of vectorization/scalarization in
 
  /// vectorizer passes.
 
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
 
                                     TTI::TargetCostKind CostKind,
 
                                     unsigned Index = -1, Value *Op0 = nullptr,
 
                                     Value *Op1 = nullptr) const;
 
 
 
  /// \return The expected cost of vector Insert and Extract.
 
  /// This is used when instruction is available, and implementation
 
  /// asserts 'I' is not nullptr.
 
  ///
 
  /// A typical suitable use case is cost estimation when vector instruction
 
  /// exists (e.g., from basic blocks during transformation).
 
  InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
 
                                     TTI::TargetCostKind CostKind,
 
                                     unsigned Index = -1) const;
 
 
 
  /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
 
  /// \p ReplicationFactor times.
 
  ///
 
  /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
 
  ///   <0,0,0,1,1,1,2,2,2,3,3,3>
 
  InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
 
                                            int VF,
 
                                            const APInt &DemandedDstElts,
 
                                            TTI::TargetCostKind CostKind);
 
 
 
  /// \return The cost of Load and Store instructions.
 
  InstructionCost
 
  getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                  unsigned AddressSpace,
 
                  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
 
                  OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
 
                  const Instruction *I = nullptr) const;
 
 
 
  /// \return The cost of VP Load and Store instructions.
 
  InstructionCost
 
  getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                    unsigned AddressSpace,
 
                    TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
 
                    const Instruction *I = nullptr) const;
 
 
 
  /// \return The cost of masked Load and Store instructions.
 
  InstructionCost getMaskedMemoryOpCost(
 
      unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
 
 
 
  /// \return The cost of Gather or Scatter operation
 
  /// \p Opcode - is a type of memory access Load or Store
 
  /// \p DataTy - a vector type of the data to be loaded or stored
 
  /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
 
  /// \p VariableMask - true when the memory access is predicated with a mask
 
  ///                   that is not a compile-time constant
 
  /// \p Alignment - alignment of single element
 
  /// \p I - the optional original context instruction, if one exists, e.g. the
 
  ///        load/store to transform or the call to the gather/scatter intrinsic
 
  InstructionCost getGatherScatterOpCost(
 
      unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
 
      Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
 
      const Instruction *I = nullptr) const;
 
 
 
  /// \return The cost of the interleaved memory operation.
 
  /// \p Opcode is the memory operation code
 
  /// \p VecTy is the vector type of the interleaved access.
 
  /// \p Factor is the interleave factor
 
  /// \p Indices is the indices for interleaved load members (as interleaved
 
  ///    load allows gaps)
 
  /// \p Alignment is the alignment of the memory operation
 
  /// \p AddressSpace is address space of the pointer.
 
  /// \p UseMaskForCond indicates if the memory access is predicated.
 
  /// \p UseMaskForGaps indicates if gaps should be masked.
 
  InstructionCost getInterleavedMemoryOpCost(
 
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 
      Align Alignment, unsigned AddressSpace,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
 
      bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
 
 
 
  /// A helper function to determine the type of reduction algorithm used
 
  /// for a given \p Opcode and set of FastMathFlags \p FMF.
 
  static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
 
    return FMF && !(*FMF).allowReassoc();
 
  }
 
 
 
  /// Calculate the cost of vector reduction intrinsics.
 
  ///
 
  /// This is the cost of reducing the vector value of type \p Ty to a scalar
 
  /// value using the operation denoted by \p Opcode. The FastMathFlags
 
  /// parameter \p FMF indicates what type of reduction we are performing:
 
  ///   1. Tree-wise. This is the typical 'fast' reduction performed that
 
  ///   involves successively splitting a vector into half and doing the
 
  ///   operation on the pair of halves until you have a scalar value. For
 
  ///   example:
 
  ///     (v0, v1, v2, v3)
 
  ///     ((v0+v2), (v1+v3), undef, undef)
 
  ///     ((v0+v2+v1+v3), undef, undef, undef)
 
  ///   This is the default behaviour for integer operations, whereas for
 
  ///   floating point we only do this if \p FMF indicates that
 
  ///   reassociation is allowed.
 
  ///   2. Ordered. For a vector with N elements this involves performing N
 
  ///   operations in lane order, starting with an initial scalar value, i.e.
 
  ///     result = InitVal + v0
 
  ///     result = result + v1
 
  ///     result = result + v2
 
  ///     result = result + v3
 
  ///   This is only the case for FP operations and when reassociation is not
 
  ///   allowed.
 
  ///
 
  InstructionCost getArithmeticReductionCost(
 
      unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
 
 
 
  InstructionCost getMinMaxReductionCost(
 
      VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
 
 
 
  /// Calculate the cost of an extended reduction pattern, similar to
 
  /// getArithmeticReductionCost of an Add reduction with multiply and optional
 
  /// extensions. This is the cost of as:
 
  /// ResTy vecreduce.add(mul (A, B)).
 
  /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
 
  InstructionCost getMulAccReductionCost(
 
      bool IsUnsigned, Type *ResTy, VectorType *Ty,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
 
 
 
  /// Calculate the cost of an extended reduction pattern, similar to
 
  /// getArithmeticReductionCost of a reduction with an extension.
 
  /// This is the cost of as:
 
  /// ResTy vecreduce.opcode(ext(Ty A)).
 
  InstructionCost getExtendedReductionCost(
 
      unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
 
      std::optional<FastMathFlags> FMF,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
 
 
 
  /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
 
  /// Three cases are handled: 1. scalar instruction 2. vector instruction
 
  /// 3. scalar instruction which is to be vectorized.
 
  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
 
                                        TTI::TargetCostKind CostKind) const;
 
 
 
  /// \returns The cost of Call instructions.
 
  InstructionCost getCallInstrCost(
 
      Function *F, Type *RetTy, ArrayRef<Type *> Tys,
 
      TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
 
 
 
  /// \returns The number of pieces into which the provided type must be
 
  /// split during legalization. Zero is returned when the answer is unknown.
 
  unsigned getNumberOfParts(Type *Tp) const;
 
 
 
  /// \returns The cost of the address computation. For most targets this can be
 
  /// merged into the instruction indexing mode. Some targets might want to
 
  /// distinguish between address computation for memory operations on vector
 
  /// types and scalar types. Such targets should override this function.
 
  /// The 'SE' parameter holds pointer for the scalar evolution object which
 
  /// is used in order to get the Ptr step value in case of constant stride.
 
  /// The 'Ptr' parameter holds SCEV of the access pointer.
 
  InstructionCost getAddressComputationCost(Type *Ty,
 
                                            ScalarEvolution *SE = nullptr,
 
                                            const SCEV *Ptr = nullptr) const;
 
 
 
  /// \returns The cost, if any, of keeping values of the given types alive
 
  /// over a callsite.
 
  ///
 
  /// Some types may require the use of register classes that do not have
 
  /// any callee-saved registers, so would require a spill and fill.
 
  InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
 
 
 
  /// \returns True if the intrinsic is a supported memory intrinsic.  Info
 
  /// will contain additional information - whether the intrinsic may write
 
  /// or read to memory, volatility and the pointer.  Info is undefined
 
  /// if false is returned.
 
  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
 
 
 
  /// \returns The maximum element size, in bytes, for an element
 
  /// unordered-atomic memory intrinsic.
 
  unsigned getAtomicMemIntrinsicMaxElementSize() const;
 
 
 
  /// \returns A value which is the result of the given memory intrinsic.  New
 
  /// instructions may be created to extract the result from the given intrinsic
 
  /// memory operation.  Returns nullptr if the target cannot create a result
 
  /// from the given intrinsic.
 
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
 
                                           Type *ExpectedType) const;
 
 
 
  /// \returns The type to use in a loop expansion of a memcpy call.
 
  Type *getMemcpyLoopLoweringType(
 
      LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
 
      unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
 
      std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
 
 
 
  /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
 
  /// \param RemainingBytes The number of bytes to copy.
 
  ///
 
  /// Calculates the operand types to use when copying \p RemainingBytes of
 
  /// memory, where source and destination alignments are \p SrcAlign and
 
  /// \p DestAlign respectively.
 
  void getMemcpyLoopResidualLoweringType(
 
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
 
      unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
 
      unsigned SrcAlign, unsigned DestAlign,
 
      std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
 
 
 
  /// \returns True if the two functions have compatible attributes for inlining
 
  /// purposes.
 
  bool areInlineCompatible(const Function *Caller,
 
                           const Function *Callee) const;
 
 
 
  /// \returns True if the caller and callee agree on how \p Types will be
 
  /// passed to or returned from the callee.
 
  /// to the callee.
 
  /// \param Types List of types to check.
 
  bool areTypesABICompatible(const Function *Caller, const Function *Callee,
 
                             const ArrayRef<Type *> &Types) const;
 
 
 
  /// The type of load/store indexing.
 
  enum MemIndexedMode {
 
    MIM_Unindexed, ///< No indexing.
 
    MIM_PreInc,    ///< Pre-incrementing.
 
    MIM_PreDec,    ///< Pre-decrementing.
 
    MIM_PostInc,   ///< Post-incrementing.
 
    MIM_PostDec    ///< Post-decrementing.
 
  };
 
 
 
  /// \returns True if the specified indexed load for the given type is legal.
 
  bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
 
 
 
  /// \returns True if the specified indexed store for the given type is legal.
 
  bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
 
 
 
  /// \returns The bitwidth of the largest vector type that should be used to
 
  /// load/store in the given address space.
 
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
 
 
 
  /// \returns True if the load instruction is legal to vectorize.
 
  bool isLegalToVectorizeLoad(LoadInst *LI) const;
 
 
 
  /// \returns True if the store instruction is legal to vectorize.
 
  bool isLegalToVectorizeStore(StoreInst *SI) const;
 
 
 
  /// \returns True if it is legal to vectorize the given load chain.
 
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
 
                                   unsigned AddrSpace) const;
 
 
 
  /// \returns True if it is legal to vectorize the given store chain.
 
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
 
                                    unsigned AddrSpace) const;
 
 
 
  /// \returns True if it is legal to vectorize the given reduction kind.
 
  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
 
                                   ElementCount VF) const;
 
 
 
  /// \returns True if the given type is supported for scalable vectors
 
  bool isElementTypeLegalForScalableVector(Type *Ty) const;
 
 
 
  /// \returns The new vector factor value if the target doesn't support \p
 
  /// SizeInBytes loads or has a better vector factor.
 
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
 
                               unsigned ChainSizeInBytes,
 
                               VectorType *VecTy) const;
 
 
 
  /// \returns The new vector factor value if the target doesn't support \p
 
  /// SizeInBytes stores or has a better vector factor.
 
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
 
                                unsigned ChainSizeInBytes,
 
                                VectorType *VecTy) const;
 
 
 
  /// Flags describing the kind of vector reduction.
 
  struct ReductionFlags {
 
    ReductionFlags() = default;
 
    bool IsMaxOp =
 
        false; ///< If the op a min/max kind, true if it's a max operation.
 
    bool IsSigned = false; ///< Whether the operation is a signed int reduction.
 
    bool NoNaN =
 
        false; ///< If op is an fp min/max, whether NaNs may be present.
 
  };
 
 
 
  /// \returns True if the target prefers reductions in loop.
 
  bool preferInLoopReduction(unsigned Opcode, Type *Ty,
 
                             ReductionFlags Flags) const;
 
 
 
  /// \returns True if the target prefers reductions select kept in the loop
 
  /// when tail folding. i.e.
 
  /// loop:
 
  ///   p = phi (0, s)
 
  ///   a = add (p, x)
 
  ///   s = select (mask, a, p)
 
  /// vecreduce.add(s)
 
  ///
 
  /// As opposed to the normal scheme of p = phi (0, a) which allows the select
 
  /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
 
  /// by the target, this can lead to cleaner code generation.
 
  bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
 
                                       ReductionFlags Flags) const;
 
 
 
  /// Return true if the loop vectorizer should consider vectorizing an
 
  /// otherwise scalar epilogue loop.
 
  bool preferEpilogueVectorization() const;
 
 
 
  /// \returns True if the target wants to expand the given reduction intrinsic
 
  /// into a shuffle sequence.
 
  bool shouldExpandReduction(const IntrinsicInst *II) const;
 
 
 
  /// \returns the size cost of rematerializing a GlobalValue address relative
 
  /// to a stack reload.
 
  unsigned getGISelRematGlobalCost() const;
 
 
 
  /// \returns the lower bound of a trip count to decide on vectorization
 
  /// while tail-folding.
 
  unsigned getMinTripCountTailFoldingThreshold() const;
 
 
 
  /// \returns True if the target supports scalable vectors.
 
  bool supportsScalableVectors() const;
 
 
 
  /// \return true when scalable vectorization is preferred.
 
  bool enableScalableVectorization() const;
 
 
 
  /// \name Vector Predication Information
 
  /// @{
 
  /// Whether the target supports the %evl parameter of VP intrinsic efficiently
 
  /// in hardware, for the given opcode and type/alignment. (see LLVM Language
 
  /// Reference - "Vector Predication Intrinsics").
 
  /// Use of %evl is discouraged when that is not the case.
 
  bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
 
                             Align Alignment) const;
 
 
 
  struct VPLegalization {
 
    enum VPTransform {
 
      // keep the predicating parameter
 
      Legal = 0,
 
      // where legal, discard the predicate parameter
 
      Discard = 1,
 
      // transform into something else that is also predicating
 
      Convert = 2
 
    };
 
 
 
    // How to transform the EVL parameter.
 
    // Legal:   keep the EVL parameter as it is.
 
    // Discard: Ignore the EVL parameter where it is safe to do so.
 
    // Convert: Fold the EVL into the mask parameter.
 
    VPTransform EVLParamStrategy;
 
 
 
    // How to transform the operator.
 
    // Legal:   The target supports this operator.
 
    // Convert: Convert this to a non-VP operation.
 
    // The 'Discard' strategy is invalid.
 
    VPTransform OpStrategy;
 
 
 
    bool shouldDoNothing() const {
 
      return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
 
    }
 
    VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)
 
        : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {}
 
  };
 
 
 
  /// \returns How the target needs this vector-predicated operation to be
 
  /// transformed.
 
  VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const;
 
  /// @}
 
 
 
  /// @}
 
 
 
private:
 
  /// The abstract base class used to type erase specific TTI
 
  /// implementations.
 
  class Concept;
 
 
 
  /// The template model for the base class which wraps a concrete
 
  /// implementation in a type erased interface.
 
  template <typename T> class Model;
 
 
 
  std::unique_ptr<Concept> TTIImpl;
 
};
 
 
 
class TargetTransformInfo::Concept {
 
public:
 
  virtual ~Concept() = 0;
 
  virtual const DataLayout &getDataLayout() const = 0;
 
  virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
 
                                     ArrayRef<const Value *> Operands,
 
                                     TTI::TargetCostKind CostKind) = 0;
 
  virtual unsigned getInliningThresholdMultiplier() = 0;
 
  virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
 
  virtual int getInlinerVectorBonusPercent() = 0;
 
  virtual InstructionCost getMemcpyCost(const Instruction *I) = 0;
 
  virtual unsigned
 
  getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
 
                                   ProfileSummaryInfo *PSI,
 
                                   BlockFrequencyInfo *BFI) = 0;
 
  virtual InstructionCost getInstructionCost(const User *U,
 
                                             ArrayRef<const Value *> Operands,
 
                                             TargetCostKind CostKind) = 0;
 
  virtual BranchProbability getPredictableBranchThreshold() = 0;
 
  virtual bool hasBranchDivergence() = 0;
 
  virtual bool useGPUDivergenceAnalysis() = 0;
 
  virtual bool isSourceOfDivergence(const Value *V) = 0;
 
  virtual bool isAlwaysUniform(const Value *V) = 0;
 
  virtual unsigned getFlatAddressSpace() = 0;
 
  virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
 
                                          Intrinsic::ID IID) const = 0;
 
  virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
 
  virtual bool
 
  canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0;
 
  virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
 
  virtual bool isSingleThreaded() const = 0;
 
  virtual std::pair<const Value *, unsigned>
 
  getPredicatedAddrSpace(const Value *V) const = 0;
 
  virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
 
                                                  Value *OldV,
 
                                                  Value *NewV) const = 0;
 
  virtual bool isLoweredToCall(const Function *F) = 0;
 
  virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
 
                                       UnrollingPreferences &UP,
 
                                       OptimizationRemarkEmitter *ORE) = 0;
 
  virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
 
                                     PeelingPreferences &PP) = 0;
 
  virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
 
                                        AssumptionCache &AC,
 
                                        TargetLibraryInfo *LibInfo,
 
                                        HardwareLoopInfo &HWLoopInfo) = 0;
 
  virtual bool
 
  preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
 
                              AssumptionCache &AC, TargetLibraryInfo *TLI,
 
                              DominatorTree *DT, LoopVectorizationLegality *LVL,
 
                              InterleavedAccessInfo *IAI) = 0;
 
  virtual PredicationStyle emitGetActiveLaneMask() = 0;
 
  virtual std::optional<Instruction *> instCombineIntrinsic(
 
      InstCombiner &IC, IntrinsicInst &II) = 0;
 
  virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
 
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
 
      KnownBits & Known, bool &KnownBitsComputed) = 0;
 
  virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
 
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
 
      APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
 
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
 
          SimplifyAndSetOp) = 0;
 
  virtual bool isLegalAddImmediate(int64_t Imm) = 0;
 
  virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
 
  virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
 
                                     int64_t BaseOffset, bool HasBaseReg,
 
                                     int64_t Scale, unsigned AddrSpace,
 
                                     Instruction *I) = 0;
 
  virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
 
                             const TargetTransformInfo::LSRCost &C2) = 0;
 
  virtual bool isNumRegsMajorCostOfLSR() = 0;
 
  virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
 
  virtual bool canMacroFuseCmp() = 0;
 
  virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
 
                          LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
 
                          TargetLibraryInfo *LibInfo) = 0;
 
  virtual AddressingModeKind
 
    getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0;
 
  virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
 
  virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
 
  virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
 
  virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
 
  virtual bool isLegalBroadcastLoad(Type *ElementTy,
 
                                    ElementCount NumElements) const = 0;
 
  virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
 
  virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
 
  virtual bool forceScalarizeMaskedGather(VectorType *DataType,
 
                                          Align Alignment) = 0;
 
  virtual bool forceScalarizeMaskedScatter(VectorType *DataType,
 
                                           Align Alignment) = 0;
 
  virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
 
  virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
 
  virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
 
                               unsigned Opcode1,
 
                               const SmallBitVector &OpcodeMask) const = 0;
 
  virtual bool enableOrderedReductions() = 0;
 
  virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
 
  virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
 
  virtual bool prefersVectorizedAddressing() = 0;
 
  virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 
                                               int64_t BaseOffset,
 
                                               bool HasBaseReg, int64_t Scale,
 
                                               unsigned AddrSpace) = 0;
 
  virtual bool LSRWithInstrQueries() = 0;
 
  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
 
  virtual bool isProfitableToHoist(Instruction *I) = 0;
 
  virtual bool useAA() = 0;
 
  virtual bool isTypeLegal(Type *Ty) = 0;
 
  virtual unsigned getRegUsageForType(Type *Ty) = 0;
 
  virtual bool shouldBuildLookupTables() = 0;
 
  virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
 
  virtual bool shouldBuildRelLookupTables() = 0;
 
  virtual bool useColdCCForColdCall(Function &F) = 0;
 
  virtual InstructionCost getScalarizationOverhead(VectorType *Ty,
 
                                                   const APInt &DemandedElts,
 
                                                   bool Insert, bool Extract,
 
                                                   TargetCostKind CostKind) = 0;
 
  virtual InstructionCost
 
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
 
                                   ArrayRef<Type *> Tys,
 
                                   TargetCostKind CostKind) = 0;
 
  virtual bool supportsEfficientVectorElementLoadStore() = 0;
 
  virtual bool supportsTailCalls() = 0;
 
  virtual bool supportsTailCallFor(const CallBase *CB) = 0;
 
  virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
 
  virtual MemCmpExpansionOptions
 
  enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
 
  virtual bool enableSelectOptimize() = 0;
 
  virtual bool enableInterleavedAccessVectorization() = 0;
 
  virtual bool enableMaskedInterleavedAccessVectorization() = 0;
 
  virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
 
  virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
 
                                              unsigned BitWidth,
 
                                              unsigned AddressSpace,
 
                                              Align Alignment,
 
                                              unsigned *Fast) = 0;
 
  virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
 
  virtual bool haveFastSqrt(Type *Ty) = 0;
 
  virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0;
 
  virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
 
  virtual InstructionCost getFPOpCost(Type *Ty) = 0;
 
  virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
 
                                                const APInt &Imm, Type *Ty) = 0;
 
  virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
 
                                        TargetCostKind CostKind) = 0;
 
  virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
 
                                            const APInt &Imm, Type *Ty,
 
                                            TargetCostKind CostKind,
 
                                            Instruction *Inst = nullptr) = 0;
 
  virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
 
                                              const APInt &Imm, Type *Ty,
 
                                              TargetCostKind CostKind) = 0;
 
  virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
 
  virtual unsigned getRegisterClassForType(bool Vector,
 
                                           Type *Ty = nullptr) const = 0;
 
  virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
 
  virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0;
 
  virtual unsigned getMinVectorRegisterBitWidth() const = 0;
 
  virtual std::optional<unsigned> getMaxVScale() const = 0;
 
  virtual std::optional<unsigned> getVScaleForTuning() const = 0;
 
  virtual bool
 
  shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0;
 
  virtual ElementCount getMinimumVF(unsigned ElemWidth,
 
                                    bool IsScalable) const = 0;
 
  virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
 
  virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
 
                                     Type *ScalarValTy) const = 0;
 
  virtual bool shouldConsiderAddressTypePromotion(
 
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
 
  virtual unsigned getCacheLineSize() const = 0;
 
  virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
 
  virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
 
      const = 0;
 
 
 
  /// \return How much before a load we should place the prefetch
 
  /// instruction.  This is currently measured in number of
 
  /// instructions.
 
  virtual unsigned getPrefetchDistance() const = 0;
 
 
 
  /// \return Some HW prefetchers can handle accesses up to a certain
 
  /// constant stride.  This is the minimum stride in bytes where it
 
  /// makes sense to start adding SW prefetches.  The default is 1,
 
  /// i.e. prefetch with any stride.  Sometimes prefetching is beneficial
 
  /// even below the HW prefetcher limit, and the arguments provided are
 
  /// meant to serve as a basis for deciding this for a particular loop.
 
  virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
 
                                        unsigned NumStridedMemAccesses,
 
                                        unsigned NumPrefetches,
 
                                        bool HasCall) const = 0;
 
 
 
  /// \return The maximum number of iterations to prefetch ahead.  If
 
  /// the required number of iterations is more than this number, no
 
  /// prefetching is performed.
 
  virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
 
 
 
  /// \return True if prefetching should also be done for writes.
 
  virtual bool enableWritePrefetching() const = 0;
 
 
 
  /// \return if target want to issue a prefetch in address space \p AS.
 
  virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
 
 
 
  virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
 
  virtual InstructionCost getArithmeticInstrCost(
 
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
 
      OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
 
      ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
 
 
 
  virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
 
                                         ArrayRef<int> Mask,
 
                                         TTI::TargetCostKind CostKind,
 
                                         int Index, VectorType *SubTp,
 
                                         ArrayRef<const Value *> Args) = 0;
 
  virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
 
                                           Type *Src, CastContextHint CCH,
 
                                           TTI::TargetCostKind CostKind,
 
                                           const Instruction *I) = 0;
 
  virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
 
                                                   VectorType *VecTy,
 
                                                   unsigned Index) = 0;
 
  virtual InstructionCost getCFInstrCost(unsigned Opcode,
 
                                         TTI::TargetCostKind CostKind,
 
                                         const Instruction *I = nullptr) = 0;
 
  virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 
                                             Type *CondTy,
 
                                             CmpInst::Predicate VecPred,
 
                                             TTI::TargetCostKind CostKind,
 
                                             const Instruction *I) = 0;
 
  virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
 
                                             TTI::TargetCostKind CostKind,
 
                                             unsigned Index, Value *Op0,
 
                                             Value *Op1) = 0;
 
  virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
 
                                             TTI::TargetCostKind CostKind,
 
                                             unsigned Index) = 0;
 
 
 
  virtual InstructionCost
 
  getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
 
                            const APInt &DemandedDstElts,
 
                            TTI::TargetCostKind CostKind) = 0;
 
 
 
  virtual InstructionCost
 
  getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                  unsigned AddressSpace, TTI::TargetCostKind CostKind,
 
                  OperandValueInfo OpInfo, const Instruction *I) = 0;
 
  virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
 
                                            Align Alignment,
 
                                            unsigned AddressSpace,
 
                                            TTI::TargetCostKind CostKind,
 
                                            const Instruction *I) = 0;
 
  virtual InstructionCost
 
  getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                        unsigned AddressSpace,
 
                        TTI::TargetCostKind CostKind) = 0;
 
  virtual InstructionCost
 
  getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
 
                         bool VariableMask, Align Alignment,
 
                         TTI::TargetCostKind CostKind,
 
                         const Instruction *I = nullptr) = 0;
 
 
 
  virtual InstructionCost getInterleavedMemoryOpCost(
 
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
 
      bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
 
  virtual InstructionCost
 
  getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
 
                             std::optional<FastMathFlags> FMF,
 
                             TTI::TargetCostKind CostKind) = 0;
 
  virtual InstructionCost
 
  getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
 
                         TTI::TargetCostKind CostKind) = 0;
 
  virtual InstructionCost getExtendedReductionCost(
 
      unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
 
      std::optional<FastMathFlags> FMF,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
 
  virtual InstructionCost getMulAccReductionCost(
 
      bool IsUnsigned, Type *ResTy, VectorType *Ty,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
 
  virtual InstructionCost
 
  getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
 
                        TTI::TargetCostKind CostKind) = 0;
 
  virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy,
 
                                           ArrayRef<Type *> Tys,
 
                                           TTI::TargetCostKind CostKind) = 0;
 
  virtual unsigned getNumberOfParts(Type *Tp) = 0;
 
  virtual InstructionCost
 
  getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0;
 
  virtual InstructionCost
 
  getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
 
  virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
 
                                  MemIntrinsicInfo &Info) = 0;
 
  virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
 
  virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
 
                                                   Type *ExpectedType) = 0;
 
  virtual Type *getMemcpyLoopLoweringType(
 
      LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
 
      unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
 
      std::optional<uint32_t> AtomicElementSize) const = 0;
 
 
 
  virtual void getMemcpyLoopResidualLoweringType(
 
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
 
      unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
 
      unsigned SrcAlign, unsigned DestAlign,
 
      std::optional<uint32_t> AtomicCpySize) const = 0;
 
  virtual bool areInlineCompatible(const Function *Caller,
 
                                   const Function *Callee) const = 0;
 
  virtual bool areTypesABICompatible(const Function *Caller,
 
                                     const Function *Callee,
 
                                     const ArrayRef<Type *> &Types) const = 0;
 
  virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
 
  virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
 
  virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
 
  virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
 
  virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
 
  virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
 
                                           Align Alignment,
 
                                           unsigned AddrSpace) const = 0;
 
  virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
 
                                            Align Alignment,
 
                                            unsigned AddrSpace) const = 0;
 
  virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
 
                                           ElementCount VF) const = 0;
 
  virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
 
  virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
 
                                       unsigned ChainSizeInBytes,
 
                                       VectorType *VecTy) const = 0;
 
  virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
 
                                        unsigned ChainSizeInBytes,
 
                                        VectorType *VecTy) const = 0;
 
  virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
 
                                     ReductionFlags) const = 0;
 
  virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
 
                                               ReductionFlags) const = 0;
 
  virtual bool preferEpilogueVectorization() const = 0;
 
 
 
  virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
 
  virtual unsigned getGISelRematGlobalCost() const = 0;
 
  virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
 
  virtual bool enableScalableVectorization() const = 0;
 
  virtual bool supportsScalableVectors() const = 0;
 
  virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
 
                                     Align Alignment) const = 0;
 
  virtual VPLegalization
 
  getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
 
};
 
 
 
template <typename T>
 
class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
 
  T Impl;
 
 
 
public:
 
  Model(T Impl) : Impl(std::move(Impl)) {}
 
  ~Model() override = default;
 
 
 
  const DataLayout &getDataLayout() const override {
 
    return Impl.getDataLayout();
 
  }
 
 
 
  InstructionCost
 
  getGEPCost(Type *PointeeType, const Value *Ptr,
 
             ArrayRef<const Value *> Operands,
 
             TargetTransformInfo::TargetCostKind CostKind) override {
 
    return Impl.getGEPCost(PointeeType, Ptr, Operands, CostKind);
 
  }
 
  unsigned getInliningThresholdMultiplier() override {
 
    return Impl.getInliningThresholdMultiplier();
 
  }
 
  unsigned adjustInliningThreshold(const CallBase *CB) override {
 
    return Impl.adjustInliningThreshold(CB);
 
  }
 
  int getInlinerVectorBonusPercent() override {
 
    return Impl.getInlinerVectorBonusPercent();
 
  }
 
  InstructionCost getMemcpyCost(const Instruction *I) override {
 
    return Impl.getMemcpyCost(I);
 
  }
 
  InstructionCost getInstructionCost(const User *U,
 
                                     ArrayRef<const Value *> Operands,
 
                                     TargetCostKind CostKind) override {
 
    return Impl.getInstructionCost(U, Operands, CostKind);
 
  }
 
  BranchProbability getPredictableBranchThreshold() override {
 
    return Impl.getPredictableBranchThreshold();
 
  }
 
  bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
 
  bool useGPUDivergenceAnalysis() override {
 
    return Impl.useGPUDivergenceAnalysis();
 
  }
 
  bool isSourceOfDivergence(const Value *V) override {
 
    return Impl.isSourceOfDivergence(V);
 
  }
 
 
 
  bool isAlwaysUniform(const Value *V) override {
 
    return Impl.isAlwaysUniform(V);
 
  }
 
 
 
  unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
 
 
 
  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
 
                                  Intrinsic::ID IID) const override {
 
    return Impl.collectFlatAddressOperands(OpIndexes, IID);
 
  }
 
 
 
  bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
 
    return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
 
  }
 
 
 
  bool
 
  canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
 
    return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
 
  }
 
 
 
  unsigned getAssumedAddrSpace(const Value *V) const override {
 
    return Impl.getAssumedAddrSpace(V);
 
  }
 
 
 
  bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
 
 
 
  std::pair<const Value *, unsigned>
 
  getPredicatedAddrSpace(const Value *V) const override {
 
    return Impl.getPredicatedAddrSpace(V);
 
  }
 
 
 
  Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
 
                                          Value *NewV) const override {
 
    return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
 
  }
 
 
 
  bool isLoweredToCall(const Function *F) override {
 
    return Impl.isLoweredToCall(F);
 
  }
 
  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
 
                               UnrollingPreferences &UP,
 
                               OptimizationRemarkEmitter *ORE) override {
 
    return Impl.getUnrollingPreferences(L, SE, UP, ORE);
 
  }
 
  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
 
                             PeelingPreferences &PP) override {
 
    return Impl.getPeelingPreferences(L, SE, PP);
 
  }
 
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
 
                                AssumptionCache &AC, TargetLibraryInfo *LibInfo,
 
                                HardwareLoopInfo &HWLoopInfo) override {
 
    return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
 
  }
 
  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
 
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
 
                                   DominatorTree *DT,
 
                                   LoopVectorizationLegality *LVL,
 
                                   InterleavedAccessInfo *IAI) override {
 
    return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
 
  }
 
  PredicationStyle emitGetActiveLaneMask() override {
 
    return Impl.emitGetActiveLaneMask();
 
  }
 
  std::optional<Instruction *>
 
  instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
 
    return Impl.instCombineIntrinsic(IC, II);
 
  }
 
  std::optional<Value *>
 
  simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
 
                                   APInt DemandedMask, KnownBits &Known,
 
                                   bool &KnownBitsComputed) override {
 
    return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
 
                                                 KnownBitsComputed);
 
  }
 
  std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
 
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
 
      APInt &UndefElts2, APInt &UndefElts3,
 
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
 
          SimplifyAndSetOp) override {
 
    return Impl.simplifyDemandedVectorEltsIntrinsic(
 
        IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
 
        SimplifyAndSetOp);
 
  }
 
  bool isLegalAddImmediate(int64_t Imm) override {
 
    return Impl.isLegalAddImmediate(Imm);
 
  }
 
  bool isLegalICmpImmediate(int64_t Imm) override {
 
    return Impl.isLegalICmpImmediate(Imm);
 
  }
 
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
 
                             bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
 
                             Instruction *I) override {
 
    return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
 
                                      AddrSpace, I);
 
  }
 
  bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
 
                     const TargetTransformInfo::LSRCost &C2) override {
 
    return Impl.isLSRCostLess(C1, C2);
 
  }
 
  bool isNumRegsMajorCostOfLSR() override {
 
    return Impl.isNumRegsMajorCostOfLSR();
 
  }
 
  bool isProfitableLSRChainElement(Instruction *I) override {
 
    return Impl.isProfitableLSRChainElement(I);
 
  }
 
  bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
 
  bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
 
                  DominatorTree *DT, AssumptionCache *AC,
 
                  TargetLibraryInfo *LibInfo) override {
 
    return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
 
  }
 
  AddressingModeKind
 
    getPreferredAddressingMode(const Loop *L,
 
                               ScalarEvolution *SE) const override {
 
    return Impl.getPreferredAddressingMode(L, SE);
 
  }
 
  bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
 
    return Impl.isLegalMaskedStore(DataType, Alignment);
 
  }
 
  bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
 
    return Impl.isLegalMaskedLoad(DataType, Alignment);
 
  }
 
  bool isLegalNTStore(Type *DataType, Align Alignment) override {
 
    return Impl.isLegalNTStore(DataType, Alignment);
 
  }
 
  bool isLegalNTLoad(Type *DataType, Align Alignment) override {
 
    return Impl.isLegalNTLoad(DataType, Alignment);
 
  }
 
  bool isLegalBroadcastLoad(Type *ElementTy,
 
                            ElementCount NumElements) const override {
 
    return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
 
  }
 
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
 
    return Impl.isLegalMaskedScatter(DataType, Alignment);
 
  }
 
  bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
 
    return Impl.isLegalMaskedGather(DataType, Alignment);
 
  }
 
  bool forceScalarizeMaskedGather(VectorType *DataType,
 
                                  Align Alignment) override {
 
    return Impl.forceScalarizeMaskedGather(DataType, Alignment);
 
  }
 
  bool forceScalarizeMaskedScatter(VectorType *DataType,
 
                                   Align Alignment) override {
 
    return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
 
  }
 
  bool isLegalMaskedCompressStore(Type *DataType) override {
 
    return Impl.isLegalMaskedCompressStore(DataType);
 
  }
 
  bool isLegalMaskedExpandLoad(Type *DataType) override {
 
    return Impl.isLegalMaskedExpandLoad(DataType);
 
  }
 
  bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
 
                       const SmallBitVector &OpcodeMask) const override {
 
    return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
 
  }
 
  bool enableOrderedReductions() override {
 
    return Impl.enableOrderedReductions();
 
  }
 
  bool hasDivRemOp(Type *DataType, bool IsSigned) override {
 
    return Impl.hasDivRemOp(DataType, IsSigned);
 
  }
 
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
 
    return Impl.hasVolatileVariant(I, AddrSpace);
 
  }
 
  bool prefersVectorizedAddressing() override {
 
    return Impl.prefersVectorizedAddressing();
 
  }
 
  InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 
                                       int64_t BaseOffset, bool HasBaseReg,
 
                                       int64_t Scale,
 
                                       unsigned AddrSpace) override {
 
    return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
 
                                     AddrSpace);
 
  }
 
  bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
 
  bool isTruncateFree(Type *Ty1, Type *Ty2) override {
 
    return Impl.isTruncateFree(Ty1, Ty2);
 
  }
 
  bool isProfitableToHoist(Instruction *I) override {
 
    return Impl.isProfitableToHoist(I);
 
  }
 
  bool useAA() override { return Impl.useAA(); }
 
  bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
 
  unsigned getRegUsageForType(Type *Ty) override {
 
    return Impl.getRegUsageForType(Ty);
 
  }
 
  bool shouldBuildLookupTables() override {
 
    return Impl.shouldBuildLookupTables();
 
  }
 
  bool shouldBuildLookupTablesForConstant(Constant *C) override {
 
    return Impl.shouldBuildLookupTablesForConstant(C);
 
  }
 
  bool shouldBuildRelLookupTables() override {
 
    return Impl.shouldBuildRelLookupTables();
 
  }
 
  bool useColdCCForColdCall(Function &F) override {
 
    return Impl.useColdCCForColdCall(F);
 
  }
 
 
 
  InstructionCost getScalarizationOverhead(VectorType *Ty,
 
                                           const APInt &DemandedElts,
 
                                           bool Insert, bool Extract,
 
                                           TargetCostKind CostKind) override {
 
    return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
 
                                         CostKind);
 
  }
 
  InstructionCost
 
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
 
                                   ArrayRef<Type *> Tys,
 
                                   TargetCostKind CostKind) override {
 
    return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
 
  }
 
 
 
  bool supportsEfficientVectorElementLoadStore() override {
 
    return Impl.supportsEfficientVectorElementLoadStore();
 
  }
 
 
 
  bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
 
  bool supportsTailCallFor(const CallBase *CB) override {
 
    return Impl.supportsTailCallFor(CB);
 
  }
 
 
 
  bool enableAggressiveInterleaving(bool LoopHasReductions) override {
 
    return Impl.enableAggressiveInterleaving(LoopHasReductions);
 
  }
 
  MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
 
                                               bool IsZeroCmp) const override {
 
    return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
 
  }
 
  bool enableInterleavedAccessVectorization() override {
 
    return Impl.enableInterleavedAccessVectorization();
 
  }
 
  bool enableSelectOptimize() override {
 
    return Impl.enableSelectOptimize();
 
  }
 
  bool enableMaskedInterleavedAccessVectorization() override {
 
    return Impl.enableMaskedInterleavedAccessVectorization();
 
  }
 
  bool isFPVectorizationPotentiallyUnsafe() override {
 
    return Impl.isFPVectorizationPotentiallyUnsafe();
 
  }
 
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
 
                                      unsigned AddressSpace, Align Alignment,
 
                                      unsigned *Fast) override {
 
    return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
 
                                               Alignment, Fast);
 
  }
 
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
 
    return Impl.getPopcntSupport(IntTyWidthInBit);
 
  }
 
  bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
 
 
 
  bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
 
    return Impl.isExpensiveToSpeculativelyExecute(I);
 
  }
 
 
 
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
 
    return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
 
  }
 
 
 
  InstructionCost getFPOpCost(Type *Ty) override {
 
    return Impl.getFPOpCost(Ty);
 
  }
 
 
 
  InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
 
                                        const APInt &Imm, Type *Ty) override {
 
    return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
 
  }
 
  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
 
                                TargetCostKind CostKind) override {
 
    return Impl.getIntImmCost(Imm, Ty, CostKind);
 
  }
 
  InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
 
                                    const APInt &Imm, Type *Ty,
 
                                    TargetCostKind CostKind,
 
                                    Instruction *Inst = nullptr) override {
 
    return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
 
  }
 
  InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
 
                                      const APInt &Imm, Type *Ty,
 
                                      TargetCostKind CostKind) override {
 
    return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
 
  }
 
  unsigned getNumberOfRegisters(unsigned ClassID) const override {
 
    return Impl.getNumberOfRegisters(ClassID);
 
  }
 
  unsigned getRegisterClassForType(bool Vector,
 
                                   Type *Ty = nullptr) const override {
 
    return Impl.getRegisterClassForType(Vector, Ty);
 
  }
 
  const char *getRegisterClassName(unsigned ClassID) const override {
 
    return Impl.getRegisterClassName(ClassID);
 
  }
 
  TypeSize getRegisterBitWidth(RegisterKind K) const override {
 
    return Impl.getRegisterBitWidth(K);
 
  }
 
  unsigned getMinVectorRegisterBitWidth() const override {
 
    return Impl.getMinVectorRegisterBitWidth();
 
  }
 
  std::optional<unsigned> getMaxVScale() const override {
 
    return Impl.getMaxVScale();
 
  }
 
  std::optional<unsigned> getVScaleForTuning() const override {
 
    return Impl.getVScaleForTuning();
 
  }
 
  bool shouldMaximizeVectorBandwidth(
 
      TargetTransformInfo::RegisterKind K) const override {
 
    return Impl.shouldMaximizeVectorBandwidth(K);
 
  }
 
  ElementCount getMinimumVF(unsigned ElemWidth,
 
                            bool IsScalable) const override {
 
    return Impl.getMinimumVF(ElemWidth, IsScalable);
 
  }
 
  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
 
    return Impl.getMaximumVF(ElemWidth, Opcode);
 
  }
 
  unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
 
                             Type *ScalarValTy) const override {
 
    return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
 
  }
 
  bool shouldConsiderAddressTypePromotion(
 
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
 
    return Impl.shouldConsiderAddressTypePromotion(
 
        I, AllowPromotionWithoutCommonHeader);
 
  }
 
  unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
 
  std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
 
    return Impl.getCacheSize(Level);
 
  }
 
  std::optional<unsigned>
 
  getCacheAssociativity(CacheLevel Level) const override {
 
    return Impl.getCacheAssociativity(Level);
 
  }
 
 
 
  /// Return the preferred prefetch distance in terms of instructions.
 
  ///
 
  unsigned getPrefetchDistance() const override {
 
    return Impl.getPrefetchDistance();
 
  }
 
 
 
  /// Return the minimum stride necessary to trigger software
 
  /// prefetching.
 
  ///
 
  unsigned getMinPrefetchStride(unsigned NumMemAccesses,
 
                                unsigned NumStridedMemAccesses,
 
                                unsigned NumPrefetches,
 
                                bool HasCall) const override {
 
    return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
 
                                     NumPrefetches, HasCall);
 
  }
 
 
 
  /// Return the maximum prefetch distance in terms of loop
 
  /// iterations.
 
  ///
 
  unsigned getMaxPrefetchIterationsAhead() const override {
 
    return Impl.getMaxPrefetchIterationsAhead();
 
  }
 
 
 
  /// \return True if prefetching should also be done for writes.
 
  bool enableWritePrefetching() const override {
 
    return Impl.enableWritePrefetching();
 
  }
 
 
 
  /// \return if target want to issue a prefetch in address space \p AS.
 
  bool shouldPrefetchAddressSpace(unsigned AS) const override {
 
    return Impl.shouldPrefetchAddressSpace(AS);
 
  }
 
 
 
  unsigned getMaxInterleaveFactor(unsigned VF) override {
 
    return Impl.getMaxInterleaveFactor(VF);
 
  }
 
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
 
                                            unsigned &JTSize,
 
                                            ProfileSummaryInfo *PSI,
 
                                            BlockFrequencyInfo *BFI) override {
 
    return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
 
  }
 
  InstructionCost getArithmeticInstrCost(
 
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
 
      OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
 
      ArrayRef<const Value *> Args,
 
      const Instruction *CxtI = nullptr) override {
 
    return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
 
                                       Args, CxtI);
 
  }
 
 
 
  InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
 
                                 ArrayRef<int> Mask,
 
                                 TTI::TargetCostKind CostKind, int Index,
 
                                 VectorType *SubTp,
 
                                 ArrayRef<const Value *> Args) override {
 
    return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args);
 
  }
 
  InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
 
                                   CastContextHint CCH,
 
                                   TTI::TargetCostKind CostKind,
 
                                   const Instruction *I) override {
 
    return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
 
  }
 
  InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
 
                                           VectorType *VecTy,
 
                                           unsigned Index) override {
 
    return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
 
  }
 
  InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
 
                                 const Instruction *I = nullptr) override {
 
    return Impl.getCFInstrCost(Opcode, CostKind, I);
 
  }
 
  InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
 
                                     CmpInst::Predicate VecPred,
 
                                     TTI::TargetCostKind CostKind,
 
                                     const Instruction *I) override {
 
    return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
 
  }
 
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
 
                                     TTI::TargetCostKind CostKind,
 
                                     unsigned Index, Value *Op0,
 
                                     Value *Op1) override {
 
    return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
 
  }
 
  InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
 
                                     TTI::TargetCostKind CostKind,
 
                                     unsigned Index) override {
 
    return Impl.getVectorInstrCost(I, Val, CostKind, Index);
 
  }
 
  InstructionCost
 
  getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
 
                            const APInt &DemandedDstElts,
 
                            TTI::TargetCostKind CostKind) override {
 
    return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
 
                                          DemandedDstElts, CostKind);
 
  }
 
  InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                                  unsigned AddressSpace,
 
                                  TTI::TargetCostKind CostKind,
 
                                  OperandValueInfo OpInfo,
 
                                  const Instruction *I) override {
 
    return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
 
                                OpInfo, I);
 
  }
 
  InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                                    unsigned AddressSpace,
 
                                    TTI::TargetCostKind CostKind,
 
                                    const Instruction *I) override {
 
    return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
 
                                  CostKind, I);
 
  }
 
  InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
 
                                        Align Alignment, unsigned AddressSpace,
 
                                        TTI::TargetCostKind CostKind) override {
 
    return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
 
                                      CostKind);
 
  }
 
  InstructionCost
 
  getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
 
                         bool VariableMask, Align Alignment,
 
                         TTI::TargetCostKind CostKind,
 
                         const Instruction *I = nullptr) override {
 
    return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
 
                                       Alignment, CostKind, I);
 
  }
 
  InstructionCost getInterleavedMemoryOpCost(
 
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
 
      bool UseMaskForCond, bool UseMaskForGaps) override {
 
    return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 
                                           Alignment, AddressSpace, CostKind,
 
                                           UseMaskForCond, UseMaskForGaps);
 
  }
 
  InstructionCost
 
  getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
 
                             std::optional<FastMathFlags> FMF,
 
                             TTI::TargetCostKind CostKind) override {
 
    return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
 
  }
 
  InstructionCost
 
  getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
 
                         TTI::TargetCostKind CostKind) override {
 
    return Impl.getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
 
  }
 
  InstructionCost getExtendedReductionCost(
 
      unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
 
      std::optional<FastMathFlags> FMF,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
 
    return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
 
                                         CostKind);
 
  }
 
  InstructionCost getMulAccReductionCost(
 
      bool IsUnsigned, Type *ResTy, VectorType *Ty,
 
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
 
    return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
 
  }
 
  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
 
                                        TTI::TargetCostKind CostKind) override {
 
    return Impl.getIntrinsicInstrCost(ICA, CostKind);
 
  }
 
  InstructionCost getCallInstrCost(Function *F, Type *RetTy,
 
                                   ArrayRef<Type *> Tys,
 
                                   TTI::TargetCostKind CostKind) override {
 
    return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
 
  }
 
  unsigned getNumberOfParts(Type *Tp) override {
 
    return Impl.getNumberOfParts(Tp);
 
  }
 
  InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
 
                                            const SCEV *Ptr) override {
 
    return Impl.getAddressComputationCost(Ty, SE, Ptr);
 
  }
 
  InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
 
    return Impl.getCostOfKeepingLiveOverCall(Tys);
 
  }
 
  bool getTgtMemIntrinsic(IntrinsicInst *Inst,
 
                          MemIntrinsicInfo &Info) override {
 
    return Impl.getTgtMemIntrinsic(Inst, Info);
 
  }
 
  unsigned getAtomicMemIntrinsicMaxElementSize() const override {
 
    return Impl.getAtomicMemIntrinsicMaxElementSize();
 
  }
 
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
 
                                           Type *ExpectedType) override {
 
    return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
 
  }
 
  Type *getMemcpyLoopLoweringType(
 
      LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
 
      unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
 
      std::optional<uint32_t> AtomicElementSize) const override {
 
    return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
 
                                          DestAddrSpace, SrcAlign, DestAlign,
 
                                          AtomicElementSize);
 
  }
 
  void getMemcpyLoopResidualLoweringType(
 
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
 
      unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
 
      unsigned SrcAlign, unsigned DestAlign,
 
      std::optional<uint32_t> AtomicCpySize) const override {
 
    Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
 
                                           SrcAddrSpace, DestAddrSpace,
 
                                           SrcAlign, DestAlign, AtomicCpySize);
 
  }
 
  bool areInlineCompatible(const Function *Caller,
 
                           const Function *Callee) const override {
 
    return Impl.areInlineCompatible(Caller, Callee);
 
  }
 
  bool areTypesABICompatible(const Function *Caller, const Function *Callee,
 
                             const ArrayRef<Type *> &Types) const override {
 
    return Impl.areTypesABICompatible(Caller, Callee, Types);
 
  }
 
  bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
 
    return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
 
  }
 
  bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
 
    return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
 
  }
 
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
 
    return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
 
  }
 
  bool isLegalToVectorizeLoad(LoadInst *LI) const override {
 
    return Impl.isLegalToVectorizeLoad(LI);
 
  }
 
  bool isLegalToVectorizeStore(StoreInst *SI) const override {
 
    return Impl.isLegalToVectorizeStore(SI);
 
  }
 
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
 
                                   unsigned AddrSpace) const override {
 
    return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
 
                                            AddrSpace);
 
  }
 
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
 
                                    unsigned AddrSpace) const override {
 
    return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
 
                                             AddrSpace);
 
  }
 
  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
 
                                   ElementCount VF) const override {
 
    return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
 
  }
 
  bool isElementTypeLegalForScalableVector(Type *Ty) const override {
 
    return Impl.isElementTypeLegalForScalableVector(Ty);
 
  }
 
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
 
                               unsigned ChainSizeInBytes,
 
                               VectorType *VecTy) const override {
 
    return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
 
  }
 
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
 
                                unsigned ChainSizeInBytes,
 
                                VectorType *VecTy) const override {
 
    return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
 
  }
 
  bool preferInLoopReduction(unsigned Opcode, Type *Ty,
 
                             ReductionFlags Flags) const override {
 
    return Impl.preferInLoopReduction(Opcode, Ty, Flags);
 
  }
 
  bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
 
                                       ReductionFlags Flags) const override {
 
    return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
 
  }
 
  bool preferEpilogueVectorization() const override {
 
    return Impl.preferEpilogueVectorization();
 
  }
 
 
 
  bool shouldExpandReduction(const IntrinsicInst *II) const override {
 
    return Impl.shouldExpandReduction(II);
 
  }
 
 
 
  unsigned getGISelRematGlobalCost() const override {
 
    return Impl.getGISelRematGlobalCost();
 
  }
 
 
 
  unsigned getMinTripCountTailFoldingThreshold() const override {
 
    return Impl.getMinTripCountTailFoldingThreshold();
 
  }
 
 
 
  bool supportsScalableVectors() const override {
 
    return Impl.supportsScalableVectors();
 
  }
 
 
 
  bool enableScalableVectorization() const override {
 
    return Impl.enableScalableVectorization();
 
  }
 
 
 
  bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
 
                             Align Alignment) const override {
 
    return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
 
  }
 
 
 
  VPLegalization
 
  getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
 
    return Impl.getVPLegalizationStrategy(PI);
 
  }
 
};
 
 
 
template <typename T>
 
TargetTransformInfo::TargetTransformInfo(T Impl)
 
    : TTIImpl(new Model<T>(Impl)) {}
 
 
 
/// Analysis pass providing the \c TargetTransformInfo.
 
///
 
/// The core idea of the TargetIRAnalysis is to expose an interface through
 
/// which LLVM targets can analyze and provide information about the middle
 
/// end's target-independent IR. This supports use cases such as target-aware
 
/// cost modeling of IR constructs.
 
///
 
/// This is a function analysis because much of the cost modeling for targets
 
/// is done in a subtarget specific way and LLVM supports compiling different
 
/// functions targeting different subtargets in order to support runtime
 
/// dispatch according to the observed subtarget.
 
class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
 
public:
 
  typedef TargetTransformInfo Result;
 
 
 
  /// Default construct a target IR analysis.
 
  ///
 
  /// This will use the module's datalayout to construct a baseline
 
  /// conservative TTI result.
 
  TargetIRAnalysis();
 
 
 
  /// Construct an IR analysis pass around a target-provide callback.
 
  ///
 
  /// The callback will be called with a particular function for which the TTI
 
  /// is needed and must return a TTI object for that function.
 
  TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
 
 
 
  // Value semantics. We spell out the constructors for MSVC.
 
  TargetIRAnalysis(const TargetIRAnalysis &Arg)
 
      : TTICallback(Arg.TTICallback) {}
 
  TargetIRAnalysis(TargetIRAnalysis &&Arg)
 
      : TTICallback(std::move(Arg.TTICallback)) {}
 
  TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
 
    TTICallback = RHS.TTICallback;
 
    return *this;
 
  }
 
  TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
 
    TTICallback = std::move(RHS.TTICallback);
 
    return *this;
 
  }
 
 
 
  Result run(const Function &F, FunctionAnalysisManager &);
 
 
 
private:
 
  friend AnalysisInfoMixin<TargetIRAnalysis>;
 
  static AnalysisKey Key;
 
 
 
  /// The callback used to produce a result.
 
  ///
 
  /// We use a completely opaque callback so that targets can provide whatever
 
  /// mechanism they desire for constructing the TTI for a given function.
 
  ///
 
  /// FIXME: Should we really use std::function? It's relatively inefficient.
 
  /// It might be possible to arrange for even stateful callbacks to outlive
 
  /// the analysis and thus use a function_ref which would be lighter weight.
 
  /// This may also be less error prone as the callback is likely to reference
 
  /// the external TargetMachine, and that reference needs to never dangle.
 
  std::function<Result(const Function &)> TTICallback;
 
 
 
  /// Helper function used as the callback in the default constructor.
 
  static Result getDefaultTTI(const Function &F);
 
};
 
 
 
/// Wrapper pass for TargetTransformInfo.
 
///
 
/// This pass can be constructed from a TTI object which it stores internally
 
/// and is queried by passes.
 
class TargetTransformInfoWrapperPass : public ImmutablePass {
 
  TargetIRAnalysis TIRA;
 
  std::optional<TargetTransformInfo> TTI;
 
 
 
  virtual void anchor();
 
 
 
public:
 
  static char ID;
 
 
 
  /// We must provide a default constructor for the pass but it should
 
  /// never be used.
 
  ///
 
  /// Use the constructor below or call one of the creation routines.
 
  TargetTransformInfoWrapperPass();
 
 
 
  explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
 
 
 
  TargetTransformInfo &getTTI(const Function &F);
 
};
 
 
 
/// Create an analysis pass wrapper around a TTI object.
 
///
 
/// This analysis pass just holds the TTI instance and makes it available to
 
/// clients.
 
ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
 
 
 
} // namespace llvm
 
 
 
#endif